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and Closeness 10 Singularity

Singularity is a major problem for parallel robots as in these configurations the robot
cannot be controlled, and there may be infinite forces/torques in its joints, possibly lead-
ing to a robot breakdown. In the recent years classification and detection of singularities

have made large progress. However, the issue of closeness to @ singularity is still open
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effector location forw

and we propose in this paper ar approach that is based on a static analysis. Our measuire

of closeness 10 4 singularity is based on the very practical issue of having the joint
forces/torques lower than a given threshold. We consider @ planar parallel robot whose
end-effector has a constant orientation and is submitted to a known wrench and we show
that it is possible to compute the border of the region that describes all possible end-
hich the joint forces are lower than the fixed threshold.

[DOLI: 10.1115/1.2961335]

1 Introduction

Singularity analysis of parallel robots has a long history starting
with the pioneer work of Borel [1], Bricard [2], and Cauchy [3]-A
major problem is that in these configurations the manipulator may
exhibit infinitesimal motion although its actuators are locked. In
the modern era such configurations have been studied by Hunt [4]
and by Gosselin [5], and then this issue has been addressed by
many authors [6-8]

It is usually claimed that singularities should be avoided be-
cause in the vicinity of a singularity the joint forces/torques can
go to infinity, leading to a breakdown of the robot. This has led to
major works (0 determine the singularity loci [9-13], to define a
adistance” to a singular pose [14,15]), to determine trajectory that
avoid singularity [16-19], to investigate the relation between sin-
gularities and kinematics analysis [20), and finally to determine if
a given workspace is singularity free in spite of the uncertainties
in the robot modeling [211. _

In this paper, we will follow another approach, which is moti-
vated by a very practical consideration: avoiding breaking the
robot by imposing a threshold on the maximal forces/torques in
the legs. Hence if 7 represents the forcesftorques in the leg and
Tmax their allowed maximal value, we will define the force work-

space as the set of poses so that

— Tmax = 7= Tax U)
for a given load on the platform. The purpose of this paper is to
present an algorithm that allows one to compute the border of the
force workspace for a given orientation of the platform. This al-

gorithm will be illustrated on the planar 3-RPR parallel robot,
whose singularity analysis has been extensively developed [22).

2 Static Analysis

We will first consider a 6DOF parallel robot such as the Gough
platform with legs whose attachment points on the base (platform)
will be denoted by A; (B)). We define a reference frame O, (x,Y,2)
and a mobile frame C (%;,¥r-%;) that is attached to the moving
platform, where C is an arbitrary point on the platform. If J de-
notes the kinematic Jacobian matrix and F is an external wrench
exerted on the platform, then mechanical equilibrium is obtained

if the forces in the leg satisfy
F=3"1 (2)
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If p; denotes the length of leg i, then the i-th row J,Tl of J7lis
given by:
- (A,-B. CB; X AI-B‘-)
' Pi Pi
" We define the matrix M as the matrix whose i-th ToW 18
Mt'=(Afo CBlX AiBi)T

We also define the matrix N; as the one obtained by substituting
the i-th column of J7 by F. Note that such Jacobian matrix for-
mulation is valid not only for the Goigh platform but also for
many other types of parallel robot (e.g., the Hexa robot). A singu-
larity is obtained if J-T is singular, and it is easy to show that this
is equivalent to M being singular.

According to Cramer’s rule the j-th component T; of 7 may be
obtained from Eg. (2) as:

_, M
Ti= Pi'l.Ml

provided that the determinant [M| of matrix M is not equal to 0,
i.e., the platform is not in a singular configuration. At a singular
pose Eq. (2) is an underconstrained linear system whose solution
get may include solutions satisfying Eq. (1). Hence in terms of
statics being exactly in a singularity may not be an issue. On the
other hand, a necessary condition for a singular pose X, to be
reachable from a non-singular pose X while satisfying the con-
straints (1) is that the determinant [N] should go to 0 when the
trajectory comes close to X;. .

This motivates the study of the the force workspace where
T = T= Tmax- For a spatial mechanism the force workspace 1s
embedded in a six-dimensional space and is therefore difficult to
draw. Hence we will restrict our study (0 the case where there are
only two free parameters, thereby allowing to draw planaf Cross
sections of the force workspace. For that purpose we will consider
a 3—RPR parallel robot (Fig. 1). The pose of such platform may
be parametrized by the coordinates (x,y) of C in the reference
frame and by the rotation angle £ between the x axis of the ref-
erence frame and the X, axis of the mobile frame. Furthermore,
this study will be performed under the assumption that the orien-
tation angle ¢ and the wrench applied on the platform have both
constant values (so that we have only (x,y) as free paramcters).

Tt must be noted that in this case we have

pi=Nlx- U+ - Vi)l @ -

wheré U,; and V; are the constants that depend only on the geom-
etry of the robot, the leg number, and on 6.

(3)
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3 Border of the Force Workspace

As a preliminary we will demonstrate the following theorem.
THEOREM 1. A pose Xq will belong to the border of the force
workspace if and only if at this pose the joint forces in one leg i
satisfies | 7= Tmax. At this pose there is at least one motion direc-
tion such that even for an infinitesimal displacement along this
direction, the change in one joint force will be such that |7
= Tmax: |
Proof. Let us assume that at X, all joint forces satisfy —Tpax
< 71;< Tyax While X belongs to the force workspace border. Let us
consider a ball centered at X, of radius r and a pose X belonging
to this ball. By using the implicit function theorem the joint force
at X is obtained as
- T, ; BJT(XI)
Xy = (J (Xo)+ =

where X, is a pose belonging to the ball. Within the ball
aJ7(X,)/dX is a bounded matrix and if € is such that J(Xp)F
=T .— € then there will always be a value of r such that in the
ball around X, the joint forces will verify |7 < Tya. Hence Xo
cannot be on the border of the workspace. B

As a consequence the border of the force workspace will be
determined by looking at the poses for which 7;=Tpax- If |M] #0
the constraint 7,= T, may be written by using Eq. (3) as

TmaxIMl ks pilNr'l =0 (6)

This equation in the two unknowns (x,y) defines a curve in the
x-y plane that will be called n-type curve. Similarly if 7;=—Tpax
then Eq. (3) may be written as

Tmalel + piiNil =0 (7

which defines a curves in the x-y plane, called m-type curve.

Consequently there are three n-type curves and three m-type
curves. These curves are not algebraic as p; is a square root of an
algebraic equation in (x,y), according to Eq. (4). However, it must
be noted that all points belonging to an m-curve or an n-curve
satisfy the equation

(Xs- Xo))f (5)

2o M2+ pHN{? =0 (8)

which is obtained as the product of Eqs. (6) and (7). This equation
defines a curve called the g-curves that have the property to be
algebraic of total degree 6.

Now, if we assume that [M|=0 (i.e., the robot is in a singular-
ity), then 7; may be finite only in two cases, namely, if |N}|=0 or
p;=0. In general the equations [M|=0 and |Nj|=0 are simulta-
neously satisfied only in a finite number of poses, which will be
labeled as N-points. In the same manner poses at which both
equations |M|=0 and p;=0 will be denoted by R-points. It must be
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noted that both the R and N points belong simultaneously to the
corresponding n and m-curves. ’

A consequence of Theorem 1 is that the border of the force
workspace will be constituted of the arc of m- and n-curves and
may possibly include some R and N points. We will now investi-
gate how these arcs of curves may be determined.

4 Algorithm to Compute the Force Workspace Border

4.1 The Key-Points. Let us consider a point M, on the
n-curve n, (ie., at this pose we have T)= Tmax) and assume that
| 75|, | 73] = Tunax- When moving along #, we may arrive at a pose
M, at which we have |75 > Tnay. As the variation of 7, is a con-
tinuous function with respect to the motion on r, there must be a
pose M3 on the curve n;, which lies between M, and M, such
that | 7| = 7,na,. Hence, M is an intersection point between #; and
1, or nty. The poses, which lies on an xr-curve n; Or an m-curve m;
and at which |rj|=1-max,i#j, are called key-points and by exten-
sion the N and R points are also considered as key-points. We will
now prove an interesting property of the key-points.

THEOREM 2. Consider the part of an n-curve (or an m-curve)
between two successive key-points. If a pose belonging to this part
lie on the border of the force workspace, then the whole part is a
component of the border. :

Proof. A pose M different from a key-point is on the border of
the force workspace if at this pose we have |7|=Tmax 7]
< Tynaxod # 6y 1.6, M belongs to either an #-curve Or an #-curve S.
Now assume that a pose My, belonging to the arc of curve &
between two successive key-points, does not belong to the border,
i.e., we have |Tﬂ> TmaxJ #1 at M. Then there must be a pose
between M and M, at which |'rj|=7max,j7ﬁi. Consequently, this
pose belongs to both the »; and n; curves, ie., is a key-point,
which is contradictory with S being an arc between two succes-
sive key-points. |

A direct consequence is that for determining if a point of an n
or an m-curve S; lies on the border of the force workspace, it is
sufficient to calculate the joint forces 7;,j# at this point and to

verify if |7 < Tmax:

4.2 Determination of the Key-Points. In summary the key-
points are as follows:

s the intersection points between the n and m-curves
« the R and Q points

The intersection between the n- and m-curves can be easily
calculated by using the g-curves. Indeed by definition the inter-
section points between the g-curves, (gi,q,) curves are the inter-
section points of the pair of curves (ngng), (n;.m;), (m,ny), and
(m;,m f-).

The intersection points between the two g-curves (gi-q;) may
easily be calculated by computing the resultant of their equations
and solving the resulting univariate polynomial. The roots of this
polynomial are then introduced in the equations of (g;,q;), which
become polynomials in one variable, and the common roots of
these polynomials lead to the intersection points. For each of these
intersection points we may then determine if it belongs ©
ng,my,nj,m; just by computing the vatue of (7;,7;) at this point.

The calculation of the R and N points uses the same principle as
follows:

* R points are obtained by calculating the resultant of pf

=0,|M|=0.
N points are obtained by calculating the resultant of |
=0,|M|=0. '

However, these key-points may not be sufficient to determine
the border as the following two difficulties may occur.
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1. An n- or m-curve has infinite branches.
2. The force workspace includes voids.

To manage the infinite branches, we will restrict the calculation
to the part of the force workspace that is included within a given
bounding box B. Hence we will delete from our set of key-points
those that are outside 53, but we will add to this set the intersection
points of the n- and m-curves with the border of B. These points
are easily determined by setting successively (x,y) to the corre-
sponding lower and upper bound of the {x,y) coordinates of B and
then solving the polynomial of the g-curve (which is now univari-
ate) and excluding the solutions that are outside the bounding box.

In the second case it may occur that an n- or m-curve S defines
a closed region that is a void for the force workspace and that
there is no key-point on S. As we will see later on the determina-
tion of the force, workspace border is basically based on the as-
sumption that all the elements that constitute the border lie be-
tween two key-points. In that particular case we may hence miss
the void as S has no key-point. To deal with this problem it must
be noted that if S defines a closed region, then there must be at
least two points on this curve at which the tangent to & is hori-
zontal. Such points may easily be determined by considering the
algebraic system g;=0, dg;/ dy=0, and then solving it by using the
resultant approach. The solutions of this system that (1) lie on a -
or m-curves that has no key-points, and (2) are included in the
bounding box are added as key-points for S

Finally, let us note that an n- or m-curve that will play arole in
the border has-at least two key-points and that an n- or m-curve
that has no key-point should not be considered. Having an empty
set of key-points may occur in two cases:

» the bounding box is strictly included in the force workspace
and

+ there is no intersection between the bounding box and the
force workspace.

If the set of key-points is empty, it is sufficient to calculate the
joint forces at an arbitrary point of the box. If all 7; satisfy |7
< T,.x then the box is included in the force workspace; otherwise
if at least one 7; satisfies | 7| > Tax, then there is no point of the
force workspace in the bounding box. In the remaining sections of
this paper, we will assume that the set of key-points is not empty.

4.3 Determining the Border Components. Using the results
of the previous section it is easy to design two procedures that will
be used for determining the border.

+ Key_Points that implements the calculation of all key points
as defined in the previous section. Note, however, that for
the calculation of the border we may have to add a few
additional key-points.

* On_Border (x,y) that will return [ if (x,y) is on the border,
0 otherwise.

"Qur task is now to determine for all six n- and m-curves the
arcs of curves that lie between two successive key-points (remem-
ber that we consider only the curves that have key-points and that
the minimum number of key-point is 2). Without lack of general-
ity we will explain the process for an n-curve n; We order the
key-points by increasing the value of their x coordinates and start
from the key-point K; with coordinates (x,y;) that has the lowest

x coordinates.

We consider the key point Kdx,yz),f>1 that is the next key--

point after K| in the list (such point will be called a goal point).
We then compute the two tangent unit vectors T;,T, of the
n-curve at the point K. Let us assume that T has components

(t..t,) and that ﬁ;:ﬁ.

Journal of Mechanisms and Robotics

*  We substitute x=x;+A,y=y,+e€in n;,q; where A is a small
fixed increment.

« We solve ¢;=0 in ¢, looking only for solutions that also
satisfy n;=0 and which are “small,” typically of absolute
value lower than 10A.

* If we have obtained more than one solution, we divide A by

" 2 and starts again, while if no solution is obtained we exit
from the process.

+ If we get only one of such solution, we have obtained a new
point K, on the n-curve with coordinates (x=x,+4,y,
=+ E).

* If On_Border (x,,y,}=0, the arc we are following is not part
of the border and we exit from the process.

If the process has allowed us to determine a new point K, we
repeat it by using K, as the new K, point. This procedure will stop
if one of the following cases occur.

* The current K, point is the last in the list of key-points.
o If x +A>x; we adjust A is such way that x;+A=x, We
then compute y,=y,+€:

(a)  if y,=y, we have then determined that K, K} are suc-
cessive key-points on n; and have found a polygonal
approximation of the arc that joins them.

(b) if y,#y the process continues, using Kp.q as new
goal point.

* We compute the tangent unit vectors T =(z,, y) at x,,,y,. If
t >z we stop the process and store (x,,y,) as new addi-
tlonal key-point. The motivation here is to increment by A
the variable x or y that has locally the largest variation so
that the other variable will exhibit only minor variation.

As soon as this process has terminated, we repeat it with the list
of key-points ordered by descending value of the x coordinate and
using x,=x;—A as the new x coordinate at each iteration.

This process is the same in the case where the components
(t.s y) of T, verify I > with only a permutation of the role of
x,¥ in the algorithm (1 e., it is the y variable which is incremented
by A).

Note that the R points require a specific treatment as they have
no tangent vectors (indeed the derivatives of the n and m-curves
with respect to (x,y) involve 1/p while at a R point p=0). For an
R point of coordinates (x;,y;), we use all the small solutions
obtained forx; = A, y; = A as new key-points and the above pro-
cedure is not used for the R points.

As soon as all n- and m-curves that include K, as key-point
have been processed by the algorithm, we will have determined
all parts of the n- and m-curves issued from X that are component
of the force workspace border. The procedure Branches (K) re-
turns all the arc of curves that belong to the border of the force
workspace and are issued from the key-point K.

4.4 Border Calculation Algorithm. We may now describe
the algorithm that compute the arc of curves belonging to the
border of the force workspace. We will denote by X the set of
key-points and by n the number of key-points in the set. The set of
arcs of curves that will be returned is denoted by .A. Using the
previous procedures the algorithm is simply written as

A=0

Key Point( )

for { from 1 to n do
U=Branches(K;)
A=AUU

and-do

return A

FEBRUARY 2009, Vol. 1 / 011011-3
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Fig. 2 The curves involved and the force workspace border for #=0.1 rad and F=(4,0,0) (the force workspace is constituted of

the region with a + sign)

4.5 Managing Additional Kinematic Constraints. We may
have to consider only the part of the force workspace that satisfy
some kinematic constraints (e.g., that satisfy poin=pP= pPma
where ppin and ppay are the minimal and maximal allowed leg
lengths).

This can easily be done in the procedure Branches by checking
the constraints for the key-point and the new points. Only the
poses that satisfy the constraints are stored and as soon as a new
point satisfies the constraint while its predecessor was not, then a
new arc of curve is created.

5 Examples and Analysis

The algorithm described in the paper was implemented as a
prototype in MAPLE and was tested for the planar parallel robot
3-RPR whose geometry is defined by:

CB, =(-4,4)

OA] = (0,0),

-35 -25 -15 -5 5 15 25

OA2 = (20,0), CB,.Z = (4,— 4)

04;=(12,10), CB,3=(0,2)

We choose a threshold 7,,,=3 and an increment A=0.05. The
computation time for determining the force workspace border var-
ies between 50 s and 500 s according to the number of arcs of
curves that are involved, but this computation time will be dras-
tically reduced if the algorithm was implemented in C++.
Considering an external wrench F=(4,0,0) and the platform
orientation #=0.1 rad, the involved curves and the resulting work-
space are presented in Fig. 2. For this example the force work-
space is separated into two components that are connected at two
points, which are singular poses. The shape of the force work-
space evolves slowly when changing the orientation of the plat-
form. For example, Fig. 3 presents the force workspace for F
=(4,0,0), 8=-0.1 rad. Note that in this example the force work-

10

Fig.3 The curves involved and the force workspace border for #=-0.1 rad and F=(4,0,0) (the force workspace is constituted of

the region with a + sign)
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Fig. 4 The force workspace for #=2.91rad and F=(0,0,5).
The regions of the force workspace are denoted by a +.

space may seem to be unbounded but this occured only because
we have restricted the drawing to lie within a bounding box. In-
deed at infinity the legs are parallel, which leads to a singular
configuration, and consequently there must be a force workspace
border that prohibits the robot to move toward infinity. In our
example this part is well outside the bounding box and does not
appear in the drawing.

The number of components of the force workspace may, how-
ever, vary. For example, in Fig. 4 the force workspace obtained
for F=(0,0,5) and 6=-2.91 rad is composed of three compo-
nents that are connected at point (S},S5), which are singular.

The effect of the kinematic constraints may be seen on Fig. 3.
Here we have imposed that the leg lengths are limited to the range
[2,22]. Tt is well known that these constraints restrict the center of
the platform to lie within a region that is the intersection of three
circles minus the union of three circles. However, if we take into

Fig. 5 The constraints induced by the minimal leg lengths im-
pose that the platform center must lie outside the region de-
fined by the union of the three dashed circles. Without taking
these constraints into account the force workspace is consti-
tuted of two components while the real force workspace has
four components (the region delimited by the border in thick

line).

Journal of Mechanisms and Robotics

account the force workspace this workspace will usually be re-
duced. In the example presented in Fig. 5, the workspace has four
components (the dashed circles are forbidden regions for the cen-
ter of the platform).

Going through a singularity is a major issue for good manage-
ment of the robot workspace. Strategies have been proposed for
avoiding singularities [16,17,19,23], for determining workspace
components separated by singularity surfaces [24,25] and for us-
ing the dynamics to go through a singularity [26-28] but none of
these strategies takes into account possible limits on the joint
forces. Clearly joint clearances and deformations of the links may
allow to open a “corridor” between two force workspace compo-
nents, but determining if it is possible to control the robot through
this corridor is an open issue.

6 Conclusion

We have presented in this paper a method that allows one to
determine the border of the force workspace (i.e., the set of poses
at which the joint forces are lower than a fixed threshold, being
given a load on the platform) of a planar manipulator for a given
orientation of the platform.

This approach is another way, based on an important physical
requirement, to manage singularity. It has been illustrated on a
planar parallel robot but may be used as well on other structures
although it allows one to calculate only planar cross sections of
the force workspace. :

This work may be extended in various ways. It may be inter-
esting to compute the force workspace for a given orientation
range or for a set of wrenches but our algorithm cannot manage an
exact calculation in that case. Using our approach we may still
calculate the force workspace for various values of the orientation
angle and/or external wrench then compute the intersection of all
these force workspaces (which is possible as basically the force
workspace border is a polygonal line and it exists efficient algo-
rithms to compute the intersection of polygons). The result will be
an overestimation of the real force workspace, and we may then
use interval analysis to refine the result. A similar approach may
be used if the wrench applied on the platform lie within some
given range and to take modeling uncertainties (e.g., uncertainties
on the location of the A;, B;) into account.
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