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Abstract— The wrench-feasible workspace (WFW) of a par-
allel cable-driven mechanism is the set of poses of its mobile
platform for which the cables can balance any wrench in a
specified set of wrenches, such that the tension in each cable
remains within a prescribed range. The WFW is fundamental
since it takes into account both the requirement of non-
negative cable tension and the requirement of a maximum
admissible cable tension. This paper addresses the problem of
the determination of the WFW of n-degree-of-freedom parallel
mechanisms driven by more than n cables. Interval analysis
based methods that allow to determine if a given n-dimensional
box is fully included in the WFW are presented. Moreover, these
methods are also able to approximate the WFW up to a chosen
accuracy. The resulting approximation consists of a set of n-
dimensional boxes such that each box of the set is fully included
in the WFW.

I. INTRODUCTION

Among the various factors that may limit the workspace
of parallel cable-driven mechanisms, the inability of the
cables to push on the mobile platform is an important and
challenging one. This problem has been the subject of several
studies and, recently, efficient methods that allow to de-
termine the workspace of parallel cable-driven mechanisms
have been proposed. These methods determine the workspace
by delineating its boundary. In the case of planar mecha-
nisms, this type of geometric method allows to determine the
workspace defined as the set of poses of the mobile platform
for which a given wrench [1], [2] or any wrench [3] can be
generated with tension forces in the cables. They can also
be extended to the determination of such workspaces for
six-degree-of-freedom (DOF) mechanisms driven by m > 6
cables [4], [5]. However, these geometric determinations
are limited to three-dimensional (3D) workspaces such as
the workspace of a three-DOF planar mechanism or the
constant-orientation workspace of a six-DOF mechanism.
Consequently, in the case of six-DOF mechanisms, only a
partial picture of the workspace is obtained since three of
the six pose variables must be fixed for the workspace to be
computed. Another limitation of these methods lies in the
difficulty to take into account the requirement of a minimum
and a maximum tension in each cable [6], [7] (bounds on
the allowed tensions), especially for six-DOF mechanisms
driven by more than six cables. Moreover, as a tool to design
parallel cable-driven mechanisms, geometric methods seems
to be limited to ”trial-and-error” approaches.
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Fig. 1. A parallel cable-driven mechanism.

The determination of the workspace of some parallel
mechanisms with rigid links, such as the Gough-Stewart
platform, is a well-known problem to which geometric
methods have been applied [8]. Again, these methods are
limited to 3D workspaces since they aim at obtaining a
graphical representation of the boundary of the workspace.
A numerical approach based on interval analysis overcomes
this limitation allowing the determination of 6D workspaces
[9]. Interval based methods have another interesting feature:
the ability to take into account the uncertainties, for instance
the manufacturing tolerances, inherent to any real system.
Moreover, the development of interval analysis methods is a
step toward the possibility to work within the optimal design
framework introduced in [10], [11]. For these reasons, this
paper focus on the application of interval analysis methods to
the determination of the wrench-feasible workspace (WFW)
of parallel cable-driven mechanisms. Finally, note that a
drawback of interval analysis based approaches is the high
computation time that may be involved. Hence, care must
be taken in the detailed choice of the methods and in their
implementation so as to ensure a tractable computation time.

II. DEFINITIONS

A. Wrench-Feasible Workspace
The relationship between the tensions in the cables and

the wrench f applied by the cables on a reference point P

of the platform is given by [12], [13]

Wτ = f , (1)

where τ = [τ1, . . . , τm]T is the vector of cable tensions and
W the wrench matrix. If n and m denote, respectively, the



number of DOF of the mobile platform and the number of
cables, W is a n×m matrix that depends on the pose X of
the mobile platform where X is a column vector of dimen-
sion n. For instance, in the case of a 6-DOF mechanism, the
first three components of X are the coordinates x, y and z
of the reference point P whereas its last three components
can be three Euler angles that define the orientation of the
mobile platform with respect to the base frame. Note that
W = −J

−T where J
−1 is the so-called inverse jacobian

matrix [8] whose line vectors are Plücker coordinates of the
cable lines. Then, let the required set of wrenches Wreq

be the set of wrenches that the cables must apply at the
reference point P of the mobile platform and let T be the
m-dimensional box wherein the cable tension vectors must
lie. Usually, the box T of allowed cable tensions is to be
defined as

T = {τ | τi ∈ [τmin, τmax] ∀ 1 ≤ i ≤ m} (2)

where τmin and τmax are two positive scalars such that
τmin < τmax. A maximum tension τmax is necessary
in order to take into account the maximum torque of each
actuator or the maximum tension that a cable can withstand.
The minimum tension τmin allows to ensure that none of
the cables will be slack, a situation that may cause control
problems. In (2), for the sake of clarity, the limiting tensions
τmin and τmax have been assumed to be the same for the
m cables of the mechanism. Without affecting the method
introduced in this paper, different τmin and τmax can be
chosen for each cable. Now, in order to deal with the
influence on the workspace of the unilateral nature of the
forces applied by the cables, following [6], the WFW is
defined as follows.

Definition The WFW is the set of poses of the mobile
platform for which, for any wrench f in Wreq , there exists
a vector of cable tensions τ in T such that Wτ = f .
The system of linear equations Wτ = f is said to be feasible
if it admits a solution τ in T .

B. Interval Evaluation, Interval Vectors and Interval Matri-
ces

An interval xI is a set of real numbers defined by

xI = [x, x] = {x | x ≤ x ≤ x} (3)

where x ≤ x. A fundamental feature of interval analysis is
the interval evaluation of a function. Let us consider a real
function f(x). The classic rules of addition, multiplication,
etc. of real numbers can be redefined to allow addition,
multiplication, etc. of intervals [14]. Based on these basic
operations and on the interval evaluation of basic algebraic
and transcendental functions such as x2, sin and cos, almost
any real function f(x) can be evaluated for an interval xI

yielding an interval fI = fI(xI) which encloses the image
of xI under f (denoted f(xI)), i.e.,

f(xI) =
{

f(x) | x ∈ xI
}

⊂ fI . (4)

The reverse inclusion does not hold in general and fI

overestimates f(xI) introducing pessimism in the evaluation.

Without going into details, there exists several means to
improve the interval evaluation of a function such as the
use of the derivative of the function or of its Taylor series
expansion [14], [15]. Likewise, the interval evaluation of a
function f(x) of several variables x = (x1, . . . , xn) yields
an interval fI that contains the image f(xI) of x

I under f .
An m-dimensional interval vector x

I is a vector whose
components xI

i are intervals. x
I is essentially a set of

vectors which has the shape of a box in R
m. Likewise, a

n×m interval matrix A
I is a matrix whose components are

intervals. The multiplication of an interval matrix A
I by an

interval vector x
I yields an interval vector A

I
x
I such that

[15]
∀ A ∈ A

I , ∀ x ∈ x
I , Ax ∈ A

I
x
I (5)

In the sense of (5), A
I
x
I is a box enclosure of the set

{

Ax | A ∈ A
I and x ∈ x

I
}

(6)

which is itself generally not a box. Hence, there exists vectors
v ∈ A

I
x
I such that

∀ A ∈ A
I , ∀ x ∈ x

I , Ax 6= v. (7)

III. INTERVAL ANALYSIS

A. Interval Wrench Matrix
Consider a box B of poses X of the mobile platform. B

can be identified to an n-dimensional interval vector. Now,
the wrench matrix W is pose dependent since each of its
component wij is a function of the pose X, wij = wij(X).
By means of an interval evaluation, each wij can be evaluated
for the box B yielding an interval wI

ij such that for each pose
X in B, wij(X) ∈ wI

ij (wij(B) ⊂ wI
ij ). Then, the n × m

interval matrix W
I whose components are the intervals wI

ij

is called the interval wrench matrix and it has the following
property

for all X ∈ B, W ∈ W
I . (8)

Thus, the interval wrench matrix W
I overestimates the set

of wrench matrices

{W(X) | X ∈ B} (9)

by enclosing it within a set that can be thought of as a box in
R

nm whereas (9) has an unknown complex shape since each
wij is a nonlinear function of the pose X. Consequently,
it is worth noting that there exists matrices WO ∈ W

I

which are not wrench matrices (∀X ∈ B, WO 6= W(X)).
This is known as the wrapping effect [15]. In the sequel,
the notation W

I = W
I(B) means that W

I is obtained by
interval evaluating W for the box B.

For instance, let us consider a simple point-mass two-DOF
mechanism driven by three cables as shown in Fig. 2. The
wrench matrix of this mechanism is the 2 × 3 matrix W =
[d1 d2 d3] where di = (1/ρi)

−−→
PAi. For the box of poses

B = [[1.5, 2.5], [0.4, 1.8]]T , each component of each di is
interval evaluated yielding the following W

I

[

[−2.986,−0.239] [0.344, 2.334] [−0.715, 0.715]
[−2.886,−0.0239] [−1.734, 0.134] [0.324, 3.0]

]

.

(10)
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Fig. 2. A point-mass cable-driven mechanism and its box workspace.

It can be verified that for any position X of P lying in B,
the associated wrench matrix W = W(X) lies within WI .
Finally, note that, although the matrix

[

−1 1.5 0
−0.5 0 1.6

]

(11)

belongs to WI , it does not correspond to any wrench matrix
obtained for X in B.

B. Interval Linear System
Since, in this paper, interval analysis is our main tool,

henceforth, the required set of wrenches Wreq is a box, i.e.,
an interval vector denoted by fI .

The so-called system of interval linear equations

WI
τ = fI (12)

is said to have a solution in T , i.e., is feasible, if and only
if

∀ W ∈ WI , ∀ f ∈ fI , ∃ τ ∈ T such that Wτ = f . (13)

With WI = WI(B), the feasibility of (12), i.e. (13), is a
sufficient condition for a box B to be fully included in the
WFW. Indeed, (8) and (13) imply that

∀ X ∈ B, ∀ f ∈ fI , ∃ τ ∈ T such that Wτ = f . (14)

In words, for any pose X in B, W = W(X) belongs to WI

by (8) and thus, according to (13), for any wrench f ∈ fI

to be generated at the mobile platform, there exists a vector
of cable tensions τ in the allowed set T that can generate
f (Wτ = f ). Hence, X belongs to the WFW. It shall be
noted that, due to the overestimation of (9) by WI , (13) is
a sufficient but not a necessary condition for a box B to be
included in the WFW.

C. The Square Case
When a parallel mechanism is driven by a number of ca-

bles equal to its number of DOF (m = n), the wrench matrix
W is square and the system of interval linear equations (12)
is a set of square systems of linear equations. In this case,
well-known methods of interval analysis can be applied in
order to find a box Te enclosing the so-called solution set of
(12) which is defined by

{

τ | ∃W ∈ WI , ∃ f ∈ fI such that Wτ = f
}

. (15)

Then, if Te ⊂ T , assuming that none of the matrices W

in WI is singular, (13) is true and W is included in the
WFW. More details on square systems of interval linear
equations — applied to the problem of the accuracy of
parallel robots — can be found in [16]. Now, when the
mobile platform of a parallel cable-driven mechanism is to
be fully constrained, the number of cables must be greater
than the number of DOF (m > n). In this case, the wrench
matrix W is a rectangular matrix that has more columns
than rows and (12) is a (underconstrained) system of interval
linear equations whose solution set (15) is unbounded [17].
Hence, this solution set can obviously not be enclosed in a
box and testing whether (13) is true requires another tool.

IV. TOOLS

The goal of this section is to point out a theorem that
allows to test whether (13) holds. This theorem is based on
a theorem due to Rohn (Theorem 1.16 of [18]). Beforehand,
a set of ”vertex” matrices of an interval matrix must be in-
troduced. Finally, a method to test whether a box workspace
W is fully outside the WFW is presented.

A. A Set of Vertex Matrices of an Interval Matrix
Let AI be a n×m interval matrix whose components are

the intervals AI

ij = [AI

ij , A
I

ij ]. A set of 2n “vertex” matrices
of AI , denoted {Ay}, is of particular interest to us. In order
to define {Ay}, let Yn be the set of n-dimensional vectors
y whose components yi, 1 ≤ i ≤ n, are equal either to 1 or
to -1. We associate with each of the 2n y in Yn the vertex
matrix Ay such that the components Ayij

of its ith line are
defined by Ayij

= AI

ij if yi = −1 or Ayij
= AI

ij if yi = 1.
{Ay} is the set of the 2n vertex matrices Ay. Note that the
ith component of y defines completely the ith line of Ay

and that the components of Ay can be computed by means
of

Ayij
= AI

ij + (AI

ij − AI

ij)(1 − yi)/2. (16)

For instance, with y = [1,−1]T ∈ Y2, the vertex matrix
Wy of the interval matrix WI shown in (10) is equal to

[

−2.986 0.344 −0.715
−0.0239 0.134 3.0

]

. (17)

Let us also define the set {by} of “vertex” vectors of an
interval vector bI as the set of the 2n vectors by, y in Yn,
whose components byi

(1 ≤ i ≤ n) are given by byi
= bIi if

yi = −1 or byi
= bIi if yi = 1. The interval [bIi , bIi ] is the ith

component of bI . The components of by can be computed
by the following equation

byi
= bIi + (bIi − bIi )(1 + yi)/2. (18)

B. A Useful Theorem
Note that the system of interval linear equations (12) is

a shorthand notation for the infinite set of systems of linear
equations

{

Wτ = f | W ∈ WI and f ∈ fI
}

. (19)



The following theorem states that the infinitely many systems
(19) are all feasible, i.e., (13) is true, if and only if finitely
many of them are feasible.

Theorem 1 (Rohn) The system of interval linear equations
WI

τ = fI is feasible if and only if the 2n systems of linear
equations Wyτ = fy, y ∈ Yn, are feasible.
The necessary condition is trivial whereas the reader inter-
ested in the proof of the sufficient condition is referred to
[18]. Since (13) is a sufficient condition for a box B to be
included in the WFW, this very useful theorem allows to
conclude that B is fully inside the WFW whenever each of
the 2n systems Wyτ = fy, y ∈ Yn, is feasible where Wy

and fy are the vertex matrix of WI and the vertex vector of
fI defined by (16) and (18), respectively.

The feasibility of a system Wyτ = fy is a well-known
problem in linear programming (LP) and it can be tested
by means of the simplex method applied to the general LP
problem [19] (chapter 8)

minimize cT
τ subject to Wyτ = fy, τ ∈ T (20)

for which a trivial linear form c = 0 can be considered since
only the feasibility of the problem is to be determined.

In brief, by means of Theorem 1 and of the simplex
method, a procedure denoted Feasibility(WI, fI , T )
can be written. This procedure returns 1 if Theorem 1 is true
and 0 otherwise. It requires at most 2n call to the simplex
method. Note that the method introduced in [20] allows to
guarantee the correctness of the solution determined by the
simplex method whose computations may be affected by
numerical round-off errors.

C. A Test to Discard a Box B

As defined by (2), T is an interval vector. Thus, the
interval wrench matrix WI can be multiplied by T yielding
an interval vector WIT such that (cf section II-B)

∀ W ∈ WI , ∀ τ ∈ T , Wτ ∈ WIT . (21)

Then, with WI = WI(B),

fI 6⊂ WIT (22)

is a sufficient condition for B to be fully outside the WFW.
Indeed, according to (22), there exists a wrench f0 ∈ fI

such that f0 6∈ WIT . For any pose X in B, W = W(X)
lies within WI and, hence, (21) implies that for all τ ∈ T ,
Wτ 6= f0. Then, for any pose X in B, the wrench f0 of the
required set of wrenches fI is infeasible proving that B is
fully outside the WFW.

Thus, the computation of the interval vector WIT and
the comparison of WIT and fI by means of (22) provide
a procedure Out() whose arguments are the interval wrench
matrix WI together with fI and T . This procedure returns
1 if B is completely outside the WFW according to the
sufficient condition (22), otherwise it returns 0.

Again, since WIT is a box that overestimates the set
{Wτ | W ∈ WI , τ ∈ T }, (22) is sufficient but not
necessary for B to be fully outside the WFW.

V. DETERMINATION OF THE WFW
The generic structure of an algorithm based on interval

analysis [8], [16] can now be applied, on one hand, to test
whether a given box workspace W is fully included in the
WFW and, on the other hand, to approximate as a set of
n-dimensional boxes Bi the part of the WFW lying within a
given box B.

A. Test of a Box Workspace W

In order to test whether a prescribed box workspace W is
fully inside the WFW, a list L of n-dimensional boxes Bi is
managed by the following algorithm. The number of boxes
in the list L is denoted by p.

1) i = 1, B1 = W , L = {B1}, p = 1.
2) if i > p then RETURN 1
3) WI = Compute WrenchMatrix(Bi)
4) if Out(WI , fI , T ) = 1 then RETURN -1
5) if Feasibility(WI, fI , T ) = 1 then i = i+1, go

to step 2
6) else, Feasibility(WI, fI , T ) = 0,

a) if the widths of all the interval components of Bi

are lower than ε then RETURN 0
b) else, Bisect(Bi) and put the resulting two new

boxes in L, p = p + 2, i = i + 1, go to step 2
At step 1, the list L is initialized with the box workspace
W . At step 3, the interval wrench matrix WI = WI(Bi) is
computed. When the corresponding system of interval linear
equations (12) is feasible (step 5), all the poses in Bi belong
to the WFW and the algorithm proceeds to the next box
Bi. On the contrary, when the procedure Out() returns 1
(step 4), the box Bi ⊂ W is fully outside the WFW and
the algorithm returns -1 since W cannot be included in the
WFW. At step 6, (12) is not feasible but, at the same time,
(22) is false (fI ⊂ WIT ). Then, two situations can occur.
At step 6 a, the box Bi is deemed too small to be bisected
and the algorithm returns 0 since it cannot guarantee, on one
hand, that all the poses in Bi — and, hence, that all the poses
in W — lie within the WFW and, on the other hand, that
all the poses in Bi — and, hence, that some poses in W —
are outside the WFW. At step 6 b, Bi is bisected yielding
two new boxes of smaller size which are put in the list L.
When the algorithm returns 1, the box workspace W is fully
included in the WFW whereas a value of -1 means that W
is not included in the WFW. When 0 is returned, either W
is not fully included in the WFW or the threshold ε is too
large for the algorithm to be able to conclude.

As the bisection process reduces the size of the boxes
Bi, the enclosure WI of the set of wrench matrices (9)
becomes sharper. Now, if Bi is a box included in the WFW,
the procedure Feasibility() may not be able to conclude
that Bi belongs to the WFW due to the overestimation of (9)
inherent in the computation WI = WI(Bi). But, after the
bisection of Bi which yields two smaller boxes B1

i
and B2

i
,

the overestimations involved in the computations WI(B1

i
)

and WI(B2

i
) are somehow lesser and the algorithm might be

able to conclude that Bi is included in the WFW by verifying
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Fig. 3. A 3-DOF planar parallel mechanism driven by four cables.

that both B1

i and B2

i are included in the WFW. This is the
key property that makes the algorithm work.

B. The WFW as a Set of Boxes
Let us consider a large box B. For example, B can be

the frame on which the actuated reels of the mechanism are
mounted. The algorithm presented in section V-A can be
modified so as to approximate the part of the WFW lying
within B by a set of n-dimensional boxes Bi. To this end, at
step 1, the list L is initialized with the box B instead of W .
At step 5, when a box Bi of L is found to be included in the
WFW, this box Bi is stored in a list A before proceeding
to the next box of L by going back to step 2. Finally, at
steps 4 and 6 a, when a box Bi is, respectively, fully outside
the WFW or too small to be bisected, instead of stopping
the algorithm by returning -1 or 0, i = i + 1 and the next
box of L is considered. This modified algorithm outputs the
list A whose boxes provide an approximation of the part
of the WFW included in the initial box B. The quality of
the approximation is highly dependent on the value of the
threshold ε.

VI. EXAMPLES

A. A 3-DOF Planar Mechanism
Let us consider the 3-DOF planar parallel cable-driven

mechanism shown in Fig. 3. The base and the mobile
platform are squares of side length 1m and 0.2m, respec-
tively. The cables attached at points Bi of the platform are
crossed as shown in Fig. 3. The position of the platform
is defined by the position (x, y) of its reference point P
whereas its orientation is given by angle φ. The WFW
to be determined is defined by τmin=1N, τmax=54N and
f
I=[[−10, 10], [−10, 10], [−0.5, 0.5]]T where the first two

components of f
I are interval of forces Fx and Fy (N) and

the third component is an interval of moments Mz (N.m).
The algorithm presented in V-A shows that the following

box workspace

W =





xI

yI

φI



 =





[0.3, 0.7] (m)
[0.3, 0.7] (m)

[−0.7854, 0.7854] (rad)



 (23)

is fully included in the WFW. The algorithm
presented in V-B allows to obtain an approximation
of the part of the WFW lying within the box
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Fig. 4. The WFW as a set of boxes.

B=[[−0.1, 1.1], [−0.1, 1.1], [−0.7854, 0.7854]] as shown
in Fig. 4. Note that, at step 6a, two different ε have
been used, one εpos (positions x and y) for the first two
components of B and the other one εori for the third
component of B (orientation). Fig. 4 shows the boxes of
the output list A for εpos=0.02 and εori=0.05. Finally, a
constant-orientation cross section of the WFW for φ = π/4
(box B=[[−0.1, 1.1], [−0.1, 1.1], [0.7854, 0.7854]]) is shown
in Fig. 5 together with the boundary of the constant-
orientation wrench-closure workspace (WCW) [3]. Note
that the WCW is a special instance of the WFW for which
τmax tends to infinity, τmin is equal to 0 and the required
set of wrenches f

I is the whole space of wrenches.

B. A 6-DOF Mechanism
Fig. 6 shows a six-DOF parallel mechanism driven

by eight cables together with a box. Let us consider
the WFW defined by τmin=1N, τmax=540N and
f
I=[[−10, 10], [−10, 10], [−10, 10], [−0.5, 0.5], [−0.5, 0.5],

[−0.5, 0.5]]T where the first three components of f
I

correspond to forces (N) and the last three to moments
(N.m). The algorithm of section V-A allows to determine
that the box shown in Fig. 6 is included in the WFW
for any orientation of the mobile platform such that
φ ∈ [−0.2618, 0.2618] (rad), θ ∈ [−0.2618, 0.2618] (rad)
and ψ = 0 where φ, θ and ψ are three Euler angles (XYZ
convention).

C. Computation Time
Our implentation in C++ uses the interval arithmetic of

the BIAS/Profil C++ library and the simplex of the GNU
Linear Programming Kit (GLPK). On a DELL Precision
380 PC (3,6 Ghz), the algorithm introduces in section V-A
finds in 67s that the box (23) is included in the WFW (with
εpos=εori=0.0005) whereas the time required to compute the
set of boxes shown in Fig. 4 is 44s (εpos=0.02, εori=0.05).
In section VI-B, the computation time is 133s (εpos=0.01,
εori=0.05).

The basic method presented in this paper can be im-
proved in several ways. For instance, in the procedure
Feasibility(WI, fI , T ), the interval evaluation W

I =
W

I(B) of the wrench matrix W can be replaced by the
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interval evaluation W
I

q = W
I

q (B) of the matrix Wq whose
expression is obtained from that of W by removing the
denominators ρi which appears in each column of W (ρi

denotes the length of cable i, cf [12]). Then, if the allowed
set of tension T is replaced by

Tq =
{

τ q | τqi
∈ [τmin/ρi, τmax/ρi] ∀ 1 ≤ i ≤ m

}

(24)

where ρi and ρi are, respectively, the lower and upper
bounds of the interval evaluation of ρi for the box B, it
can be proved that Feasibility(WI

q , fI , Tq) = 1 is a
sufficient condition for the box B to be included in the
WFW. This modification has a very positive effect on the
computation time. For instance, the computation time needed
in section VI-B is reduced from 133s to 18s. Note that, for
a given box B, this modification is possible only if

τmin/ρi ≤ τmax/ρi ⇐⇒ τmin/τmax ≤ ρi/ρi. (25)

VII. CONCLUSIONS

The determination of the WFW is a difficult problem. In
this paper, it was shown how methods based on interval
analysis allow to deal with this issue. Indeed, an efficient
algorithm that solves the practical problem of determining
whether a given box workspace is fully included in the
WFW was proposed together with a variant of this algorithm

that provides an approximation of the WFW up to a given
accuracy. In the case of n-dof mechanisms driven by n or
more than n cables — especially when n = 6, — geometric
methods that determines the boundary of the WFW are
currently unused certainly due to the complexity of the
analytic description of the boundary. Hence, the proposed
algorithms provide useful alternatives to the only currently
available determination methods, that is, to the “brute force”
time-consuming discretization methods consisting in testing
a cloud of points.

The tools presented in this paper are basics and can be
improved in several ways so as to decrease the computational
time which may be high. Moreover, these tools form a
necessary basis to the application to parallel cable-driven
mechanisms of an optimal design framework based on in-
terval analysis presented in [10] and [11].
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