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Abstract 

In this paper, a new architecture of planar three- 
degree-of-freedom (3-dof) parallel manipulator is  pre- 
sented. In the proposed mechanism, the prismatic 
actuators are fixed t o  the base which leads t o  a re- 
duction of the  inertia of  the moving links and hence 
makes it attractive, particularly when high speeds are 
required and electric actuation is  considered. Af ter  in- 
troducing the mechanism, a kinematic analysis is re- 
ported. Then,  velocity and acceleration equations are 
derived. Based o n  the geometry of the manipulator, a 
workspace analysis as performed and a description of 
the boundaries of the  workspace is provided. This ma- 
nipulator can be used in robotic applications involving 
the positioning and orientation of a rigid body o n  the 
plane with high sti f fness or accuracy. Additionally, the 
mechanism can find applications in motion simulators 
or other high-precision or high-speed devices. 

1 Introduction 

Parallel mechanical architectures have been origi- 
nally proposed in the context of tire-testing machines 
and flight simulators [I]. The main motivation behind 
the use of such architectures is that they provide bet- 
ter stiffness and accuracy than serial kinematic chains. 
Moreover, they allow the actuators to be fixed to the 
base - or to  be located close to the base - of the 
mechanism which minimizes the inertia of the moving 
parts and which makes it possible to use more powerful 
actuators. The application of parallel mechanical de- 
vices in robotics has been proposed approximately fif- 
teen years ago [2]. Later, extensive studies have led to 
the identification of several mechanical architectures 
with potential applications in robotics. Some of these 
architectures have been analyzed in detail and opti- 

mized and some prototypes have been built to  demon- 
strate their properties (see for instance [3-51). In some 
instances, it is required to  control the motion of a rigid 
body on a plane with two or three dofs. Examples of 
applications of planar manipulators include metal cut- 
ting, part handling, deburring and simulation devices 
for terrestrial vehicle simulators. A planar 3-dof par- 
allel manipulator has been proposed in [6], 171. The 
kinematic problems associated with this manipulator 
have been addressed in detail in [SI, [7], [9] and [lo] and 
its singularities have been identified in [7]. Efficient al- 
gorithms for the determination of its workspace have 
been proposed in [ll]. In all the above references and 
in other work related to  planar 3-dof parallel manipu- 
lators, two different architectures have been proposed, 
i.e., a manipulator with revolute actuators and a ma- 
nipulator with prismatic actuators. The manipulators 
consist of three kinematic chains connecting the base 
to the moving platform. In the case of the manipula- 
tor with revolute actuators, each of the chains consists 
of three consecutive revolute pairs and only the joints 
fixed to the base are actuated. In the case of the ma- 
nipulator with prismatic actuators, each of the chains 
is composed of a passive revolute joint fixed to  the 
base, a moving actuated primatic joint and a passive 
revolute joint fixed to  the platform. 

In this paper, a new architecture of planar 3-dof 
parallel manipulator is proposed. It departs from the 
existing designs in that the prismatic actuators are 
fixed to the base. In other words, each of the chains 
connecting the base to the platform is composed of a 
fixed prismatic actuator and two moving passive rev- 
olute joints. This architecture is in fact the planar 
counterpart of the spatial architecture proposed by 
the same authors in [12]. The positioning and veloc- 
ity equations of the new planar parallel manipulator 
are given. Then, a description of the workspace of the 
manipulat,or is provided based on the analysis of the 
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mechanism. Design issues are also addressed, espe- 
cially in connection with the workspace of the manip- 
ulator and examples of possible workspaces are pre- 
sented. Because of its inherent stiffness and accuracy, 
and because it allows to reduce the inertial of the mov- 
ing links, the mechanism studied here can be used in 
high-performance robotic applications as a planar po- 
sitioning and orientation device. Moreover, it can also 
be used in other applications such as velhicle motion 
simulators, camera positioning devices and other de- 
vices which require high-precision or high-bandwidth 
control. The kinematic, velocity and workspace anad- 
yses presented in this paper can be of great help in 
the design, trajectory planning and control of such 
devices. li-= 

Figure 1: Architecture of the proposed planar 3-dof 
parallel m;inipulator. 

2 Architecture of the new mechanism 

The architecture of the proposed planar 3-dof par- 
allel manipulator is illustrated schematically in Fig. 1. 
A reference frame Oxy is fixed to  the base and a mov- 
ing reference frame Cx' y' is attached to tlhe platform. 
The three prismatic actuators are fixed to the base. 
Each of the actuators is located at point A,  (fixed 
point) and its axis of motion is pointed in a direction 
defined by angle cy, (fixed angle). Moreover, vector e, 
is defined as a fixed unit vector in the direction of thle 
axis of the ith prismatic actuator. The moving part 
of the i th actuator is then attached to a second mov- 
ing link of length I, by an unactuated revolute joint 
located at point B,. The joint coordinate associated 
with the i th actuator is defined as p,, the distance be- 
tween points A, and B,. Finally, the moving link of 
length 1, is connected to  the platform bjy a revolute 
joint located at point C,. The Cartesian coordinat,e 
vector of the manipulator is given by the position and 
orientation of the platform and can be written as 

where (xc,yc) are the position coordinates of point 
C expressed in the fixed frame, and 4 i s  the angle 
between the x axis of the fixed frame and axis x' of 
the moving frame, as indicated on the figure. The 
actuated joint coordinate vector is defined as 

P = [Pl P2 P3IT 

where each of the components are defined above. Pii- 
nally, angle ,$ is defined as the angle between the x 
axis of the fixed frame and the intermedliate link of 
length li. 

Ely controlling the three actuators, it  is possible to  
con1,rol the Cartesian coordinates - position and ori- 
entation - of the platform, as expected. Moreover, as 
explained in the introduction, the architecture of each 
of the kinematic chains connecting the base to the 
platform is of the PRR type, wlhere P and R respec- 
tively denote prismatic and revolute joints. In existing 
planar 3-dof parallel manipulators, each of the chains 
connecting the base to  the platform are either of the 
RRR type or of the RPR type. I[n the latter case, the 
actuators are prismatic, as for ithe manipulator pro- 
posed here. However, both parts of the prismatic ac- 
tuators are moving, which increases the inertia. When 
hydraulic actuators are used, moving actuators are an 
interesting solution since they lead to  very small un- 
desirable transversal forces between the rod and the 
piston. However, if electrical actuators are used (for 
instance with a ball screw system), transversal forces 
are i i  lot less critical and the design proposed here is of 
grea,t interest since lit reduces the inertia of the moving 
parts. 

3 Kinematic analysis 

The most important kinematic issues to be ad- 
dressed, when considering a new manipulator, are the 
s o h  tions off the inverse and direct kinematic problems. 
Following the notation defined above, the geometry of 
the kinemakic chains connecting the base to  the plat- 
form allows one to write the coordinates of point C,, 
noted (W,, Yea), as 

Zca =: X A ~  + Pa COSCX~ + I ,   COS/^,, i = 1,2,3 (3) 
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Moreover, these coordinates can also be written as 
functions of the Cartesian coordinates of the platform, 
i.e., 

x c 2  = xc + x& cos 4 - y&, sin 4, i = 1 , 2 , 3  (5) 
ycp = yc+y&cos$+s(c,sin$, i = l , 2 , 3  (6) 

where x& and ybi are constant parameters describing 
the goemetry of the platform, i.e., they are the coor- 
dinates of point Ci in the coordinate frame attached 
to the platform. 

Eqs.(5) and (6) can then be substituted into eqs.(3) 
and (4), respectively, which leads to  two equations 
from which angle pi is easily eliminated. This leads 
to  a quadratic equation in pi which can be solved and 
finally leads to 

where 

and X C ~  and yc i  are as defined in eqs.(5) and (6 ) .  
Eq.(7) provides a closed-form solution to the inverse 
kinematic problem. Indeed, for a given position and 
orientation of the platform, the joint coordinates can 
be computed using this equation. Since two solutions 
are found for each of the joint coordinates, it is clear 
that the inverse kinematic problem of this manipulator 
has 8 different solutions. 

The second important problem to be addressed is 
the direct kinematic problem, which consists in finding 
the position and orientation of the platform for given 
values of the joint coordinates. This problem has been 
solved for the existing planar 3-dof parallel manipula- 
tors in [8-lo]. It was shown to lead to a polynomial 
of degree 6 which can have up to 6 real solutions. For 
the mechanism proposed here, it is very easy to show 
that the the direct kinematic problem is geometrically 
equivalent to  the direct kinematic problem of the ex- 
isting mechanisms. Hence, a polynomial of degree 6 
can also be derived for the new manipulator, for in- 
stance, using the formulation presented in [lo]. 

4 Velocity equations 

Eq.(7) can be differentiated with respect to  time in 
order to obtain the velocity equations. This leads to  
an equation of the form 

Ap+Bp=O (11) 

where p is the vector of Cartesian velocities defined as 

T 
P = [i.C,YC,d] 

and p is the vector of joint velocities defined as 

P = [P1,P2,b3IT (13) 
Matrices A and B are the 3 x 3 Jacobian matrices of 
the manipulator and can be expressed as 

a1 bl  c1 

A = [:: ;; ::I (14) 

dl  0 0 

0 0 d3 
B = [ 0 d2 0 ]  (15) 

where one has, for a = 1,2,3,  

ai = -pi COS ai - X A ~  + xc + ~ b i  COS 4 
- y& sin 4 (16) 

-pi  sin ai (17) 

+piy&i COS($ - ai) + X A ~ Y & ~  COS 4 

bi = - Y A ~  + y c  + yki cos 4 + xLi sin 4 

ci = -x&iYAi cos 4 + x&iyC cos 4 

-rccy& COS 4 + X A ~ X & ~  sin 4 
-xcxLi sin I$ + yAiy& sin 4 
-ycybi sin 4 + pix&i sin(4 - ai) 
pi + X A ~  COS ( ~ i  - xc COS ai 
-x(ci  COS(^ + a i )  + y&i sin(4 - ai)  

+ Y A ~  sin ai - y c  sin ai 

(18) 
d, = 

(19) 

Eq.( 11) relates the Cartesian velocities of the mech- 
anism to its joint velocities. This relationship is also 
very important for the description of the different 
types of singularities of the manipulator. The con- 
ditioning of the Jacobian matrices can also be used to 
characterize the dexterity of the mechanism. 

5 Workspace analysis 

One of the most important issues to be considered 
in the design of manipulators is their workspace. For 
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parallel manipulators, this issue is even more crit- 
ical since parallel mechanisms may sometimes have 
a rather limited workspace. The determination of 
the workspace of parallel manipulators has been ad- 
dressed, for instance, in [ll]. More specifically, the 
determination of the workspace of planar parallel ma- 
nipulators has been addressed in [7], [13] and [14]. 
However, the algorithms presented in the latter ref- 
erences cannot be directly applied to  the manipulator 
introduced here and a new method has to be derived. 

The workspace of a planar 3-dof manipulator is of- 
ten represented as a region of the plane which can 
be attained by a reference point on the platform, for 
a given fixed orientation of the platform. This rep- 
resentation can be repeated for any orientation of 
the platform and hence it completely describes the 
workspace of a 3-dof manipulator. It will therefore be 
adopted here. The problem of the determination of 
the workspace of the manipulator introduced here can 
then be stated as follows: for given geometric param- 
eters of the robot and for a given orientation of the 
platform (i.e., for a given value of angle 4), find the 
region of the plane which can be attained by point 
C of the platform (or any other point selected on the 
platform) without exceeding the mechanical limits of 
the manipulator. These limits will include here the 
limits associated with the closed kinematic chains and 
the motion limits of the prismatic actuators. 

Since the region of the plane described above is ob- 
tained for a given orientation of the platform, it is 
clear that it can be defined as the intersection of three 
regions which are simply the regions that point C can 
attain - for a constant orientation - when consider- 
ing the constraints on each of the legs of t8he manipu- 
lator independently. Therefore, the workspace will be 
obtained as the intersection of three regions. More- 
over, each of these three regions can be described by 
its boundary, as will be shown below, and the intersec- 
tion of the regions will therefore be obtained using the 
intersection of the boundaries of the workspace. The 
general algorithm is similar to what was presented iin 
[ll] and can be summarized as follows: i) Find the 
curves defining the boundary of the three regions COI- 

responding to  the constraints associated vvith each ad 
the legs independently, ii) Find the intersections ad 
the curves defining the boundary of the three regions 
(intersections of all the curves with one another), iii) 
Divide the curves in elementary portions - i.e. por- 
tions with no intersection with other curves - using 
the intersections found in the previous step, iv) Test 
each of the elementary portions to determine which 
ones are part of the envelope of the global workspace. 

Fkom Fig. 1, it is clear that the region which can 
be attained by point G with a constant orientation of 
the platform and considering the constaints on only 
one leg will in general be limited by two parallel line 
segrnents connected in their ends by two half-circles 
and with a possible internal void region, as illustrated 
in Fig. 2. The line segments can be described mathe- 
matically as 

where A, is the parameter of the curves and is bounded 
by 

Pa,man L L Pz,max (22) 

where pa,man and pa,maz are respectively the minimum 
and maximum possible value of the i th joint variable 
(constraints). Similarly, the half-circles can also be 
represented as parametric curves, i.e., 

with $i the parameter bounded as 

(25) 

for the first half-circle and 

for t,he second half-circle. Finally, the circular arcs 
defining the void must be described. The following 
test is applied in order to determine whether or not 
these arcs will be present, i.e., 

pz,max - pz,mzn gc 2 4  (29) 

If this condition is verified, then the arcs will be 
present and their parametric representation can be 
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Figure 2: Example of the determination of the 
workspace. 

written as 

for the first arc, where ~i is the parameter hound by 

ai - arccos(l/,) 5 ~i 5 ai + arccos(V,) (32) 

with v, - Pi,max - Pi,min 

24  2 -  (33) 

where ~i is the parameter bound by 

ai - arccos(K) + T 5 E, 5 a, + arccos('l/,) + T (36) 

With the above expressions, all the portions of curve 
defining the limits of the region obtained when con- 
sidering the constraints on one of the legs only are 
described. Their intersection must then be computed. 

Since all the equations are in parametric form and 
correspond to  simple geometric entities (line segments, 
circular arcs), the computation of the intersections is 
straightforward. Hence, each of the elements of each 
of the regions is intersected with all the others. Once 
all the intersections have been computed, each of the 

Figure 3: Example of workspace obtained with a sym- 
metric arrangement of the actuators. 

curves is considered and the intersections on this ele- 
ment are ordered. Then, the curve is segmented, i.e., 
divided in elementary portions, where an elementary 
portion is defined as a portion of the curve which does 
not intersect any of the other curves. Finally, each of 
the elementary portions of each of the curves is tested 
to determine whether or not it is part of the limit of 
the workspace. The test to be used is straightforward 
and consists in determining if one point of the curve 
is inside the two regions - out of the three regions 
which are intersected - to  which the curve does not 
belong. If the point in inside the other two regions, 
then this element of curve is part of the boundary of 
the workspace. All the elements are finally assembled, 
leading to  an exact, compact and efficient description 
of the workspace. An example of final result is shown 
in Fig. 2, where the three regions associated with the 
constraints of the legs are also shown in doted lines. 

6 Examples and design issues 

Since the workspace can be easily determined us- 
ing the algorithm of the preceding section, it is pos- 
sible to study several designs and to  compare their 
workspace. In general, it will be desirable to  maxi- 
mize the workspace of the manipulator. One immedi- 
ate possibility is to eliminate the voids in the regions 
associated with the legs by imposing that 

Moreover, the location of the actuators on the base 
and the geometry of the platform can be modified in 
order to lead to a larger overlap of the three regions. 
Examples are shown in Figs. 3 and 4. Other character- 
istics of the manipulator such as kinematic accuracy, 
stiffness and dynamic properties must also be consid- 
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Figure 4: Example of a square workspace and of a 
workspace obtained with the actuators iin close direc- 
tions. 

ered in the design process and are easily :mapped onto 
the workspace. 

7 Conclusion 

A novel architecture of planar 3-dof parallel ma- 
nipulator has been proposed and analyzed in this 
paper. The positioning and velocity equations have 
been derived. A description of the boundaries of the 
workspace of the manipulator has also been provided. 
Because of its inherent stiffness and accuracy, and be- 
cause it allows to reduce the inertia of the moving 
links, the mechanism studied here can be used in high- 
performance robotic applications as a planar position- 
ing and orientation device or in other applications such 
as vehicle motion simulators. It constitutes an inter- 
esting alternative to existing designs, especially when 
electrical actuation is considered. The kinematic and 
workspace analyses presented in this paper can be of 
great help in the design, trajectory planning and con- 
trol of such devices. Future work includes the devel- 
opment of a prototype of fast positioning device based 
on the mechanical architecture presented here. 
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