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Abstract

Accuracy is clearly an important feature of PKM. Still it ifffitult to evaluate
what will be the influence of the sensor errors on the positigerrors except at one
particular pose. We present a method that allow us, provadezhalytical form of the
inverse jacobian matrix of the robot, to estimate safeljpé positioning errors may
exceed some given thresholds over a given workspace octoaye This method is
generic, i.e. it may be used for any PKM or any type of workgpacn-dimensional
parametric trajectory (i.e. a surface, a volume).

1 Introduction

Determining the accuracy of a parallel robot is a problent ihaf high practical
interest.
Inaccuracy of parallel robots are due to

e geometrical errordn the robot modeling: the influence of the manufacturing
tolerances on the positioning errors have been studiedd[712, 20, 22, 24],
although the study is usually reduced to a few poses in th&space. More
complete analysis has been performed for specific robot asac¢he3-U PU
robot [5, 16, 25]. A general approach to evaluating the pmsitg errors in
one pose has been proposed by Pott [18]: it relies however rmnreerical
evaluation that requires solving the direct kinematicg] anthus computer
intensive. The influence of such errors may be decreased lappropriate
calibration and this issue will not be addressed in this pape

o thermal effectthis cause seems to have only a real influence for high acgura
positioning devices [3, 15]. It was mentioned for heavy datyots, although



few works substantiate the claim that they have a signifieffatt [23]. Sell-
gren [21] proposes using thermal sensors to correct thexgfand poses the
location of these sensors as a design problem. PritschawH@®ever, states
that cooling is the most effective measure, as the thermaleiaf parallel
robots is complex.

e joint sensor errors this is usually the largest source of error and the one we
will address in this paper

The errorsA® in the sensor measurements are linearly related to thaquuisid
errorsAX through the inverse jacobian, denotkd!, that is pose dependent:

A® = J 1(X)AX 1)

Many papers have addressed the determination of the injeexsigiany —* of parallel
robots and for most parallel robots this matrix may be deteeahin closed-form (for
most parallel robotd —! has as rows the Pliicker vectors of well-defined lines.). On
the opposite the jacobian matrix cannot usually be estadddién closed-form or this
closed-form is so complex that it is useless.

After having determined ! it is necessary to determine accuracy indices that
allow to quantify the performance of the robot. A possibleeamplification factor
for the system (1) expresses howedative error in ® gets multiplied and leads
to arelative error in X. It characterizes in some sense the dexterity of the robot
and has been proposed as a performance index and is knowa awése of the
condition number It is often claimed that the condition number®f! is a good
index to qualify the accuracy of parallel robots [1, 2, 4]. wéwer this index has to
be well understood to be used efficiently. First of all theradt a unique definition
for the condition number as its value depends on the choitieeofnatrix norm that
is used for its calculation. Second a proper definition of ¢badition number is
difficult as soon as the d.o.f. of the robot have not the sam@&@di.e. translation
or rotation). Third this amplification factor is valid onlpif relative errors and not
for absoluteone, although the accuracy analysis should focus on thidateserror.
To illustrate that we have considered in a recent paper HrEgt different poses for
a given parallel robot of the Gough type and have computednidneémal value of
each component & for given bounded sensor errors. The poXas X,, X3 were
chosen so that they can be sorted according to the accurack:pmsitioning error
for X; was lower than the one iX,, X3 while 5 out of 6 errors were lower for
X, than forX3 and the sixth one was very close. Various condition numbavs h



then be calculated for each pose and it was shown that masé diine the ranking
according to the condition number was not the same than theacy ranking. The
ranking was not always even coherent between two differ@mdition numbers.

Finally we should mention that the condition number is diffico manage as
soon as we are interested in its value not only at a given patséds example, over
a workspace or on a trajectory, as there is no explicit gefe@naula that allows to
compute it.

The problem we will address in this paper isexificationproblem: being given
a robot geometry (possibly with uncertainties), boundstmndensor errors and a
given workspace (i.e. here a motion variety of degree 4 for an d.o.f. robot)
we will check that the maximum of the positioning errors does exceed some
thresholds.

An important point is that the result of the algorithm sholdatertifiedeven with
respect to numerical round-off errors. Our algorithm istified and will provide
three different types of result:

e workspace is safdor any pose within the prescribed workspace the position-
ing will be lower than the thresholds whatever are the uisties

e workspace is unsaféor some poses in the workspace some positioning errors
will be larger than the thresholds

e unable the algorithm is unable to assert the accuracy constraihts may
occur because the computer numerical errors do not allowstabéish the
result or because at some poses the positioning errors preaesitive to the
uncertainties: for some values of these uncertaintiesdakiipning errors may
be lower than the threshold while for some other values thihbe larger

This certification constraint usually rules out the use obatimization proce-
dure, especially as we will assume uncertainties on the g&aral model of the
robot. Furthermore using an optimization procedure mayrbeverkill: in the veri-
fication step our objective isot to calculate the maximal positioning errors but just
to verify that the maximal positioning errors are lower tismme thresholds. We will
see that our algorithm is efficient because it will almostardxy to calculate exactly
the maximum.



2 A maximal error calculation scheme

First of all we notice that (1) implies that the maximal pasitng errors will be
obtained when the sensor errors have for values either therlor upper bound
of their respective range. Without lack of generality welwasume here that the
sensors have all the same error ranges.

We consider here a workspace W defined as a closed region éadimensional
generalized coordinates space with 3 parameters desgtheriocation of the center
of the platform and 3 angular parameters allowing to desdfile orientation of the
platform (robot with less than 6 d.o.f. may be treated as)well

2.1 Workspace and boxes

We define aboxas a set of 6 ranges, one for each of the parameter that altows t
describe the pose of the platform. Hence a box defines a 6Dspade for the robot.
Reciprocally almost any workspace type may be approximayeaiset of boxes.

In the sequel we will use an operator for a box calésection This operator
takes as input a box and outputs two new boxes whose unioe isitlal box. These
new boxes are obtained by splitting in half one of the 6 rafdges . , I of the initial
box. For example if the initial box is defined by the followiranges:

[—10,10], [~ 10, 10], [40, 50], [~ 10, 10], [~ 10, 10], [~ 10, 10]

and if we bisect the first range, then the output of the bisaatiill be the 2 boxes
defined by:

[—10,0], [~10, 10], [40, 50], [~ 10, 10], [ 10, 10], [~ 10, 10]
[—10,0], [10, 10], [40, 50], [ 10, 10], [~ 10, 10], [~ 10, 10]

2.2 Maximal positioning errors calculation in a workspace

We consider a bo® and we assume that we have an algorith(#) which is able
to determine a bo® that enclose all solutions iAX of the set of linear systems:

J1(B)AX = A® 2)

This equation defines a set of linear systems as the matrixis pose dependent:
hence for each pose in the béka different system is obtained. Furthermore the



right-hand side term of this equation will be constituteclbpossible combinations
of extremal sensor errors (for a 6 d.o.f. robot there @fll= 64 such combination).
The boxD is defined as a set of ranges, d;], one for each element & X. Note
that these ranges may be overestimated but should be exhethbx is reduced to
one pose (up to numerical round-off errors). The prescrifbeelshold for the i-th
component oA X will be denoted;.

The algorithm will return:

e 1ifforalli[d;,d;] is included in[—e;, ;]
o -1if for at least one we haved; > ¢; ord; < —epsilon;
e 0if for at least one we have[—¢;, ¢;] included in[d;, d;]

In case 1 we can guarantee that for any pose in thebitre robot satisfy the accu-
racy constraint. This is the opposite for case -1: for allggois 5 the robot violates
at least one accuracy constraints. Case 0 will occur beaafug®e overestimation
implied by the method we will use for th& algorithm.

The purpose of this section is to show that then we are ablertfy\the accuracy
constraint for any type of workspace and any type of robot.

Let assume that we want to check the accuracy constraint iorkspace W
defined by a 3D volume V describing the possible location efdénter of the end-
effector and three rangds, 1y, I, which describe the possible values of the orien-
tation angles. Clearly V may be approximated by a set of hoxes

Let us assume now that we are able to design a test algofitffinwhich enable
to determine if for the bo¥:

1. the location part of is fully inside V
2. the location part oB is fully outside V
3. the location part oB is partially inside V

The algorithmT will return an integer which may 1, 2 or 3 according to thessaif
the location part with respect to V.

Using the algorithm#\ andT we are able to design an algorithm which enable
to check the accuracy constraint within W. The algorithnutdtg computing a list
S={By, B1, ... B,—_1} of n boxes such that the union of the location part of the boxes
in the list is an approximation of the volume V, strictly inding V, while the orien-
tation part of each box is simply defined as the rahgels, I,. During the process



new boxes may be added to the list buwill always denote the total number of
boxes in the list.

We may now describe the different steps followed by the atlyor at iteration
k, the algorithm starting at iteration O:

. if k > n — 1 returnWORKSPACE IS SAFE

. ifT(By 2 thenk = k + 1 and reiterate

P A(Bg

1

2. i T(By) =

3. if A(By) = 1 thenk = k 4 1 and reiterate

4 (Br) = —1andT(B) = 1 then returrNSAFE WORKSPACE
5

. if T(Bi) = 3 or A(Bx) = 0 bisectB;, and put the new boxes at the end of the
list S whose number of elemeniss updatedk = k + 1 and reiterate

Basically this algorithm just consider each box of the listjgentially. Boxes
that are outside the workspace or satisfy the accuracy @onsare discarded.

During the iteration we will encounter boxes which are ondytfally inside W,
or fully inside W but for which we cannot ascertain that alspe in the box satisfy
the accuracy constraint. In that case we just bisect the thexdhoice of the bi-
sected range has a large influence on the computation tintaibussue will not be
addressed in this paper) and the resulting boxes are addlee list.

Finally the algorithm stops either if a box that violate ttoearacy constraint is
detected or when all the elements of S have been considerediich case we can
state that the accuracy constraint is satisfied over W.

Note that we have exposed the verification scheme for the spaide case. If it
has to be used for a motion variety with a dimensinriower than the number of
d.o.f. of the robot. we may safely assume that the pose paeasmaay be described
as explicit function ofn parameters. For example a trajectory (variety of dimension
1) will be defined by a single parameter (the tiffigthat we may assume to lie in
the range [0,1].

The element of ~!may then be calculated as function of themotion parame-
ters and the boxes described in the algorithm wilhbeimensional boxes.

Note that the algorithm may be easily extended not to vehiéydccuracy con-
straint but to determine what is the maximal positionin@esmup to a pre-defined
accuracyy;. For that purpose we will compute the positioning errordiatdenter of
each box. This will allow to update a current vallig for the maximum. All boxes



for which theA algorithm provides rang€s;, d;] that are all included in the range
[—M; — o, M; + ;] will be discarded.

We may also extend further the algorithm by including theigleparameters as
unknowns. A two step algorithm may be used to determine mfageghese parame-
ters so that the accuracy at some given poses is better tleahtfiseshold (for further
details see [12]).

3 Implementation

Clearly the key point of the above accuracy verification sebés the algorithnA.

A possible approach for designing this algorithm is to cdasthe problem as a con-
strained optimization problem which consists in finding tieximum and minimum
of the positioning errors. But with this approach there ignarantee that the global
optimum will be determined and this may cause a wrong resulthfe verification
problem.

A better approach is to use interval analysis [6, 13]. Forwemgibox interval
analysis provides ranges for each element of the mdtrixthat are guaranteed to
includes the minimum and maximum value of the element. Theiemd up with a
linear interval systenof the form

YZ=8B

whereY is an interval matrix and in our cad€® is a vector with scalar values.
Finding a box enclosure of such system (i.e. finding a boxitttiides all solutions)
is a classical problem in interval analysis [8, 14], whosmptexity may be high [9].
The algorithms proposed for solving such systems are dbsiogerval variant of
classical linear system solvers (such as Gauss elimination

3.1 The influence of uncertainties

Uncertainties are inherent part of a real system such asa.rdihey occur at the
modeling level: the geometry of the real robot differs frasitheoretical model due
to the manufacturing tolerances (for example for the Gougtfgrm the locations

of the anchor points of the legs on the base and platform apgvkronly up to a

known accuracy). Uncertainties are also due to controketigll be a deviation of

the robot motion from the theoretical trajectory. An im@ort point is that all these
uncertainties are bounded.



An ideal accuracy verification scheme should be able to deterif the accuracy
constraint is satisfied or violated in spite of these undatiess. To deal with these
uncertainties we may either just add them as intervals iretbments off ~'or we
may add the uncertainties as additional unknowns, therargasing the dimension
of the boxes. The best strategy depends on the size of thetaimtg ranges. For
small one we may try to use the minimal set of unknowns and @ethe behavior
of the algorithm. The worst case occurs when it start bisgctigain and again the
same box, which indicates that the positioning errors maydrg sensitive to these
uncertainties: in that case it will be necessary to add themm&nowns.

4 Various improvement methods

The classical method for solving linear interval systemsditake well into account
that our matrixY is parametric i.e. that the values of its elements are not indepen-
dent. Hence it may be interesting to improve our algorithnubing methods that
use in a better way the structure vt

4.1 Pre-conditioning

A classical approach in interval analysis for solving linggierval systems is to pre-
condition the matrix by multiplying it by a real matriK, usually the inverse of the
mid-matrix i.e. the matrix whose components are the mid-point of eange of the
components oY . Indeed the system

KYZ = KB

has the same solution than the system (2). The purpose dfttategy is to ge$ =
KJ~! close to the identity matrix. In term of solutions the domaiay be indeed
sharper than the one obtained with a direct solving of (2)jdstill not satisfactory.
Indeed numerical conditioning does not take into accoumiddpendency between
the elements of ~*.

We propose another method which consists first to compwtebolicallythe
matrix S, using symbolick;; as components cK and then plugging in the nu-
merical values. For example the first columnXbf! for a Gough platform may
be written ast + F;, wherex represent the location of the center of the platform
along thex reference axis. Hence the first eleméht of the matrix producs will
be numerically calculated agjj‘f xK1; + K1;F; where Ky, is the I-th element



of the first row of matrlxK Using symbolic calculatiorb;; may be written as
a:zjff K + Zﬂ 1 K1 F;. The number of occurrence afis hence reduced to
one and this will Iead to a sharper interval evaluation ofdlenent.

Note that both a left and right pre-conditioning matrix mayused.

4.2 Improvement of the Gaussian elimination scheme

It must be noted that the interval evaluation of the elemehds ! may be improved
by using the derivatives of the elements with respect to tilenawns. Indeed we
may calculate the interval evaluation of these derivatased if the lower bound is
positive or the upper bound is negative, then the elemenbisatonic with respect
to this unknown. Hence to compute the lower and upper boutiteoihterval eval-
uation of the element we will fix this unknown to its lower orpgy bound. This
procedure should be used recursively as the interval etiafuaf a derivative that
was not of a constant sign initially may change if one of thealde is fixed to its
extremal value.

A similar procedure may be used forimproving the Gaussianieation scheme.
We first compute an interval evaluatidi(®) of Y. The Gauss elimination scheme
may be written as [14]

Y =y -y 9Ty I v 9D v with j > k 3)
(7)) _ 3 (G-1) (=17 G-1) )y, (G-1)
b =b""" — Yij7 b/ /Y I 4)
The enclosure of the variablg; can then be obtained froli; .+, ..., Z, by
;=) =3 v v 5)
k>j

Note that the elements at iteratigisan be computed only if the interv)zgg?_l) does
not include 0. To improve the efficiency of the procedure wenbat at iteratiory
an interval evaluation of the derivatives ¥, , b; with respect taX may be deduced
for the derivatives of the elements computed at iterajion 1 by using the chain
rule. As we have the derivatives of the elements at iteraliore may then deduce
the derivatives of the elements at any iteration and usesttesvatives to improve
the interval evaluation of these elements.



5 \alidation and examples

As may be seen with the above theoretical sections the pedjpascuracy constraint
check is relatively complex and it is difficult to perform aetiretical complexity
analysis. Hence numerical validation is necessary to atation which combina-
tion of regularity checks are efficient.

For the examples we will consider one of the most difficultecathe Gough
platform (figure 1). We define a reference frafid® x, y, z). The attachment points

Zr

e Sjoint

m U joint

Figure 1: The Gough platform

of the legi on the base will be denoted by;. The attachment points on the platform
will be denoted byB; and it is well known that the coordinatesBf in the reference
frame can be obtained as function of the pose parameters.invVhese jacobian
matrix is then constituted of the normalized Pliicker vextif the line associated to



each leg:
AiBi OAi X OBi

TAB]  JAB] (6)

The uncertainties in the geometry lie in the location of theheor point4;, B;.

The interval analysis part is implemented using BieAS/ Pr of i | packagé
and our interval analysis librasl| AS? that offer high-level modules that are com-
bined for implementing the calculation of the linear systtver. Furthermore this
library allows one to use a distributed implementation: st@amanages the list of
boxes and send the box on top of the list to a slave computep#réorms a few
iterations of the algorithm and send the result back to thstena

A 6D workspacéeV is defined with the ranges y in [-15,15], z in [45,50] and
the three Euler angles having the ranges [-15,15] degrecdimputation time on a
Dell D400 laptop (1.7 Ghz) is established as follows:

3= ((

e 6D workspace without uncertainty: fo# it is established that the accuracy
constraint is satisfied in a computation time of about 10 rhthd orientation
ranges of\V is extended to [-40,40] degree poses that violates the acgur
constraint is detected in less than 10s.

e 6D workspace with uncertainties: foea0.05 uncertainty on each coordinates
of the A;, B; points the constraint accuracy iV in about 23mn. For an
uncertainty oft 0.1 the computation time establishes respectively at 42mn.

6 Conclusion

We have proposed an accuracy validation scheme that mayeletaslietermine if
a given robot (possibly with an uncertain modeling) is suwt the maximal posi-
tioning errors over a given workspace (that may also inclugigertainties) are lower
than given thresholds. This algorithm may easily be extdrideletermine what is
the maximal positioning errors over the given workspaceerah to find ranges for
design parameters so that the accuracy at given poseses theth fixed thresholds.

We have shown that the extremal positioning errors is a bettiex than the
usual condition number to qualify a robot in terms of accyr&towever it may not
be sufficient to compare two possible design: mean value aridnce will also be
needed. We intend to address these issues in the future.

http://www.ti3.tu-harburg.de/Software/PROFILEnglisiatm|
2www.inria-sop.fr/coprin/logiciel/ALIAS/ALIAS .html
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