Kinematic analysis of a spatial four-wiredriven
parallel crane without constraining mechanism

J-P. Merlet, D. Daney

Abstract We are interested in wire-driven parallel robot with foured and at least
two distinct attachment points on the end-effector. Suple yf robot is non redun-
dant, it exhibits 4 d.o.f. and can be used as a crane. Thig pdpeesses the inverse
and forward kinematics problem, taking into account the maeacal equilibrium
equations. We show that surprisingly the forward kinensatian be solved, either
for determining all solutions or in a real-time context, tht the inverse kinematics
is still an open issue.

1 Introduction

We are interested in a parallel robot whose end-effectaived by 4 wires, without
any additional constraining mechanism [10]. We denotéBpthe location of the
attachment points on the end-effector Aythe location of the attachment points on
the base and bg the center of the platform. Such robot exhibits variousrggéng
configurations (figure 1):

e planar motion with only a single attachment point on the efidetor (a): the
robot exhibits 2 translational d.o.f. and has a degree afmrddncy of 2

e planar motion with 2 to 4 distinct attachment points on thé-effector (b): the
robot exhibits 3 d.o.f. and has a degree of redundancy of 1

e non planar motion with only a single attachment point on thd-effector (c):
the robot exhibits 3 translational d.o.f. and has a degreedaifndancy of 1

e non planar motion with at least two distinct attachment goam the end-effector

(d): the robot exhibits 4 d.o.f. and is not redundant
The two first categories offer interesting applicationsfsas fast pick-and place,

windows washing). We are however more interested in the dtegories exhibiting
spatial motions, which can be used as a crane e.g. for réhatibih or patient lifting
at home or in hospitals.

The kinematics of the three first categories is mastereddioots having rigid
legs and can be managed for wire legs for which we have to eltisat the tension
are always positive [1, 2, 3, 5, 6, 7, 8, 12]. As for the fourditegory it appears that
to the best of our knowledge the kinematic problems haverrisen addressed.
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Fig. 1 4 different configurations of a wire-driven parallel robatw4 wires

2 Forward kinematics

In this problem the lengthg; of the 4 wires are known and we have to determine
the pose of the end-effector. We will study this problem farane configuration,
assuming that the end-effector is only submitted to a loasisting of a mass at-
tached at the cent€& of the platform, which is supposed to be the center of mass of
the platform.

Without loss of generality we will assume that the end-aéiebas 4 distinct at-
tachment points for the wires and that these points are napléhreem of them
at least being distinct. Under this assumption a pose of thdopm may be
parametrized by the coordinates of 3 attachments points iarbitrary reference
frame with originO. The choice of these 3 points being also arbitrary (provided
that they are not collinear) we will use as parameters thedddioates of points
Bj, B>, Bs. For a planar platform we know that there exist 3 constants,, A3 such
that:

OB4 = A10B; + A20B, + A30B3 (1)

Furthermore we have the following 3 constraint equationgerunknowns:
|[B1B2|| = di12 [|B1Ba|| =di3 ||B3B2|| =d32 (2)

whered;j denotes the known distance between the attachment [ijiatiB;.
Note also that the coordinates of tAgpoints are supposed to be known in the
same reference frame and that the square of the wire lergytiitained as:

p? = |ABi[|? )
Decomposind\iB; asA;B; = OB; — OA; we get 4 equations:

p? = ||OB1 — OA4|[> p3 =||OB,— OA,|[> pf =||OB3—OA3|>  (4)
p2 = ||]A;0B1 + A,0B, + A30B3 — OA||?

We have then to consider that the system is in mechanicdlleguin. Let 7; denotes
the tension in the i-th wireg be the 4 wires tension vecta¥, be the wrench exerted
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on the end-effector (here reduced t®0-mg,0,0,0), wherem is the load mass)
andJ~T be the transpose of the inverse jacobian matrix of the raksstuming no
mass for the wires we have

F=J""1 (5)

Note that the inverse jacobian matrix is a4 matrix whose formulation is well
known. The above relation defines 6 equations having as wrkathe coordinates
Xj,Yj,zj of B1,Bp, Bz and the 4 tensions in the wires. The set of equations (2,4,5)
define a square system of 13 equations in the 13 unknownsdthe;fand the

9 coordinates of th©B;). We may also solve the four first mechanical equilibrium
equations in the;, thereby obtaining eeduced systemof 9 equations in 9 unknowns.
Note that the initial equations (5) involves the massf the load but there is a linear
relationship betweem and thet;’s which indicates that we may assign an arbitrary
mass to the load, solve the system and then apply a scalitag facalculate the;
corresponding to the real mass of the load.

2.1 Computing all solutions

This system is much more complicated than the forward kirtiesiaf more clas-
sical parallel robots because of the involvement of thecseajuilibrium equations.
For determining the possible solutions we may however tryde similar solv-
ing methods than for robot with rigid legs. As we are intezdsh certified solu-
tions we may rely only on the Groebner basis [4] and interaalysis approaches.
Drawbacks of the Groebner basis approach is that it reqtirésve only alge-
braic equations with rational coefficients and has a conifylekat is exponen-
tial in terms of the number of unknowns. It is unclear if welvaé able to ob-
tain the Groebner basis for the system. On the other handahteeval analysis ap-
proach may still be tried as its exponential complexity iidvanly in the worst
case, while its practical complexity is quite often much éoywas soon as bounds
may be determined for the unknowns. Such bounds may eastptaéned in that
case: ifxf,y%, 7' are the coordinates @fj and if dij denotes the distance between
Bi,B; , thenx; € [Max(x} — pj, X" — pi — dij), Min(x§ + pj, 3¢ + pi + dij), i 7 ],

Y € [Max(y§ — pj,¥¢ — pi — dij), Min (Y5 + pj. ¥ + pi + dij ). 1 # ], Zj € [£ — p;. F]
(we are interested only in the poses where the end-effectonder the base). We
need also bounds for thg a lower bound is 0 as we want the wires to be in tension
and the upper bound may be reasonably set to twice the valug. of

2.2 Real-time algorithm

Forward kinematics is a key point for the real-time contrbparallel robot. The
problem is here somewhat different from the one of compuéthgolutions, as
forward kinematics is computed at each sampling time of tdmdroller. Usually the
Newton-Raphson scheme (NR) is used with as initial guessdhgion obtained at
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the previous sampling time. This is a dangerous procesedsRhscheme may not
converge, or, worse, converge to a solution that is not tleeconresponding to the
current pose of the robot. However we have already desigoedified NR method
that uses both interval analysis and the classical NR metihguiovide the right
solution [9]. This method may be used as well for the wirexgiirobot.

2.3 Example

We consider the robot with th, B; points defined as:
A1 = (1856,0.6) Ay =(1994,1059) Az = (14.7,1194) A, = (0.6,14.5)
B; = (0.6,—5.25) B, = (0.6,5.25) B3 = (—0.6,5.25) B, = (—0.6,—5.25)
The wire lengths are:

p1=138471017 pp =14942176 p3 = 145908576 ps = 143793263

The forward kinematics has 4 solutions, shown on figure 2, dh@ computed in
about 13 minutes on a DELL D620 laptop. Note that the redugstem that has
only 9 equations requires more computation time as the tatodathe equations
of the system are quite complex. It must be noted that soist®and 4 exhibit

Fig. 2 The four solutions of the forward kinematics. The wivg is the wire| for solutioni.

a crossing of the wires and a normal to the platform that isigedi downward:
such solution should not be retained. As for the certified MRese the average
computation time is less than 0.1 ms.
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3 Inverse kinematics

For the spatial configuration we have a 4 d.o.f. robot and éeve have motion
constraints between the 6 d.o.f. of the end-effector. We fisgit investigate these
motion constraints.

3.1 Motion constraints

Equations (5, 2) define a set of 9 equations in 13 unknowns (the 9 coordinates
of B1,By,Bz and the 4 joint forces;). Hence as expected we have four degrees of
freedom. We may also parametrize the pose of the end-effegtbe 3 coordinates
Xc, Ve, Ze Of C and three orientation angles (e.g. the Euler angle8, @) in which
case we have 10 unknowns and the 6 equations (5). Hence we ltagpling be-
tween the pose parameters and we may determine a constraatians as follows.
Consider the first four equations of (5) as a linear systemand solve this system;
then we substitute the result in the last two equations ofvfbgh lead to two con-
straints equations’,.#> in the unknowns, yc, z:, , 6, @ which have respectively
degree 2, 2, 2 and 2, 3, 1 13,Yc, Z.. Hence we may solve the second equation in
Z: and substitute the result in the first constraint equatiogetoa single constraint
equation relatinge, Yc, Y, 8, @ which is of degree 5 ix; and 6 inyc.

In a crane application the first priority may be to be able tchea desired lo-
cation for the cente€ of the platform and we will be interested in determining a
single constraint equation involving only the rotation kg For that purpose we
use the Weierstrass substitution to transform the two cainstequations”1,.7»
into algebraic constraints involving, = tan(y/2), T, = tan(6/2), Tz = tan(g/2).
The degrees of these equations are respectively 2, 6, 6 @&)db4n Ty, To, T3. We
then compute the resultant I of these two equations to get a single constraint
equation inT,, T3. This resultant factors out in two expressions respegtigéde-
gree 8, 8 and 24, 20 iy, T, that are represented in figure 3. Note that we may
expect a symmetry in the constraint curve as if a tripl, 6o, @) is a solution of
the two constraint equations, then the triglgg — 11, — 6y, @ + 1) is also a solution.

It must also be mentioned that not all solutions of the camstiequations lead to a
feasible end-effector orientation as we must also chedkhleaensions in the wires
are positive.

Note that equation ( 5) indicates that the wire lines and #véical lines going
troughC belong to a linear complex and hence that the infinitesimaionat a
pose is an helical motion whose axis and pitch can be caémli[atl].

3.2 Finding an end-effector orientation

For the crane application we have to find at least one orientttat allows to reach
a given location in a mechanical equilibrium. We use theofeihg algorithm:
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Fig. 3 The allowed region in th&, T3 space

=

. compute the wire lengths for the desired pose assumiityleigs

. compute the pose of the end-effector with the forwardrkiatcs

3. if the distance between the current pose and the desieeis tower than a given
threshold, then exit

4. letAX be the difference vector between the desired pose and thentone (no

correction is applied for the orientation part). ComputeaectionAp of the

wire lengths ag~1AX, goto step 2

N

Although this algorithm is quite efficient we may consideattive may use the
fourth d.o.f. to determine the such that the obtained orientation is "close” in some
sense to a desired orientation of the end-effector. Howavegnjor problem is to
define an appropriate metric to measure the "closeness’geetiwo orientations.

We propose to use as closeness indethe sum of the distances between the
location of the point®¢, B, BY at the desired orientation and the location of these
points at an orientation that is compatible with the conmstrequationsss, .%%:

=3 ;
%:ZN&—%H
J:

Determining this minimum is however a difficult task as it amts to solve a con-
strained optimization problem. It may be solved by usinglthgrange multipliers
method. We definél as

H=%¢+11.71+1,7

wherelq, |, are the Lagrange multipliers. The minimum#@fmust satisfy

OH OH oH oH oH

9y 98 de o kb (©)
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The two first equations are linearlin |, and the result substituted in the third equa-
tions. Consequently we get a system of 3 equationg, i, ¢. This system is rela-
tively large but may still be solved with interval analysisaibout 8 minutes, which is
however incompatible with a real time use. However as soavoa gnitial estimate
of the solution is known the certified NR scheme is workingeédfitly. Hence if we
assume that the task should be performed with an orienttiains close to a given
one we may determine the best orientation at the beginninigeofask and main-
tains its value through the NR scheme during the task, wheghires to calculate
the best orientation only once, at the start of the task. Wpgse to use a continu-
ation method [13] for getting this initial guess. The saus of the systenv?,.7

is determined for a give@ = 6y in the rangd0, 11/2]: only a positived is needed as
the solutions are symmetrical with respect to that variabkwe limit this angle to
11/2 as we want to have the normal of the platform oriented upw&tatting from
these solutions we use the NR scheme to determine the sadtof = 6y + A6,
whereA#6 is a small increment that is automatically determined byalgerithm.
For each solution we calculate the wire tensions and, if #reypositive, the close-
ness index. The solution presenting the lowest closenestaisied as initial guess.
As an example we choose the following coordinate<¥o®0, 60, -80 and gives as
desired orientatioy = 8 = ¢ = 0. Figure 4 presents the closeness index curve that
are obtained. The initial guess is obtaineqyas 1.853d, 8 = 0.103d, o= 4.427rd
that leads to a closeness index of 0.0616, which is almognhaptThis scheme is
relatively fast: about 1 minute is necessary to computerthiali guess.

Fig. 4 The closeness index as a functionfofind a close view of the minimum.

4 Conclusion

In this paper we have addressed the difficult problem of therkiatic analysis of a
four wire-driven spatial parallel crane. This analysiswefithat both the geometrical
relations and the static equilibrium have to be taken intwaaot. It appears that the
forward kinematics, although difficult as for any paral@bot, may still be managed
in real-time.

Surprisingly the inverse kinematics still remains an opsué. We have identi-
fied the relationship between the pose parameters and hapesad some strategies
for computing the joint variables in specific cases but a ges®lution still has to
be developed.
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