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Abstract— This paper studies the kinematics and statics
of under-constrained cable-driven parallel robots with three
cables. A major challenge in the study of these robots is the
intrinsic coupling between kinematics and statics, which must
be dealt with simultaneously. This paper provides a general
procedure that solves, in analytical form, the direct geometrico-
static problem, which consists in determining the platform
posture and the cable tensions once the cable lengths are
assigned. The problem is proven to have up to 156 complex
solutions.

I. I NTRODUCTION

Cable-driven parallel robots (CDPRs) employ cables in
place of rigid-body extensible legs in order to control
the end-effector posture. A CDPR is referred to asfully-
constrained if the posture of the end-effector is completely
determined when actuators are locked and, thus, all cable
lengths are assigned [1]. The minimum number of cables
that are necessary to fully control the output motion is equal
to the numberf of degrees of freedom (dofs) that the end-
effector possesses with respect to the base. However, since
cables may only exert tensile axial forces, a redundancy of
control actions is usually necessary in order to guarantee that
no cable becomes slack and, thus, full control is preserved
for a generic loading condition [1], [2]. A CDPR is defined,
instead, asunder-constrained if the end-effector preserves
some freedoms once actuators are locked and cable lengths
are fixed [1]. Typically, this occurs when the end-effector
is controlled by a number of cables smaller thanf . The
employ of CDPRs with a limited number of cables is justified
in a number of applications (such as, for instance, rescue,
service or rehabilitation operations), in which a limitation
of dexterity is acceptable in order to decrease complexity,
cost, set-up time, likelihood of cable interference, etc. It must
also be observed that a theoretically fully-constrained CDPR
operates, in considerable parts of its geometric workspace, as
an under-constrained robot, namely when a full restraint may
not be achieved because it would require a negative tension
in one or more cables.

The above considerations motivate a careful study of
under-constrained CDPRs. However, while fully-constrained
robots have been extensively investigated [1]–[15], little
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attention has been dedicated to under-constrained ones [16]–
[23]. When a fully-constrained CDPR operates in the por-
tion of its workspace in which the required set of output
wrenches is guaranteed to be applicable with purely tensile
cable forces [10]–[13], [15], the posture of the end-effector
is determined, in a purely geometrical way, by assigning
cable lengths. Conversely, for an under-constrained CDPR,
when the actuators are locked and the cable lengths are
assigned, the end-effector is still movable, so that the actual
configuration is determined by the applied forces. As a
consequence, the end-effector posture depends on both cable
lengths and equilibrium equations, and kinematics and statics
(or dynamics) must be dealt with simultaneously. Moreover,
as the pose depends on the applied load, it may change due
to external disturbances, so that it is important to investigate
equilibrium stability.

In [22], [23], a general methodology was proposed for
the kinematic, static and stability analysis of general under-
constrainednn-CDPRs, namely parallel robots in which a
fixed base and a mobile platform are connected to each other
by n cables, withn ≤ 5 and the anchor points on the base
and the platform being distinct. In particular, a procedure
was provided aimed at effectively solving, in analytical form,
the inverse and direct position problems, namely, at finding
the overall robot configuration and cable tensions when,
respectively, eithern platform posture coordinates or then
cable lengths are given, under the assumptions that a constant
force is applied on the platform, cables are inextensible and
massless, and interference problems are disregarded.

In a companion paper [24], the aforementioned method-
ology is applied to the inverse geometrico-static problem
(IGP) of the general 33-CDPR. In this paper, the direct
geometrico-static problem (DGP) of the 33-CDPR is, instead,
tackled. The challenge consists in determining the platform
posture and the cable tensions once the cable lengths are
assigned. Section II presents the robot model. Sections III
and IV formulate the geometrical and statical equations that
govern the problem, whereas Section V provides the detailed
procedures that solve it in analytical form. In Section VII,
the main achievements of the paper are discussed.

II. GEOMETRICO-STATIC MODEL

A mobile platform is connected to a fixed base by three
cables and is acted upon by a constant forceQLe applied on
a pointG, e.g. the platform weight acting through its center
of mass (Fig. 1).Q is the magnitude of the force, whereas
Le is the six-dimensional vector grouping the normalized
Plücker coordinates of its line of action.Oxyz is a Cartesian
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Fig. 1. Geometric model of a cable-driven parallel robot with three cables.

coordinate frame fixed to the base, withi, j and k being
unit vectors along the coordinate axes, whereasGx′y′z′ is
a Cartesian frame attached to the end-effector. The platform
posture is described byX = (x;Φ), wherex = G−O andΦ
groups the variables parameterizing the platform orientation
with respect toOxyz. If Rodrigues parameters are adopted,
i.e. Φ = [e1; e2; e3], the rotation matrixR(Φ) between the
mobile and the fixed frame is given by

R = I3 + 2
Φ̃+ Φ̃Φ̃

1 + e21 + e22 + e23
, (1)

whereΦ̃ denotes the skew-symmetric matrix expressing the
operatorΦ×. For the genericith cable,Ai and Bi are,
respectively, the anchor points on the base and the platform,
ρi is the cable length,ai = Ai − O, ri = Bi − G,
si = Bi − Ai and ui = (Ai −Bi) /ρi = −si/ρi. For
apparent reasons,ρi is assumed to be strictly positive, so
that si 6= 0. If bi is the projection ofBi − G on Gx′y′z′,
then ri = R (Φ)bi. (τi/ρi)Li is the force exerted by the
ith cable on the platform, withτi being the cable tension
andLi/ρi the normalized Plücker vector of the cable line.
Without loss of generality,O is chosen to coincide withA1

(so thata1 = 0) and k = e, with e being a unit vector
directed asLe. For the sake of brevity, the components ofx in
Oxyz are denoted asx, y andz. Finally, vector components
along the coordinate axes are denoted by right subscripts
reporting the axes names.

III. G EOMETRICAL CONSTRAINTS

When cable lengths are assigned, the setC of the the-
oretical restraints imposed by the cables on the platform
comprises3 relations inX, i.e.

|si| =
√
si · si = ρi, i = 1 . . . 3, (2)

where
si = x+Rbi − ai. (3)

By subtracting the first one from the second and the third
one, and by clearing the denominator1 + e21 + e22 + e23, the
following relations are obtained:

q1 := H200x
2 +H020y

2 +H002z
2 +H100x

+H010y +H001z +H000 = 0, (4a)

q2 := I100x+ I010y + I001z + I000 = 0, (4b)

q3 := K100x+K010y +K001z +K000 = 0, (4c)

where all coefficientsHkmn, Ikmn andKkmn are quadratic
functions ofe1, e2 ande3.

IV. STATICAL CONSTRAINTS

The platform equilibrium may be written as

[
L1 L2 L3 Le

]
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= 0, (5)

with
τi ≥ 0, i = 1 . . . 3. (6)

Equations (5) amount to6 scalar relations involving9
variables, namelyx, Φ and τi, i = 1 . . . 3. Following [22],
cable tensions may be eliminated by observing that Eq. (5)
holds only if

rank(M) ≤ 3, (7)

namely if L1, L2, L3 andLe are linearly dependent. This
is a purely geometrical condition, sinceM is a 6× 4 matrix
only depending on the platform posture. By setting all4× 4
minors of M equal to zero, a set of 15 scalar relations that
do not contain cable tensions may be obtained1.

If O is chosen as the reduction pole of moments,Li and
Le may be respectively expressed, in axis coordinates, as
− [si; ai × si] and [e; x× e], so thatM becomes

M(O) =

[

−s1 −s2 −s3 e

0 −a2 × s2 −a3 × s3 x× e

]

. (8)

The equations2

p1 := detM1236(O) = 0, (9a)

p2 := detM1235(O) = 0, (9b)

p3 := detM1234(O) = 0, (9c)

1In very special conditions, Eq. (7) is fulfilled becauseL1, L2 and
L3 become linearly dependent. In this case, equilibrium is possible only
if rank(M) ≤ 2, for, in any case, the external wrench must belong to
the subspace generated by cable lines. Cases like the ones mentioned here,
however, are sufficiently unlikely to occur not to be, in practice, of particular
concern.

2The notationMhij,klm denotes the block matrix obtained from rows
h, i andj, and columnsk, l andm. When all columns ofM are used, the
corresponding subscripts are omitted.



comprise the lowest-degree polynomials inX among all
minors of M(O). They are of degree 4 in the Rodrigues
parameters and degree 2 in the components ofx, thus being
of degree 6 inX. All other minors have degree ranging from
7 to 9 in X.

An additional sextic relation inX emerges by setting
detMj456(O) = 0 for j = 1 . . . 3, so that

s1 · detM456,234(O) = 0, (10)

and thus, sinces1 6= 0,

p4 := detM456,234(O) = 0. (11)

Equation (11) is, indeed, of degree 4 inΦ, degree 2 inx and
degree 6 inX.

For the purpose of this paper, it is worth deriving as
many independent lowest-degree equations inX as possible.
Further sextics may be obtained as follows. LetM be written
by choosing a genericP as the reduction pole of moments,
namely as

M(P ) =

[

· · · si · · · e

· · · (Bi − P )× si · · · (G− P )× e

]

. (12)

WhenP ≡ Bi or P ≡ Ai, i = 1 . . . 3, the moment vector
in the ith column vanishes, so that settingdetMj456(Bi) =
0 or detMj456(Ai) = 0 for j = 1 . . . 3 yields, respectively,

si · detM456,km4(Bi) = 0, (13)

or
si · detM456,km4(Ai) = 0, (14)

with k,m ∈ {1, 2, 3}−{i}. This way, the following equations
may be obtained:

p5 := detM456,234(B1) = 0, (15a)

p6 := detM456,134(B2) = 0, (15b)

p7 := detM456,134(A2) = 0, (15c)

p8 := detM456,124(B3) = 0, (15d)

p9 := detM456,124(A3) = 0. (15e)

Analogously, by settingP ≡ G, one obtains

p10 := detM456,123(G) = 0, (16)

All polynomials pj , with j = 5 . . . 10, have degree 4 in the
Rodrigues parameters and degree 2 in the components ofx.
These are the only linearly independent sextics inX that may
be derived from the minors ofM by varying the moment
pole.

V. DGP

Solving the DGP of the 33-CDPR requires solving, simul-
taneously, both the equations emerging from the geometrical
constraints and those inferred from static equilibrium.

The 3 point-to-point distance relations in Eq. (4) represent
the typical constraints governing the forward kinematics of
parallel manipulators equipped with telescoping legs con-
nected to the base and the platform by ball-and-socket
joints. In particular, the DGP of the general Gough-Stewart

manipulator depends on six equations of this sort, one of
which is equivalent to Eq. (4a) and five more to Eqs. (4b)-
(4c). This problem is known to be very difficult and it has
attracted the interest of researchers for several years [25],
[26]. The DGP of the 33-CDPR appears to be a even more
complex task, since, in this case, three equations analogous
to Eqs. (4b)-(4c), namely of degree3 in X, are replaced
by relationships that are, at least, of degree6 in X. If
the platform posture is described by Study homogeneous
coordinates3 XS := (g0, g1, g2, g3, e0, e1, e2, e3), with

q0 := e0g0 + e1g1 + e2g2 + e3g3 = 0, (17)

the relations in Eqs. (4) become quadratic inXS [26], but the
polynomials in Eqs. (9), (11), (15) and (16) remain of degree
6. The task does not appear to be significantly simplified.
In the following, the number of complex solutions that the
problem admits is determined by a hybrid approach based
on Groebner bases and Sylvester’s dialytic method. Results
are confirmed by homotopy continuation.

Let 〈J〉 be the ideal generated by the polynomial setJ =
{q1, q2, q3, p1, . . . , p10}. q1, q2 and q3 have, respectively,
degree 4, 3 and 3 in the elements ofX, whereas all other
generators of〈J〉 have degree 6 in the same variables. In
order to ease numeric computation via a computer algebra
system, namely theGroebnerPackage provided within the
mathematical softwareMapleTM , all geometric parame-
ters of the 33-CDPR are assumed to be rational. Accordingly,
〈J〉 ⊂ Q[X], whereQ[X] is the set of all polynomials in
X with coefficients inQ. All Groebner bases are computed
with respect to graded reverse lexicographic monomial orders
(grevlex, in brief)4.

In general, a Groebner basisG[J ] of 〈J〉 with respect
to grevlex(z, y, x, e1, e2, e3) may be computed in a fairly
expedited way. A key factor for the efficiency of such a
computation is the abundance of generators available in
〈J〉, which significantly simplifies and speeds up calculation.
G[J ] comprises137 polynomials, namely2 of degree3 in
X, 41 of degree4 in X and94 of degree5 in X.

Once G[J ] is known, the number of complex roots in
the varietyV of 〈J〉 may be evaluated by the command
PolynomialIdeals[NumberOfSolutions] [27], [28]. In
this case, the returned number is156. In order to actually
solveJ , and thus eliminate unknowns, Groebner bases with
respect to some elimination monomial orders are, however,
needed. IfXl is a list of l variables inX and X\Xl is
the (ordered) relative complement ofXl in X, a monomial
order>l on Q[X] is of l-elimination type provided that any
monomial involving a variable inXl is greater than any

3Study coordinates are advantageously employed to solve the DGP of
the Gough-Stewart manipulator.

4The lexicographic monomial order is particularly suitable tosolve
systems of polynomial equations, for it provides polynomial sets whose
variables may be eliminated successively. However, the Grobner bases that
it provides tend to be very large and thus, even for problems ofmoderate
complexity, they have little chance to be actually computable. Conversely,
the graded reverse lexicographic order produces bases thatare endowed with
no particular structure suitable for elimination purposes,but it ordinarily
provides for more efficient calculations.



TABLE I

COMPUTATION TIME TO OBTAIN GROEBNER BASES OF THE

ELIMINATION IDEALS OF 〈J〉 FOR THE EXAMPLE REPORTED INTABLE II

l Jl TG[Jl]
[min] T〈J〉∩Q[e3] [min]

0 〈J〉 1.3 1919

1 〈J〉 ∩ Q[y, x, e1, e2, e3] 19 2159

2 〈J〉 ∩ Q[x, e1, e2, e3] 42 (27) 579

3 〈J〉 ∩ Q[e1, e2, e3] 49 (24) 33

4 〈J〉 ∩ Q[e2, e3] 160 (80) 11

5 〈J〉 ∩ Q[e3] . . . –

monomial in Q[X\Xl]. If G>l[J ] is a Groebner basis of
〈J〉 with respect to>l, thenG>l[J ] ∩ Q[X\Xl] is a basis
of the lth elimination ideal〈Jl〉 := 〈J〉 ∩ Q[X\Xl] [29].
The l-elimination monomial order implemented inMaple is
a product order that inducesgrevlex orders on bothQ[Xl]
andQ[X\Xl]. In this perspective, the FGLM algorithm [30],
which converts a Groebner basis from one monomial order to
another, may be called upon to compute elimination ideals of
type 〈J〉 ∩Q[X\Xl], starting fromG[J ]. By this approach,
a least-degree univariate polynomial in one of the original
variables may be (theoretically) obtained.

Another method to compute a least-degree univariate
polynomial of 〈J〉 emerges from the following observation.
Let NG[Jl] be the number of generators inG[Jl], with
G[Jl] being the Groebner basis of〈Jl〉 with respect to
grevlex (X\Xl). Furthermore, letw be the last variable in
X\Xl. It is not difficult to verify thatG[Jl] comprises a
number of monomials inX\Xl − {w} which is exactly
equal to NG[Jl]. For example, the Groebner basisG[J3]
of 〈J〉 ∩ Q[e1, e2, e3] with respect togrevlex(e1, e2, e3)
comprises45 polynomials (9 of degree8 in Φ and 36 of
degree9 in Φ), including 45 monomials ine1 and e2 (of
degree ranging from0 to 8), whereas the Groebner basis
G[J4] of 〈J〉 ∩ Q[e2, e3] with respect togrevlex(e2, e3)
contains18 polynomials (15 of degree17 in {e2, e3} and3
of degree18 in {e2, e3}), including18 monomials ine2 (of
degree ranging from0 to 17). It follows that, ifw is assigned
the role of ‘hidden’ variable, the resultant inw of J may be
obtained fromG[Jl] by Sylvester’s dialytic method. Indeed,
by writing the generators ofG[Jl] in the form

T (w)Ew = 0, (18)

whereT(w) is a NG[Jl] ×NG[Jl] matrix that only depends
on w and Ew is a NG[Jl] column vector comprising all
monomials inG[Jl] with variables inX\Xl − {w}, the
sought-for resultant is

detT(w) =

156∑

h=0

Lhw
h = 0, (19)

with the coefficientsLh only depending on the input data,
namely the robot geometry and the cable lengths. The degree
of detT(w) is confirmed to be156.

Table I reports, for the exemplifying 33-CDPR whose
dimensions are given in Table II, the CPU time required to
computegrevlex Groebner bases for the elimination ideals
of 〈J〉, with l = 0 . . . 5, on a PC with a2.67GHz Intel Xeon
processor and 4GB of RAM. In particular, the third column
reports the CPU timeTG[Jl] required to getG[Jl] both by
computing〈J〉∩Q[X\Xl] and, in parentheses, by computing
〈Jl−1〉∩Q[X\Xl]. The elimination task proves to be, in gen-
eral, computationally very expensive and time consuming5.
In particular, the ‘deeper’ the elimination process goes (i.e.
the smaller the number of variables inX\Xl is), the longer
is the time necessary to perform the computation and, above
all, the larger is the amount of memory that is required. The
latter issue is particularly critical. Indeed, for the example
at hand, the last elimination ideal cannot be computed on
the given PC, due to excessive memory usage6. The fourth
column reports the CPU timeT〈J〉∩Q[e3] required to calculate
〈J〉∩Q[e3] by applying Sylvester’s dialytic method onG[Jl],
for l = 0 . . . 4. In this case, computation time depends on the
dimension ofT (w) and, thus, it normally decreases with
the number of variables inX\Xl. Memory requirements are
modest and the algorithm is ordinarily successful. It emerges
from the above consideration that a hybrid approach, which
eliminates a subset of variables by the FGLM algorithm and
further applies Sylvester’s method on the Groebner basis of
the corresponding elimination ideal, provides an effective
strategy to compute a least-degree univariate polynomial in
〈J〉.

For the numeric solutions of the problem to be actually
calculated, however, working with polynomials of degree as
high as156 is unpractical and it poses substantial numerical
problems. In this perspective, homotopy continuation offers
a robust alternative [26]. If no information isa priori known
about the roots inV , the DGP of the 33-CDPR may be cast,
on the basis of the degree of the polynomials contained in
J , into the larger family of all polynomial systems made up
by 1 quartic, 2 cubics and 3 sextics onX ∈ P6. General
members of this family have413263 = 7776 isolated roots.
This is, indeed, the number of pathsNpaths tracked by the
homotopy-continuation software used in this paper, namely
Bertini [31]. If the platform posture is described by Study
coordinates,Npaths lowers to2463 = 3456, which is still a
very high number.Npaths significantly improves if solutions
are computed starting from three8-degree polynomials in
Φ chosen withinG[J3]. Npaths drops, in this case, to83 =
512. Computation converges in a fairly robust way. However,
since only a subset of the generators available for the ideal
is used (6 out 13 if homotopy continuation is applied to
J , and 3 out of 45 if homotopy continuation is applied to
G[J3]), the results must be successively sifted in order to
retain only those that actually lie in the variety ofJ . As
expected,156 solutions are finally obtained. If the roots in

5Computation time may significantly increase depending on the com-
plexity of the coefficients of the polynomials inJ .

6In a computation performed on a more powerful workstation,Maple
estimated a required memory usage of about 12GB, in order to derive 〈J5〉
from 〈J4〉.



Φ are computed viaG[J3], the problem solutions may be
completed by calculating the corresponding roots inx as
follows. x andy may be linearly eliminated from Eqs. (4b)
and (4c), so that algebraic functionsx = x (z,Φ) and y =
y (z,Φ) may be derived. By way of them,q1 and p1 may
be written as quadratic expressions inz, thus allowingz
and z2 to be linearly computed. Back-substitution ofz in
x = x (z,Φ) and y = y (z,Φ) completes the solution. Due
to space limitations, only the real solutions of the example
reported in Table II are listed in the table.

After an equilibrium configuration is found, it proves
feasible only if it is stable and therein cable tensions are
positive. Cable tensions may be computed by a suitable set of
linear independent relations chosen within Eq. (5), whereas
stability may be assessed by determining the definiteness of
the reduced Hessian matrixHr defined in [22]. In Table II,
the symbols>, ≥, <, ≤ and <> denote, respectively, a
positive-definite, a positive-semidefinite, a negative-definite,
a negative-semidefinite and an indefinite matrix.

It is worth observing that the procedures described so
far are aimed to find an analytic solution to the problem
and to ascertain its number of complex roots. Once the
latter information is known, more efficient computational
techniques may be used to numerically solve practical cases.
For example, the complete family of 33-CDPR DGPs lies
in a 21-dimensional parameter space, parametrized by the
geometric quantitiesai, bi andρi, i = 1 . . . 3. Accordingly,
when the156 isolated roots of the DGP of a generic 33-
CDPR are known, ‘parameter’ homotopy continuation may
be applied to find the solutions for any other member
of the family. In this case, only156 paths need to be
tracked and the algorithm may be quite fast [26]. Another
possibly very efficient approach to solve the problem relies
on techniques based on interval analysis. This method brings
about the significant advantage of easily incorporating in the
calculation the constraints (6), as well as uncertainties in the
parameter values, physical bounds on variables ranges, etc.
[32]. Such an approach will be subject of future research.

VI. EQUILIBRIUM CONFIGURATIONS WITH UNLOADED

CABLES

Equation (2) represent a set oftheoretical constraints.
Indeed, since theactual constraints imposed by the cables
are that

|si| ≤ ρi, i = 1 . . . 3, (20)

the number of tensioned cables for which equality relations
such as those in Eq. (2) hold isa priori unknown. Accord-
ingly, the overall solution set must be obtained by solving
the DGP forall possible constraint sets{|sj | = ρj , j ∈ W},
with W ⊆ {1, 2, 3} and card(W) ≤ 3, and by retaining,
for each corresponding solution set, the solutions for which
|sk| < ρk, k 6∈ W [22], [23]. In general, this amounts to
solving 7 DGPs, namely,1 DGP with 3 cables in tension,3
DGPs with2 cables in tension and3 DGPs with a1 cable
in tension. The solution of the problem with a single active
cable is trivial, whereas the DGP of a CDPR suspended by
2 cables is solved in [23].

VII. C ONCLUSIONS

This paper studied the kinematics and statics of under-
constrained cable-driven parallel robots with three cables,
in crane configuration. For such robots, kinematics and
statics are intrinsically coupled and they must be dealt with
simultaneously. This poses major challenges, since position
problems gain remarkable complexity with respect to those
of analogous rigid-link robots, such as the Gough-Stewart
manipulator. This paper presented an original geometrico-
static model that allowed the direct position analysis to be
effectively performed in analytical form. The task consists
in determining the platform posture and the cable tensions
once the cable lengths are assigned. By a hybrid procedure
relying on Groebner bases and Sylvester’s dialytic method,
it was shown that the problem admits, in general, 156 com-
plex solutions, with results being confirmed by homotopy
continuation.

The mentioned hybrid procedure appears to be innova-
tive, in order to obtain a least-degree univariate polynomial
from a given polynomial ideal. Indeed, finding a Groebner
basis suitable for elimination purposes may be a highly
demanding task. Even by using computationally efficient
monomial orders (such asgrevlex) for initial computations
and suitable algorithms (such as the FGLM one) to convert
bases from the initial orders to the desired ones, memory
usage and calculation times may be so large that performing
a full elimination may easily prove unfeasible, even for
problems of moderate complexity. The technique presented
in this paper, encompassing three steps, considerably reduced
computation requirements, in terms of both memory and
time. First, a Grobner basisG was calculated with respect to
an efficient monomial order (such asgrevlex). Then, a subset
of the original unknowns was eliminated by computing, by
way of the FGLM algorithm, a Groebner basisGl of a
suitable elimination ideal. Finally, a least-degree univariate
polynomial in one of the remaining unknowns was computed
by applying Sylvester’s dialytic method to the polynomials
of Gl. The method is tailored to the particular structure of
the ideal emerging from the DGP of the 33-CDPR, but there
are chances to generalize it to fit more general cases.

It must be observed that the reported number of solutions
does not take into account constraints imposed by the sta-
bility of equilibrium and the sign of cable tensions. Once
such constraints are imposed and the solutions are sifted,
the number offeasible configurations drastically reduces.
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TABLE II

REAL SOLUTIONS OF THEDGP OF A 33-CDPR

Geometric dimensions and load:a2 = [10; 0; 0], a3 = [0; 12; 0], b1 = [1; 0; 0], b2 = [0; 1; 0], b3 = [0; 0; 1], (ρ1, ρ2, ρ3) = (7.5, 10, 9.5), Q = 10.

Conf. (e1, e2, e3; x, y, z) (τ1, τ2, τ3) Hr
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+1.6804603696020390943,+3.5743047536049493407,+5.5605475750988856764)

(+6.84,+3.05,+6.14) <>
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