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Abstract
Accuracy is clearly an important feature of PKM. Still it is difficult to evaluate

what will be the influence of the sensor errors on the positioning errors except at one
particular pose. We present a method that allow us, providedan analytical form of the
inverse jacobian matrix of the robot, to estimate safely if the positioning errors may
exceed some given thresholds over a given workspace or trajectory. This method is
generic, i.e. it may be used for any PKM or any type of workspace or n-dimensional
parametric trajectory (i.e. a surface, a volume).

1 Introduction

Determining the accuracy of a parallel robot is a problem that is of high practical
interest.

Inaccuracy of parallel robots are due to

• geometrical errorsin the robot modeling: the influence of the manufacturing
tolerances on the positioning errors have been studied [7, 10, 17, 20, 22, 24],
although the study is usually reduced to a few poses in the workspace. More
complete analysis has been performed for specific robot suchas the3-UPU
robot [5, 16, 25]. A general approach to evaluating the positioning errors in
one pose has been proposed by Pott [18]: it relies however on anumerical
evaluation that requires solving the direct kinematics, and is thus computer
intensive. The influence of such errors may be decreased by anappropriate
calibration and this issue will not be addressed in this paper.

• thermal effect: this cause seems to have only a real influence for high accuracy
positioning devices [3, 15]. It was mentioned for heavy dutyrobots, although



few works substantiate the claim that they have a significanteffect [23]. Sell-
gren [21] proposes using thermal sensors to correct this effect, and poses the
location of these sensors as a design problem. Pritschow [19], however, states
that cooling is the most effective measure, as the thermal model of parallel
robots is complex.

• joint sensor errors: this is usually the largest source of error and the one we
will address in this paper

The errors∆Θ in the sensor measurements are linearly related to the positioning
errors∆X through the inverse jacobian, denotedJ−1, that is pose dependent:

∆Θ = J−1(X)∆X (1)

Many papers have addressed the determination of the inversejacobianJ−1 of parallel
robots and for most parallel robots this matrix may be determined in closed-form (for
most parallel robotsJ−1 has as rows the Plücker vectors of well-defined lines.). On
the opposite the jacobian matrix cannot usually be established in closed-form or this
closed-form is so complex that it is useless.

After having determinedJ−1 it is necessary to determine accuracy indices that
allow to quantify the performance of the robot. A possible error amplification factor
for the system (1) expresses how arelative error in Θ gets multiplied and leads
to a relative error in X. It characterizes in some sense the dexterity of the robot
and has been proposed as a performance index and is known as the inverse of the
condition number. It is often claimed that the condition number ofJ−1 is a good
index to qualify the accuracy of parallel robots [1, 2, 4]. However this index has to
be well understood to be used efficiently. First of all there is not a unique definition
for the condition number as its value depends on the choice ofthe matrix norm that
is used for its calculation. Second a proper definition of thecondition number is
difficult as soon as the d.o.f. of the robot have not the same nature (i.e. translation
or rotation). Third this amplification factor is valid only for relativeerrors and not
for absoluteone, although the accuracy analysis should focus on this absolute error.
To illustrate that we have considered in a recent paper [11] three different poses for
a given parallel robot of the Gough type and have computed themaximal value of
each component ofX for given bounded sensor errors. The posesX1,X2,X3 were
chosen so that they can be sorted according to the accuracy: each positioning error
for X1 was lower than the one inX2,X3 while 5 out of 6 errors were lower for
X2 than forX3 and the sixth one was very close. Various condition numbers have



then be calculated for each pose and it was shown that most of the time the ranking
according to the condition number was not the same than the accuracy ranking. The
ranking was not always even coherent between two different condition numbers.

Finally we should mention that the condition number is difficult to manage as
soon as we are interested in its value not only at a given pose but, for example, over
a workspace or on a trajectory, as there is no explicit general formula that allows to
compute it.

The problem we will address in this paper is averificationproblem: being given
a robot geometry (possibly with uncertainties), bounds on the sensor errors and a
given workspace (i.e. here a motion variety of degree 1 ton for a n d.o.f. robot)
we will check that the maximum of the positioning errors doesnot exceed some
thresholds.

An important point is that the result of the algorithm shouldbecertifiedeven with
respect to numerical round-off errors. Our algorithm is certified and will provide
three different types of result:

• workspace is safe: for any pose within the prescribed workspace the position-
ing will be lower than the thresholds whatever are the uncertainties

• workspace is unsafe: for some poses in the workspace some positioning errors
will be larger than the thresholds

• unable: the algorithm is unable to assert the accuracy constraint.This may
occur because the computer numerical errors do not allow to establish the
result or because at some poses the positioning errors are very sensitive to the
uncertainties: for some values of these uncertainties the positioning errors may
be lower than the threshold while for some other values they will be larger

This certification constraint usually rules out the use of anoptimization proce-
dure, especially as we will assume uncertainties on the geometrical model of the
robot. Furthermore using an optimization procedure may be an overkill: in the veri-
fication step our objective isnot to calculate the maximal positioning errors but just
to verify that the maximal positioning errors are lower thansome thresholds. We will
see that our algorithm is efficient because it will almost never try to calculate exactly
the maximum.



2 A maximal error calculation scheme

First of all we notice that (1) implies that the maximal positioning errors will be
obtained when the sensor errors have for values either the lower or upper bound
of their respective range. Without lack of generality we will assume here that the
sensors have all the same error ranges.

We consider here a workspace W defined as a closed region in the6-dimensional
generalized coordinates space with 3 parameters describing the location of the center
of the platform and 3 angular parameters allowing to describe the orientation of the
platform (robot with less than 6 d.o.f. may be treated as well).

2.1 Workspace and boxes

We define abox as a set of 6 ranges, one for each of the parameter that allows to
describe the pose of the platform. Hence a box defines a 6D workspace for the robot.
Reciprocally almost any workspace type may be approximatedby a set of boxes.

In the sequel we will use an operator for a box calledbisection. This operator
takes as input a box and outputs two new boxes whose union is the initial box. These
new boxes are obtained by splitting in half one of the 6 rangesI1, . . . , I6 of the initial
box. For example if the initial box is defined by the followingranges:

[−10, 10], [−10, 10], [40, 50], [−10, 10], [−10, 10], [−10, 10]

and if we bisect the first range, then the output of the bisection will be the 2 boxes
defined by:

[−10, 0], [−10, 10], [40, 50], [−10, 10], [−10, 10], [−10, 10]

[−10, 0], [−10, 10], [40, 50], [−10, 10], [−10, 10], [−10, 10]

2.2 Maximal positioning errors calculation in a workspace

We consider a boxB and we assume that we have an algorithmA(B) which is able
to determine a boxD that enclose all solutions in∆X of the set of linear systems:

J−1(B)∆X = ∆Θ (2)

This equation defines a set of linear systems as the matrixJ−1 is pose dependent:
hence for each pose in the boxB a different system is obtained. Furthermore the



right-hand side term of this equation will be constituted ofall possible combinations
of extremal sensor errors (for a 6 d.o.f. robot there will26 = 64 such combination).
The boxD is defined as a set of ranges[di, di], one for each element of∆X. Note
that these ranges may be overestimated but should be exact ifthe box is reduced to
one pose (up to numerical round-off errors). The prescribedthreshold for the i-th
component of∆X will be denotedǫi.

The algorithm will return:

• 1 if for all i [di, di] is included in[−ǫi, ǫi]

• -1 if for at least onei we havedi > ǫi or di < −epsiloni

• 0 if for at least onei we have[−ǫi, ǫi] included in[di, di]

In case 1 we can guarantee that for any pose in the boxB the robot satisfy the accu-
racy constraint. This is the opposite for case -1: for all poses inB the robot violates
at least one accuracy constraints. Case 0 will occur becauseof the overestimation
implied by the method we will use for theA algorithm.

The purpose of this section is to show that then we are able to verify the accuracy
constraint for any type of workspace and any type of robot.

Let assume that we want to check the accuracy constraint in a workspace W
defined by a 3D volume V describing the possible location of the center of the end-
effector and three rangesIψ , Iθ, Iφ which describe the possible values of the orien-
tation angles. Clearly V may be approximated by a set of boxes.

Let us assume now that we are able to design a test algorithmT(B) which enable
to determine if for the boxB:

1. the location part ofB is fully inside V

2. the location part ofB is fully outside V

3. the location part ofB is partially inside V

The algorithmT will return an integer which may 1, 2 or 3 according to the status of
the location part with respect to V.

Using the algorithmsA andT we are able to design an algorithm which enable
to check the accuracy constraint within W. The algorithm start by computing a list
S={B0,B1, . . .Bn−1} of n boxes such that the union of the location part of the boxes
in the list is an approximation of the volume V, strictly including V, while the orien-
tation part of each box is simply defined as the rangeIψ , Iθ, Iφ. During the process



new boxes may be added to the list butn will always denote the total number of
boxes in the list.

We may now describe the different steps followed by the algorithm at iteration
k, the algorithm starting at iteration 0:

1. if k > n − 1 returnWORKSPACE IS SAFE

2. if T(Bk) = 2 thenk = k + 1 and reiterate

3. if A(Bk) = 1 thenk = k + 1 and reiterate

4. if A(Bk) = −1 andT(Bk) = 1 then returnUNSAFE WORKSPACE

5. if T(Bk) = 3 or A(Bk) = 0 bisectBk and put the new boxes at the end of the
list S whose number of elementsn is updated,k = k + 1 and reiterate

Basically this algorithm just consider each box of the list sequentially. Boxes
that are outside the workspace or satisfy the accuracy constraint are discarded.

During the iteration we will encounter boxes which are only partially inside W,
or fully inside W but for which we cannot ascertain that all poses in the box satisfy
the accuracy constraint. In that case we just bisect the box (the choice of the bi-
sected range has a large influence on the computation time butthis issue will not be
addressed in this paper) and the resulting boxes are added tothe list.

Finally the algorithm stops either if a box that violate the accuracy constraint is
detected or when all the elements of S have been considered, in which case we can
state that the accuracy constraint is satisfied over W.

Note that we have exposed the verification scheme for the workspace case. If it
has to be used for a motion variety with a dimensionm lower than the number of
d.o.f. of the robot. we may safely assume that the pose parameters may be described
as explicit function ofm parameters. For example a trajectory (variety of dimension
1) will be defined by a single parameter (the timeT ) that we may assume to lie in
the range [0,1].

The element ofJ−1may then be calculated as function of them motion parame-
ters and the boxes described in the algorithm will bem-dimensional boxes.

Note that the algorithm may be easily extended not to verify the accuracy con-
straint but to determine what is the maximal positioning errors up to a pre-defined
accuracyαi. For that purpose we will compute the positioning errors at the center of
each box. This will allow to update a current valueMi for the maximum. All boxes



for which theA algorithm provides ranges[di, di] that are all included in the range
[−Mi − αi, Mi + αi] will be discarded.

We may also extend further the algorithm by including the design parameters as
unknowns. A two step algorithm may be used to determine ranges for these parame-
ters so that the accuracy at some given poses is better than fixed threshold (for further
details see [12]).

3 Implementation

Clearly the key point of the above accuracy verification scheme is the algorithmA.
A possible approach for designing this algorithm is to consider the problem as a con-
strained optimization problem which consists in finding themaximum and minimum
of the positioning errors. But with this approach there is noguarantee that the global
optimum will be determined and this may cause a wrong result for the verification
problem.

A better approach is to use interval analysis [6, 13]. For a given box interval
analysis provides ranges for each element of the matrixJ−1 that are guaranteed to
includes the minimum and maximum value of the element. Thus we end up with a
linear interval systemof the form

YZ = B

whereY is an interval matrix and in our caseB is a vector with scalar values.
Finding a box enclosure of such system (i.e. finding a box thatincludes all solutions)
is a classical problem in interval analysis [8, 14], whose complexity may be high [9].
The algorithms proposed for solving such systems are basically interval variant of
classical linear system solvers (such as Gauss elimination).

3.1 The influence of uncertainties

Uncertainties are inherent part of a real system such as a robot. They occur at the
modeling level: the geometry of the real robot differs from its theoretical model due
to the manufacturing tolerances (for example for the Gough platform the locations
of the anchor points of the legs on the base and platform are known only up to a
known accuracy). Uncertainties are also due to control: there will be a deviation of
the robot motion from the theoretical trajectory. An important point is that all these
uncertainties are bounded.



An ideal accuracy verification scheme should be able to determine if the accuracy
constraint is satisfied or violated in spite of these uncertainties. To deal with these
uncertainties we may either just add them as intervals in theelements ofJ−1or we
may add the uncertainties as additional unknowns, thereby increasing the dimension
of the boxes. The best strategy depends on the size of the uncertainty ranges. For
small one we may try to use the minimal set of unknowns and examine the behavior
of the algorithm. The worst case occurs when it start bisecting again and again the
same box, which indicates that the positioning errors may bevery sensitive to these
uncertainties: in that case it will be necessary to add them as unknowns.

4 Various improvement methods

The classical method for solving linear interval systems donot take well into account
that our matrixY is parametric, i.e. that the values of its elements are not indepen-
dent. Hence it may be interesting to improve our algorithm byusing methods that
use in a better way the structure ofY.

4.1 Pre-conditioning

A classical approach in interval analysis for solving linear interval systems is to pre-
condition the matrix by multiplying it by a real matrixK, usually the inverse of the
mid-matrix, i.e. the matrix whose components are the mid-point of each range of the
components ofY. Indeed the system

KYZ = KB

has the same solution than the system (2). The purpose of thisstrategy is to getS =
KJ−1 close to the identity matrix. In term of solutions the domainmay be indeed
sharper than the one obtained with a direct solving of (2), but is still not satisfactory.
Indeed numerical conditioning does not take into account the dependency between
the elements ofJ−1.

We propose another method which consists first to computesymbolicallythe
matrix S, using symbolickij as components ofK and then plugging in the nu-
merical values. For example the first column ofJ−1 for a Gough platform may
be written asx + Fi, wherex represent the location of the center of the platform
along thex reference axis. Hence the first elementS11 of the matrix productS will
be numerically calculated as

∑j=6
j=1 xK1j + K1jFj whereK1l is the l-th element



of the first row of matrixK. Using symbolic calculationS11 may be written as
x

∑j=6
j=1 K1j +

∑j=6
j=1 K1jFj . The number of occurrence ofx is hence reduced to

one and this will lead to a sharper interval evaluation of theelement.
Note that both a left and right pre-conditioning matrix may be used.

4.2 Improvement of the Gaussian elimination scheme

It must be noted that the interval evaluation of the elementsof J−1 may be improved
by using the derivatives of the elements with respect to the unknowns. Indeed we
may calculate the interval evaluation of these derivativesand if the lower bound is
positive or the upper bound is negative, then the element is monotonic with respect
to this unknown. Hence to compute the lower and upper bound ofthe interval eval-
uation of the element we will fix this unknown to its lower or upper bound. This
procedure should be used recursively as the interval evaluation of a derivative that
was not of a constant sign initially may change if one of the variable is fixed to its
extremal value.

A similar procedure may be used for improving the Gaussian elimination scheme.
We first compute an interval evaluationY(0) of Y. The Gauss elimination scheme
may be written as [14]

Y
(j)
ik = Y

(j−1)
ik − Y

(j−1)
ij Y

(j−1)
jk /Y

(j−1)
jj ∀ i with j > k (3)

b
(j)
i = b

(j−1)
i − Y

(j−1)
ij b

(j−1)
j /Y

(j−1)
jj (4)

The enclosure of the variableZj can then be obtained fromZj+1, . . . , Zn by

Zj = (b
(j−1)
j −

∑

k>j

Y
(j−1)
jk Zk)/Y

(j−1)
jj (5)

Note that the elements at iterationj can be computed only if the intervalY
(j−1)
jj does

not include 0. To improve the efficiency of the procedure we note that at iterationj
an interval evaluation of the derivatives ofYik, bi with respect toX may be deduced
for the derivatives of the elements computed at iterationj − 1 by using the chain
rule. As we have the derivatives of the elements at iteration0 we may then deduce
the derivatives of the elements at any iteration and use these derivatives to improve
the interval evaluation of these elements.



5 Validation and examples

As may be seen with the above theoretical sections the proposed accuracy constraint
check is relatively complex and it is difficult to perform a theoretical complexity
analysis. Hence numerical validation is necessary to determination which combina-
tion of regularity checks are efficient.

For the examples we will consider one of the most difficult case: the Gough
platform (figure 1). We define a reference frame(O,x,y, z). The attachment points
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Figure 1: The Gough platform

of the legi on the base will be denoted byAi. The attachment points on the platform
will be denoted byBi and it is well known that the coordinates ofBi in the reference
frame can be obtained as function of the pose parameters. Theinverse jacobian
matrix is then constituted of the normalized Plücker vectors of the line associated to



each leg:

J−1 = ((
AiBi

||AiBi||

OAi × OBi

||AiBi||
)) (6)

The uncertainties in the geometry lie in the location of the anchor pointAi, Bi.
The interval analysis part is implemented using theBIAS/Profil package1

and our interval analysis libraryALIAS2 that offer high-level modules that are com-
bined for implementing the calculation of the linear systemsolver. Furthermore this
library allows one to use a distributed implementation: a master manages the list of
boxes and send the box on top of the list to a slave computer that performs a few
iterations of the algorithm and send the result back to the master.

A 6D workspaceW is defined with the rangesx, y in [-15,15],z in [45,50] and
the three Euler angles having the ranges [-15,15] degree. The computation time on a
Dell D400 laptop (1.7 Ghz) is established as follows:

• 6D workspace without uncertainty: forW it is established that the accuracy
constraint is satisfied in a computation time of about 10 mn. If the orientation
ranges ofW is extended to [-40,40] degree poses that violates the accuracy
constraint is detected in less than 10s.

• 6D workspace with uncertainties: for a± 0.05 uncertainty on each coordinates
of the Ai, Bi points the constraint accuracy inW in about 23mn. For an
uncertainty of± 0.1 the computation time establishes respectively at 42mn.

6 Conclusion

We have proposed an accuracy validation scheme that may be used to determine if
a given robot (possibly with an uncertain modeling) is such that the maximal posi-
tioning errors over a given workspace (that may also includeuncertainties) are lower
than given thresholds. This algorithm may easily be extended to determine what is
the maximal positioning errors over the given workspace andeven to find ranges for
design parameters so that the accuracy at given poses is better than fixed thresholds.

We have shown that the extremal positioning errors is a better index than the
usual condition number to qualify a robot in terms of accuracy. However it may not
be sufficient to compare two possible design: mean value and variance will also be
needed. We intend to address these issues in the future.

1http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html
2www.inria-sop.fr/coprin/logiciel/ALIAS/ALIAS.html
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