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Abstract

In optimal design problems we have to determine a set of design parameters such that a given mechanism

satisfies a list of requirements. In practice however these requirements may be classified as either compulsory

or relaxable. For classical optimal design methodologies, it is very difficult to find the solutions that satisfy
compulsory requirements simultaneously and make the best compromise between these two kinds of

requirements. So in this paper we propose and illustrate on an example of parallel robots an approach

based on interval analysis that allows to determine almost all possible mechanism geometries such that

all compulsory requirements will be satisfied simultaneously. As using interval analysis all possible solu-

tions will be obtained as a set of regions in the parameter spaces, the best design compromise for the relax-

able requirements will be determined by sampling the solution regions.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Compared with serial manipulators, parallel manipulators have many advantages such as
higher rigidity, better positioning accuracy, high speed and high load capacity. But one of their
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doi:10.1016/j.mechmachtheory.2004.07.002

* Corresponding author.

E-mail addresses: fang.hao@sophia.inria.fr (F. Hao), jean-pierre.merlet@sophia.inria.fr (J.-P. Merlet).

mailto:fang.hao@sophia.inria.fr 
mailto:jean-pierre.merlet@sophia.inria.fr 


158 F. Hao, J.-P. Merlet / Mechanism and Machine Theory 40 (2005) 157–171
drawbacks is that their performances depend heavily on their geometry. So optimal design has
become a key issue for their development and many researchers have recently paid attention to
this problem [1–6].

A classical way to solve optimal design problems is to define a real-valued function C as a
weighted sum of requirement indices Ii, which are functions of the design parameter set P.
C ¼
X
i

wiI iðPÞ ð1Þ
where wi are weights. Numerical procedures are then used to find a set Pm which minimizes
C, usually starting with an initial guess P0 �Pm will be considered as the optimal design
solution.

But this method has many drawbacks. First it is assumed that the requirement indices can be
defined and that they can be calculated efficiently as the numerical optimization procedure re-
quires a large number of evaluation of these indices. But these assumptions are difficult to satisfy
in practice especially for parallel robots: for example what could be the definition of an index
indicating that a cube with a given volume must be included in the workspace of the mechanism?
As for the performance evaluation it is now well known that exact performance evaluation is
very difficult to obtain because of complexity reasons or numerical round-off errors in the
calculation.

A second problem of cost-function approaches is that the numerical optimization procedure
may converge toward a local minimum, which leads to a solution that may be quite far away from
the optimal design solution.

In cost-function approaches it is difficult to determine the weights, because the weights not only
indicate the priority of the requirements but also tackle with the unit problems of the performance
indices. For example for a 3-DOF translational robot if the used performance indices are the
workspace volume and positioning accuracy, then for a fair comparison between both criteria
a weight with ratio 103 must be chosen. Furthermore a small change in the weights may lead
to very different optimal design solutions. But until now there are not intuitive rules for determin-
ing their values.

The cost-function approaches may also lead to inconclusive results. It was exemplified by
Stoughton [7] who was going to design a special kind of Gough platforms with improved dexterity
and a reasonable workspace volume. He found that these criteria were varying in opposite direc-
tions: the dexterity was decreasing when the workspace volume was increasing. Hence the prob-
lem of optimal design has become the problem of determining an acceptable compromise between
the two requirements. In most literature authors have been aware of this problem and consider
only one performance criterion (see for example [8–18]). But for practical applications it is quite
seldom that there is only one criterion to be considered (see for example [19–21]).

Another major drawback of cost-function approaches is that it provides only one optimal de-
sign solution. In our opinion an optimal design methodology should provide a set of solutions for
the following reasons:

• A designer may not have all the necessary information to make the final design choice (for
example he may obtain an arbitrary length for a linear actuator while the end-user will finally
decide to use a commercially available actuator with only finite possibilities for the lengths).
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• In general there is not a unique solution to a design problem as compromises have to be made.
Providing various solutions allows the end user to choose the best design compromise for the
problem at hand.

Finally introducing manufacturing errors in the cost-function is difficult. This function may be
very sensitive to design errors, so the final instance of the real mechanism has performances that
are quite different from the theoretical optimal design.

In this paper we will consider a difficult problem of optimal design of a 6-DOF parallel manip-
ulator with multi-criteria requirements. The contribution of this paper is summarized as follows:

• A new optimal design methodology based on interval analysis is proposed which allows to
determine almost all the possible geometries satisfying two compulsory requirements (on the
workspace and accuracy).

• Two alternative approaches are introduced to determine the best design compromise for the
relaxable requirements.

• A simplified algorithm which is reasonable and acceptable in practice is proposed to speed-up
computation.
2. Parallel manipulator kinematics

The mechanical architecture of the considered robot is presented in Fig. 1. It is known as ‘‘ac-
tive wrist’’ and has been patented by INRIA in 1991 [22]. A mobile platform is connected to six
fixed length legs through ball-and-socket joints. An universal joint is located at the other extrem-
ity of the leg and the location of the joint center can be changed via the motion of a linear actuator
connected to the base (in the considered design the motion axis of the joint is vertical to the base,
R
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Fig. 1. The parallel manipulator with fixed actuators.
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but this direction may be arbitrary). Controlling the locations of the U-joints allows to control the
pose of the mobile platform.

2.1. Design parameters and workspace definition

For simplicity, it is assumed that the attachment points of all the joint centers lie on a circle on
the base and the mobile platform. The joint centers are symmetrical with respect to three lines
located 120� apart. So the geometry of such parallel manipulators is defined by six design
parameters:

• R, r: the radii of the circles on which lie the attachment points of the legs on the base and
platform;

• a, b: the half angles between two adjacent attachment points on the base and platform;
• s: the stroke of the actuator;
• l: the length of the leg (supposed to be identical for all legs).

The desired workspace of the robot is denoted as W and is decomposed into a desired orien-
tation workspace and a translation workspace. The desired orientation workspace is defined by
three ranges of the pitch, roll, yaw angles /1, /2, /3. Similarly the translation workspace is defined
by three ranges of the x, y, z coordinates of the reference point C on the platform.

For identical heights of the actuated joints the x, y coordinates will be 0 while the z coordinates
will depend on the design parameters. Hence the desired range of the z coordinates is defined as a
relative motion zr around the nominal height zn, which is the z coordinates of the reference point C
when all the actuators are at their mid stroke qm. We have:
zn ¼ qm þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � R2 � r2 þ 2Rr cosðcÞ

q
ð2Þ
where
qm ¼ s
2

ð3Þ

c ¼ p
3
� a� b ð4Þ
so the z coordinates in the reference frame is
z ¼ zn þ zr ð5Þ
2.2. Robot kinematics

In this paper it is assumed that the workspace of the parallel manipulator is limited only by the
motion ranges of the actuators. Note however that other constraints (such as limited motion of
the passive joints) can be considered easily.

From Fig. 2, we have
Bi � Ai ¼ ½ dx dy dz � qi � ð6Þ



Fig. 2. The leg of the parallel manipulator.

F. Hao, J.-P. Merlet / Mechanism and Machine Theory 40 (2005) 157–171 161
where Bi, Ai are the extremity coordinates of the legs. dx, dy, dz are known for a given pose of the
platform and qi is the length of the actuated link. As the norm of Bi � Ai must be equal to l, we get
q ¼ dz �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � d2

x � d2
y

q
ði ¼ 1 . . . 6Þ ð7Þ
Between the two possible solutions we select
q ¼ dz �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � d2

x � d2
y

q
ði ¼ 1 . . . 6Þ ð8Þ
For a given pose if
qmin ¼ 06 qi 6 s ¼ qmax ð9Þ

is verified, then this pose can be reached by the manipulator.

2.3. Error analysis and singularity

The positioning accuracy of the platform is influenced by a set of parameter errors DH such as
measurement errors of the actuated joints, location errors of the attachment points, etc. As these
errors are usually small a linear error model is used:
Dq ¼ Jðp; qÞDH ð10Þ

where q are the poses of the platform and p are the geometry parameters. For a full error model
DH will be a large vector, but it has been recognized that the measurement errors of the actuator
motions induce the largest errors on the positioning of the platform [23]. Hence the influence of
the other parameters is neglected, so
Dq ¼ Jðp; qÞDq ð11Þ

where J(p, q) is 6 · 6 Jacobian matrix whose inverse J�1 is defined by
AiBi

u � AiBi

AiBi � BiC

u � AiBi

� �
ð12Þ
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The inverse Jacobian matrix is important for singularity analysis. But in this paper we will not
consider the singularity problem because we have already designed an algorithm that allows to
check whether there is singularity in a given workspace for a family of robots whose geometry
parameters are denned by a set of ranges [24].

It is well known that determining a closed-form of the Jacobian matrix J(p, q) is very difficult.
Hence a difficult problem of error analysis is how to express the positioning errors analytically as
a function of the sensor errors.
3. Interval analysis

3.1. Interval arithmetics

Interval arithmetics is a simple method that can provide lower and upper bounds for a function
with interval unknowns. One of its important advantages is that it allows computer round-off er-
rors to be taken into account. The interval evaluation of a function determines an interval that
guarantees the inclusion of the exact lower and upper bounds of this function. The simplest inter-
val evaluation method is the natural evaluation in which each mathematical operator } of the
function is replaced by an interval equivalent }0 returning an interval ½}0;}0� such that for all
x: in a range X ;}0ðX Þ6}ðxÞ6}0ðX Þ.

Consider for example the function
f ðxÞ ¼ x2 þ x ð13Þ
for x in [�1, 1]. The interval equivalent of the square function is defined by
½a; b�2 ¼
½0;Maxða2; b2Þ� if 0 2 ½a; b�
½Minða2; b2Þ;Maxða2; b2Þ� otherwise

8><
>: ð14Þ
Hence
f ð½�1; 1�Þ ¼ ½0; 1� þ ½�1; 1� ¼ ½�1; 2� ð15Þ
Note that the interval evaluation of a function depends heavily on its analytical form. For exam-
ple Eq. (13) is rewritten as
f ðxÞ ¼ xþ 1

2

� �2

� 1

4
ð16Þ
Using this form, we have
f ð½�1; 1�Þ ¼ � 1
;
3

� �2
� 1 ¼ � 1

; 2

� �
ð17Þ
2 2 4 4
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3.2. Notations for interval analysis

The lower and upper bounds of an interval X will be denoted by X ;X and the width of this
interval is wðX Þ ¼ X � X . The midpoint of an interval X is defined as
midðX Þ ¼ X þ X
2

ð18Þ
An n-dimensional interval set is called a Box:
X ¼ f½X 1;X 1�; . . . ; ½Xn;Xn�g ð19Þ
The width w of an n-dimensional interval set X is the maximal width of its interval components.
Bisection is one of the most basic operation of interval analysis. For an n-dimensional interval

set X the results of a bisection along the variable xi are two new interval sets L(X), R(X) defined by
LðX Þ , f½x1;�x1�; . . . ; ½xi; ðxi þ �xiÞ=2�; . . . ; ½xn;�xn�g ð20Þ

RðX Þ , f½x1;�x1�; . . . ; ½ðxi þ �xiÞ=2;�xi�; . . . ; ½xn;�xn�g ð21Þ
4. Optimal design for the workspace requirement

In order to use interval analysis we must be able to define an initial range for every design
parameter (which is a reasonable assumption in most cases). So the allowed parameter box
(APB) is defined as an n-dimensional box that contains all the allowable values of the design
parameters.

The feasible parameter boxes (FPBs) are defined as boxes such that any point belonging to a
FPB defines a geometry of the mechanism that satisfies one of the compulsory requirements. In
our approach FPBs will be determined by using interval analysis and their union will be an
approximation of the region that represents all the mechanisms satisfying one of the compulsory
requirements.

The valid parameter boxes (VPBs) are the intersections of all FPBs of different compulsory
requirements. Points in VPBs define mechanism geometries that satisfy all compulsory require-
ments simultaneously.
4.1. Determination of the allowed parameter box

In most cases it is possible to obtain initial bounds for the design parameters:

• 0 is an evident lower bound for r, R, but consideration on the interference between the passive
joints will lead to a better lower bound. The overall size of the manipulator provides an upper
bound. Note that for symmetry reasons an additional constraint is r 6 R.

• a, b have at least 0 as the lower bound but consideration on the interference between the passive
joints will also lead to a better lower bound. The upper bound which is a;b6 p

3
is obtained by

considering the symmetry of the attachment point locations.
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• l has a lower bound which is R � r, The upper bound is obtained by considering the maximal,
size of the robot (note that the accuracy requirement will enable to eliminate too large values of
l quickly as the dexterity will be poor in that case).

• s has a lower bound which is the required maximum travel in z direction, the upper bound is
determined either by constraints on the overall size or by constraints on commercially available
components that will be used in the mechanism.

The desired workspace W will be provided by the user. Without lack of generality we assume
that W is denned by specified ranges for each pose parameter (but other workspace shape can be
used as well).
4.2. Algorithm principle

In order to satisfy the workspace requirement it is necessary to verify that the length of the
actuated link qi satisfies
qmin ¼ 06 qi 6 s ¼ qmax ð22Þ
for any pose in the workspace. A first algorithm Fw(P, Q) based on interval analysis will take as
inputs a design parameter box P and a pose parameter box Q included in the desired workspace
W. In Fw(P, Q) we compute the interval evaluation ½qi; qi� for the six actuated links and Fw(P, Q)
will return:

• �1 if q > qmax or q < qmin for at least one leg and at least one pose in Q;
• 0 if q < qmin or q > qmax for at least one leg and one pose in Q;
• 1 if qPqmin and q6 qmax for all legs and all poses in Q.

If Fw(P, Q) returns 1, then any robot whose design parameters lie within P can reach all the poses
included in Q. If Fw(P, Q) returns �1, then the design parameters included in P define the parallel
manipulators whose geometries do not allow to reach some poses in the desired workspace W. If
Fw(P, Q) returns 0 then we cannot decide whether the design parameters in P (or in some parts of
P) define the right robot geometries or not, as the overestimation of interval arithmetics may be
the reason why q < qmin or q > qmax.

Our main algorithm will determine a set of boxes Pi such that Fw(Pi, Qj) will return 1 for all
elements Qj of a set whose union is the desired workspaceW. During the calculation boxes Pi with
width lower than a given threshold � will be called neglected boxes and will not be considered
(although they may be stored in some particular structures): the main motivation for neglecting
boxes is to take into account manufacturing errors by choosing � equal to twice the manufacturing
errors. Indeed because of manufacturing tolerances, only the FPB whose width is at least twice the
manufacturing errors can guarantee that the geometry parameters of the real mechanism lie in the
FPB when choosing the center of the FPB as the manufacturing parameters.

The algorithm that determines the FPBs for the workspace requirement is based on Fw(Q, P)
and is similar to the algorithm presented in [25]. It uses a list L ¼ fP ig of n potential FPBs ini-
tialized with the APBs, a list S ¼ fQjg of m boxes of the pose parameters and thresholds �,- of
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the width w of the boxes Pi, Qj. During each bisection of Pi two elements are added to L and are
placed at the end of the list. Similarly each bisection of Qj adds two elements to S. The algorithm
proceeds as follows:

1. loop 1
(a) if i > n, then EXIT
(b) if F wðP i;WÞ ¼ �1, then i = i + 1, go to 1(a)
(c) if F wðP i;WÞ ¼ 1, then store Pi as a FPB, i = i + 1, go to 1(a)
(d) if w(Pi) < �, then store Pi as a neglected box, i = i + 1, go to 1(a). Otherwise go to

loop 2
2. loop 2, with S ¼ fQ1 ¼ Wg; j ¼ m ¼ 1

(a) if j > m, then store Pi as a FPB, i = i + 1, go to 1(a)
(b) if w(Qj) < -, then bisect Pi, n = n + 2, i = i + 1 and go to 1(a)
(c) if Fw(Pi, Qj) = � 1, then Pi cannot be a FPB, i = i + 1, go to 1(a)
(d) if Fw(Pi, Qj) = 1, then j = j + 1, go to 2(a)
(e) bisect Qj, j = j + 1, m = m + 2, go to 2(a)
(f) end of loop 2

3. end of loop 1

The above algorithm guarantees that all the FPBs of the desired workspace with width larger
than � can be determined. Note that this algorithm is an incremental algorithm. Indeed we usually
start the calculation with a large value of � and then refine the calculation with a lower value of �
only using the boxes that have been neglected during the previous run as the initial data of the list
L, thereby reducing a large number of calculation.

In this algorithm other constraints on the workspaces can also be taken into account, for exam-
ple motion ranges of passive joints. Indeed such constraints can be defined by an inequality con-
straint GðP ;QÞ6 0. In that case Fw(P, Q) will return:

• 1 if qP qmin and q6 qmax and GðP ;QÞ6 0 for all legs and all poses in Q;
• � 1 if q > qmax or q < qmin or GðP ;QÞ > 0 for at least one leg and at least one pose in Q;
• 0 otherwise.

Using the same principle Fw(P, Q) can be extended to deal with arbitrary specification of the
desired workspace W as soon as a test TðQÞ has been defined that returns 1 if the set of pose
parameters Q belong to W, otherwise it returns 0. In that case Fw(P, Q) will return 1 or �1 only
when TðQÞ ¼ 1.
5. Optimal design for the accuracy requirement

A classical requirement for accuracy is that the positioning errors of the platform should be less
than the fixed threshold DX, being given the range Dqm ¼ ½Dqm;Dqm� of the measurement errors
on the locations of the actuated joints.
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Eq. (11) could be used but as mentioned before the evaluation of Jacobian matrix J(x) is very
difficult especially for 6-DOF parallel robots. On the other hand, the inverse Jacobian matrix
J�1(x) can be calculated easily in a closed form. So from Eq. (11), we have
Dq ¼ J�1ðP ;QÞDQ ð23Þ
Assume that P, Q are defined as ranges and Tij is denoted as the absolute value of the interval
evaluation of the element of J�1(P, Q) at the ith row and jth column. Then an interval Ui is de-
fined as
Ui ¼
Xk¼6

k¼1

T ikDX k ð24Þ
Clearly Ui is an upper bound of the maximal allowable value for Dqi such that the positioning
errors of the platform do not exceed DX. Similarly Ui is a lower bound of this value.

Similar to Fw(P, Q), an algorithm Fa(P, Q) is designed that takes as inputs a design parameter
box P and a pose parameter box Q included in the desired workspace W and will return:

• �1 if there exists i such that Ui < Dqm. In that case for any robot geometry included in P and
for any pose within Q, the worst allowable accuracy necessary to obtain the required position-
ing errors DX is lower than Dqm;

• if Ui 6Dqm for all i. In that case for any parameters included in P and Q the best allowable
accuracy necessary to obtain the required positioning errors DX is greater than Dqm. Conse-
quently the positioning errors at any pose in Q induced by sensor errors (bounded by Dqm) will
always be lower than DX;

• 0 otherwise.

Using Fa(P, Q) instead of Fw(P, Q) in the algorithm presented in Section 4.2 we obtain an algo-
rithm that allows to determine an approximation of all the robot geometries such that the accu-
racy requirement will be satisfied over the workspace W.
6. Calculation of the valid parameter boxes

The algorithms allow us to get the FPBs of the workspace and accuracy requirements as a list of
design parameter boxes. Hence computing the intersection of the two sets of FPBs is straightfor-
ward and so is obtaining the VPBs. Two alternative strategies may be used to speed-up the
computation:

1. Use the FPBs of the workspace requirement as the initial list L to verify the accuracy require-
ment. In that case the FBPs of the accuracy requirement will be the final VPBs.

2. Modify the algorithm principle to perform Fw(P, Q) and Fa(P, Q) simultaneously so that both
the workspace and accuracy requirements will be checked, allowing the direct calculation of the
VPBs.



F. Hao, J.-P. Merlet / Mechanism and Machine Theory 40 (2005) 157–171 167
7. Determining optimal parameter values

7.1. Design for relaxable requirements

Using the previous algorithms all the possible design solutions (VPBs) that fulfill all the com-
pulsory requirements are obtained. But each design solution in VPBs may present very different
performances apart from the compulsory requirements (Fig. 3), hence relaxable requirements such
as inertia, cost, bandwidth, stiffness, etc. may be considered. Two alternative approaches will be
used for these types of requirements:

1. Sampling of the VPBs. In this approach each box in the VPBs is sampled, providing a list of pos-
sible design solutions. The relaxable requirements are evaluated for each design solution, which
provides a set of design solutions with various compromises for the relaxable requirements.

2. Relaxed VPB. FPBs can be computed also for the relaxed version of the relaxable require-
ments. Then the intersection of all FPBs will provide all the design solutions that satisfy both
the compulsory requirements and the relaxed version of the relaxable requirements.
7.2. Computing the intersection of sorted lists

The motivation in both cases is to provide a list of design parameters presenting different
compromises among relaxable requirements. For each relaxable requirement or other additional
requirements we sort the design parameters pi with descending order according to their per-
formance indices and then compute the intersection of the top part of each list (Fig. 4), if
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Fig. 3. Performances of each solution in VPBs.
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the intersection is not empty, then it gives the end-user several optimal parameter values (for
instance p4, p8) with concrete indices to make the final decision, even considering some addi-
tional requirements that have not been specified during the design stage. It is clearly an advan-
tage of our approach.
8. Algorithm in practice

The algorithms presented in the previous sections can provide all the design solutions that satisfy
all the compulsory requirements simultaneously. But checking all the requirements over the full
workspace is very computer intensive as the number of the unknowns (the design parameters
and the pose parameters) may be large. Note that the algorithm presented in Section 4.2 also can
be used to verify the compulsory requirements for a fixed value of the design parameters, with a
greatly reduced computation time. Hence a simplified algorithm is used in practice to speed-up
the computation:

1. Compute the VPBs for a relaxed version of the compulsory requirements at some specified
poses.

2. Sample the obtained VPBs to get a set of potential design solutions.
3. Use the algorithm to verify each potential design solution over the whole workspace of the

robot.

When performing step 3, instead of checking the requirements over the full desired workspace
we propose to check them only in a limited set R of check segments connecting specific poses,
called check points, belonging to W. Hence loop 2 of the algorithm is replaced by a simpler loop
performed along the check segments in R. Each pose M on a segment connecting check points
M1, M2 is described by
1 w
OM ¼ OM1 þ kM1M2 ð25Þ

where k is an interval parameter in the range [0, 1]. Hence the number of the unknowns in loop 2 is
reduced from 6 (the pose parameters) to 1 (k). The obtained VPBs are called the relaxed VPBs and
are constituted of:

• the true VPBs;
• boxes defining geometries that satisfy the compulsory requirements at all poses in R but may

not satisfy them over the full W.
ww.inria-sop.fr/coprin/logiciel/ALIAS/ALIAS.html.

http://www.inria-sop.fr/coprin/logiciel/ALIAS/ALIAS.html


Table 1

Specification for the design parameters

R (mm) r (mm) a (deg) b (deg) l (mm) s (mm)

Lower bound 500 130 10 10 500 1400

Upper bound 550 180 30 30 1200 2200

� 10 10 2.8 2.8 100 100
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9. Application examples

This section presents a numerical example of optimal design based on our approach. It has been
implemented using the high level interval analysis package ALIAS 1 which relies on the C++ inter-
val arithmetics package BIAS/Profil.

The ranges and accuracy � of the design parameters are presented in Table 1. The desired work-
space is defined as a hyper-cube whose center is the nominal position. The vertices of the desired
6-D workspace are chosen as the check points, whose coordinates are defined by
{xi, yj, zrk, /1, /2, /3} (i, j, k = 1, 2), where x 2 {�100, 100}, y 2 {�100, 100}, zr 2 {�500, 500},
/1 = /2 = � p/9, /3 = � p/6. The check segments connecting the pair of check points (i, j) where
{i = 1 . . . 8, j = i + 1 . . . 8} are constructed based on equation (25). A very preliminary sequential
implementation for the workspace requirement has been tested. The computation time is less than
48 hours on a PC (2.00 GHz) under Linux. All together, 13455 boxes have been tested and 8781
valid parameter boxes have been obtained with a total volume of 1.13958e+08, the neglected vol-
ume consisting of � boxes is 1.40415e+07. We are quite confident that by using other powerful
methods of interval analysis [27,28] the computation time can be reduced drastically.

A preliminary accuracy analysis has been performed by sampling the FPBs of the workspace
and computing the worst case of positioning errors at the check points. It is noticed that the posi-
tioning accuracy seems to be very sensitive to the design parameters a, b and less sensitive to the
other design parameters: the positioning errors increase with the parameters a, b (this observation
is coherent with the works presented in [26,7]). As mentioned earlier requirements of workspaces
and accuracy seem to be antagonistic. Therefore the result of a cost-function approach satisfying
both requirements only reflects the relative weights that are used in the cost-function while our
approach allows to obtain the design solutions that satisfy both a minimal workspace and optimal
accuracy or the opposite.
10. Conclusion

A new methodology is proposed in this paper for the optimal design of parallel manipulators
with multi-criteria requirements. The main differences with other classical approaches are that this
methodology allows to obtain all the possible design solutions that satisfy a set of compulsory
requirements (taking into account manufacturing errors) and make the best compromise for
the relaxable requirements.

The prospective works are:



170 F. Hao, J.-P. Merlet / Mechanism and Machine Theory 40 (2005) 157–171
1. Improving the current implementation to reduce the computation time. For example note that
verifying the violation or satisfaction of the requirement for a given Qk is independent from the
other Ql of the list, so a distributed implementation can be used (and is available within
ALIAS). A distributed implementation may reduce the computation time by a greater factor
than the number of slave computers.

2. Automatizing the treatment of the workspace requirement so that other mechanical architec-
tures can be treated as well. Indeed for any mechanical architecture we have a set P of design
parameters, a set S of pose parameters and the robot workspace may be defined by the set of
poses Q that satisfy some constraint relations TðP ;QÞ6 0. The only differences between two
mechanical architectures are the parameters in P, Q and the relations in T. But the principle
of our methodology is still valid for any architectures as soon as P ;Q;T have been defined.
Hence a symbolic pre-processing may be used to generate automatically this architecture-
dependent module whose results will be taken as arguments for an optimal design kernel,
thereby allowing to deal with any mechanical architectures with a minimum effort.

3. Extending the compulsory requirements to process other classical performance indices such as
stiffness, joint forces/torques, joint velocities, etc.
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