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Abstract— This paper studies the kinematics and statics attention has been dedicated to under-constrained ongs [16
of under-constrained cable-driven parallel robots with three  [23]. When a fully-constrained CDPR operates in the por-
cables. A major challenge in the study of these robots is the tion of its workspace in which the required set of output

intrinsic coupling between kinematics and statics, which must . . . .
be dealt with simultaneously. This paper provides a general wrenches is guaranteed to be applicable with purely tensile

procedure that solves, in analytical form, the direct geometrico- cable forces [10]-{13], [15], the posture of the end-effect
static problem, which consists in determining the platform is determined, in a purely geometrical way, by assigning
posture and the cable tensions once the cable lengths are cable lengths. Conversely, for an under-constrained CDPR,
assigned. The problem is proven to have up to 156 complex \yhen the actuators are locked and the cable lengths are
solutions. assigned, the end-effector is still movable, so that theact
configuration is determined by the applied forces. As a
. INTRODUCTION consequence, the end-effector posture depends on both cabl
Cable-driven parallel robots (CDPRs) employ cables if”gths and equilibrium equations, and kinematics andstat
place of rigid-body extensible legs in order to contro or dynamics) must be dealt with _s,lmultane_ously. Moreover,
as the pose depends on the applied load, it may change due

the end-effector posture. A CDPR is referred to faldy- " ; | disturb that it is i tant 1o | G
constrained if the posture of the end-effector is completely 0 external disturbances, so that it Is important to Inges
uilibrium stability.

determined when actuators are locked and, thus, all cab‘?gl 291 [23 | thodol d i
lengths are assigned [1]. The minimum number of cableﬁ nk'[ ] [. ] a gene;a mt?'l' 0 oolgy_wafs proposl,e dor
that are necessary to fully control the output motion is daqué € gngmzzt;c, sétgtlgcRan sta II ity analllyls IS 8 tgep erahe_uﬂ

to the numberf of degrees of freedom (dofs) that the eng~onstranednn- >, Namely parafiel robots in which a
effector possesses with respect to the base. However, sirg%i?d base and_a mobile platform are conne_:cted to each other
cables may only exert tensile axial forces, a redundancy y n cables, withn = b an_d Fhe anchor points on the base
control actions is usually necessary in order to guaratizte t and the _platfor.m being d|st!nct. In p.artlc_ular, a procedure
no cable becomes slack and, thus, full control is preservé%as,prov'ded almgd at effe_c_t|vely solving, in analyt|ca1rfp .
for a generic loading condition [1], [2]. A CDPR is defined,the inverse and direct position problems, namely, at finding
instead, asunder-constrained if the end-effector preserves the overall robot configuration and cable tensions when,
some freedoms once actuators are locked and cable Iengfﬁ pectively, e|ther_L platform posture coordmates or the
are fixed [1]. Typically, this occurs when the end-effectoF@ le lengths are given, under the assumptions that a cbnsta
is controlled by a nur;lber of cables smaller th&nThe force is applied.on the platform, cables are_inextensibté an
employ of CDPRs with a limited number of cables isjustifiemeSSIeSS’ and }nterferenctazi)rot;]lem? are dlsr_egardded. hod
in a number of applications (such as, for instance, rescue, na companion paper.[ ] the aorementlon(_a method-
service or rehabilitation operations), in which a limitsti ology is applied to the inverse geometrico-static prot_)lem
of dexterity is acceptable in order to decrease complexitQGP) Of, the ggneral 33-CDPR. In this paper, .the. direct
cost, set-up time, likelihood of cable interference, dtmuist geometrico-static problem (D_GP)_Of the 33'_C_DPR Is, instead
also be observed that a theoretically fully-constrained®&D tackled. The challenge cons_lsts in determining the pletfor
operates, in considerable parts of its geometric workspece pos_ture and th_e cable tensions once the cable Iengths are
an under-constrained robot, namely when a full restraint mf\smgned. Section Il presents the robot model. Sections Il

not be achieved because it would require a negative tensi8‘Hd IV formulate the geometrical a_md statmgl equations tha
in one or more cables. govern the problem, whereas Section V provides the detailed

The above considerations motivate a careful study rocedures that solve it in analytical form. In Section VII,

under-constrained CDPRs. However, while fully-constedin e main achievements of the paper are discussed.
robots have been extensively investigated [1]-[15], dlittl I[l. GEOMETRICO-STATIC MODEL
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M. Carricato is with the Department of Mechanical Engineer-

ing (DIEM), University of Bologna, 40136 Bologna, lItaly (eail: cable_zs and is acted upon by a_ConStar_]t fdpa appl_ied on
marco.carricato@unibo.it). a pointG, e.g. the platform weight acting through its center

Interval Analysis Project (COPRIN), French National Ihge for Research ’

in Computer Science and Control (INRIA), 06902 Sophia-Aaiiy France Ee__ is the S|x—_d|menS|o.naI_ vector g_rouP'ng. the normz_a-l'zed
(e-mail: jean-pierre.merlet@sophia.inria.fr). Plicker coordinates of its line of actio®.xyz is a Cartesian



where
Si:X+Rbi—ai. (3)

By subtracting the first one from the second and the third
one, and by clearing the denominatos- e? + €3 + €3, the
following relations are obtained:

@1 = Ha002” + Ho20y® + Hoo22> + Higow
+ Ho10y + Hoo12z + Hopo = 0, (4a)
92 = Tigox + Lor0y + Loo1z + Logo = 0, (4b)
g3 = Kipox + Ko10y + Koo12 + Kogo = 0, (4c)

where all coefficientdd 1, Igmn and Ky, are quadratic
functions ofe;, e; andes.

IV. STATICAL CONSTRAINTS
The platform equilibrium may be written as

i (11/p1)

(o6 g e ]| 0 @)

Fig. 1. Geometric model of a cable-driven parallel robot witree cables. c (7-3/p3) ’
" Q

coordinate frame fixed to the base, withj and k being with
unit vectors along the coordinate axes, wheréasy'z’ is >0, i=1...3. (6)
a Cartesian frame attached to the end-effector. The ptatfor
posture is described by = (x; ®), wherex = G—O and® Equations (5) amount té scalar relations involvind)

groups the variables parameterizing the platform origmiat Vvariables, namelyk, ® and;, i = 1...3. Following [22],
with respect taOzyz. If Rodrigues parameters are adoptedcable tensions may be eliminated by observing that Eq. (5)
i.e. ® = [e1; eq; €3], the rotation matrixR (®) between the holds only if

mobile and the fixed frame is given by rank(M) < 3, (7)

o+ 2P 1) namely if £,, L5, L3 and L. are linearly dependent. This
1+e?+ed+ed’ is a purely geometrical condition, siné& is a6 x 4 matrix

- . . . only depending on the platform posture. By settingdal 4
where® denotes the skew-symmetric matrix expressing thFﬁinors of M equal to zero, a set of 15 scalar relations that

operator ®x. For the genericith cable, A; and B; are, do not contain cable tensions may be obtained
respectively, the anchor points on the base and the platform If O is chosen as the reduction pole of momeutsand

pi Is the cable lengtha; = 4; — O, r; = Bi - G, L. may be respectively expressed, in axis coordinates, as

R=1T5+2

si = Bi — A andw; = (4; —Bi) /pi = —si/pi. For [si; a; x s;] and[e; x x €], so thatM becomes

apparent reasong, is assumed to be strictly positive, so

thats; # 0. If b; is the projection ofB; — G on Gz'y'2’, _— S —s3 e

thenr; = R(®)b,. (1:/p;) L; is the force exerted by the M(0) = 0 o v mexse xxe | (8)

ith cable on the platform, with; being the cable tension 2o 878

and £;/p; the normalized Ricker vector of the cable line.  The equatiork

Without loss of generality) is chosen to coincide witht;

(so thata; = 0) andk = e, with e being a unit vector p1 = det My236(0) = 0, (92)

directed a<.. For the sake of brevity, the componentsa p2 == det M1235(0) = 0, (9b)

Ozxyz are denoted as, y andz. Finally, vector components p3 = det M1934(0) = 0, (9¢)

along the coordinate axes are denoted by right subscripts

reporting the axes names. Lin very special conditions, Eq. (7) is fulfilled because, £> and
L3 become linearly dependent. In this case, equilibrium is iptess®nly

[Il. GEOMETRICAL CONSTRAINTS if rank(M) < 2, for, in any case, the external wrench must belong to

When cable Iengths are assigned the Gaif the the- the subspace generated by cable lines. Cases like the onésmedrhere,
’ however, are sufficiently unlikely to occur not to be, in fiee, of particular

oretical restraints imposed by the cables on the platforgyncern.
comprises3 relations inX, i.e. 2The notationM,; k.., denotes the block matrix obtained from rows
h, ¢ andj, and columnsk, [ andm. When all columns oM are used, the
Isi| = v/si-si=pi, i=1...3, (2)  corresponding subscripts are omitted.



comprise the lowest-degree polynomials Xh among all manipulator depends on six equations of this sort, one of
minors of M(O). They are of degree 4 in the Rodrigueswhich is equivalent to Eq. (4a) and five more to Eqgs. (4b)-
parameters and degree 2 in the components tiius being (4c). This problem is known to be very difficult and it has

of degree 6 inX. All other minors have degree ranging fromattracted the interest of researchers for several yeais [25

7t09inX. [26]. The DGP of the 33-CDPR appears to be a even more
An additional sextic relation inX emerges by setting complex task, since, in this case, three equations anasogou
det M456(0) =0 for j =1...3, so that to Eqgs. (4b)-(4c), namely of degrekin X, are replaced
B by relationships that are, at least, of degieean X. If
s1 - det Mus.234(0) = 0, 10 ihe platform posture is described by Study homogeneous
and thus, since; # 0, coordinated X = (go, g1, 92, 93, €0, €1, €2, €3), With
pa = det Miys6 234(0) = 0. (11) qo = eogo + €191 + e2ga + e3g3 = 0, (17)
Equation (11) is, indeed, of degree 4dn degree 2 incand  the relations in Egs. (4) become quadrati&ig [26], but the
degree 6 inX. polynomials in Egs. (9), (11), (15) and (16) remain of degree

For the purpose of this paper, it is worth deriving ag. The task does not appear to be significantly simplified.
many independent lowest-degree equationX i&s possible. |n the following, the number of complex solutions that the
Further sextics may be obtained as follows. Mebe written prob]em admits is determined by a hyb“d approach based
by choosing a generi€’ as the reduction pole of moments,on Groebner bases and Sylvester's dialytic method. Results
namely as are confirmed by homotopy continuation.

N 8 ) e Let (J) be the ideal generated by the polynomial get
- (12) {a1,92,93,p1,---,p10}- @1, g2 and gz have, respectively,

- (Bi=P)xsi - (G-P)xe éegree 4,3 and 3 ir}1 the elements X%f whereas all other
WhenP = B; or P = A;, i = 1...3, the moment vector generators of.J) have degree 6 in the same variables. In
in the ith column vanishes, so that settidgt M 456(B;) = order to ease numeric computation via a computer algebra
0 or det Mj456(A;) = 0 for j = 1...3 yields, respectively, system, namely théroebner Package provided within the

mathematical softward/aple13”™, all geometric parame-

M(P) =

s; - det Mys6 kma(Bi) = 0, (13)  ters of the 33-CDPR are assumed to be rational. Accordingly,
or (J) c Q[X], whereQ[X] is the set of all polynomials in
s; - det Mysg rma(4;) = 0, (14) X with coefficients inQ. All Groebner bases are computed

_ ) ) ) with respect to graded reverse lexicographic monomialrsrde
with k,m € {1,2,3}—{i}. This way, the following equations (;eylex, in brieff*.

may be obtained: In general, a Groebner bas[J] of (J) with respect

ps == det Mysg.234(B1) = 0, (15a) to greYleX(z7y,x,el,62,63) may be compgted in a fairly
— det M (By) = 0 (15b) expedited way. A key factor for the efficiency of such a
Pe - 456,1341.22 ’ computation is the abundance of generators available in
pr = det Mys6,134(A2) =0, (15¢) (1), which significantly simplifies and speeds up calculation.
pg = det Mysp 124(Bs3) = 0, (15d) G[J] comprisesl37 polynomials, namely2 of degree3 in
po = det Mysg,124(As) = 0. (15e) X, 41 of degreet in X and94 of degree5 in X. _
_ _ Once G[J] is known, the number of complex roots in
Analogously, by setting” = G, one obtains the varietyV of (J) may be evaluated by the command
p1o = det Mysg,123(G) = 0, (16) Polynomialldeals{NumberO f Solutions] [27], [28]. In

this case, the returned number1i§6. In order to actually
All polynomials p;, with j = 5...10, have degree 4 in the solve J, and thus eliminate unknowns, Groebner bases with
Rodrigues parameters and degree 2 in the components ofrespect to some elimination monomial orders are, however,
These are the only linearly independent sexticX ithat may needed. IfX; is a list of / variables inX and X\X; is
be derived from the minors dk by varying the moment the (ordered) relative complement Xf; in X, a monomial
pole. order>; on Q[X] is of [-elimination type provided that any
V. DGP monomial involving a variable inX; is greater than any

Solving the DGP of the 33-CDPR requires solving, simul-  3sydy coordinates are advantageously employed to solve GR &
taneously, both the equations emerging from the geométrighe Gough-Stewart manipulator.
. . ) e Y 2 . . : . . .
constraints and those inferred from static equilibrium. The lexicographic. monomial order is particularly suitable suive
The 3 point-to-point distance relations in Eq. (4) représe systems of polynomial equations, for it provides polynomiak sshose
e - po p - - g. \ p_ Nariables may be eliminated successively. However, the Gobases that
the typical constraints governing the forward kinemati€s oit provides tend to be very large and thus, even for problemsiaderate
para”el manlpulators equ|pped with telescoplng Iegs Coﬁ_ompleXIty, they haVe_Ilttle Cha_nce to be actually COmpUta@anersel_y,
d to the base and the platform b ball—and—sockﬂf graded reverse lexicographic order produces basearthahdowed with
necte 0 p y f particular structure suitable for elimination purpodast it ordinarily

joints. In particular, the DGP of the general Gough-Stewafirovides for more efficient calculations.



TABLE |
COMPUTATION TIME TO OBTAIN GROEBNER BASES OF THE
ELIMINATION IDEALS OF (J) FOR THE EXAMPLE REPORTED INTABLE ||

Table | reports, for the exemplifying 33-CDPR whose
dimensions are given in Table Il, the CPU time required to
computegrevlex Groebner bases for the elimination ideals
of (J), with! =0...5, on a PC with 2.67GHz Intel Xeon

! Ji Topy [minl  Tinngles) M1 processor and 4GB of RAM. In particular, the third column
0 (J) 1.3 1919 reports the CPU tim&,;,) required to get=[.J;] both by

1 (J) NQly, =, e1, e2, e3] 19 2159 computing(J)NQ[X\X;] and, in parentheses, by computing
2 (JYyNQlz, e1, ez, e3] 42 (27) 579 (J1—1)NQ[X\X;]. The elimination task proves to be, in gen-
3 (J) N Qley, e2, e3) 49 (24) 33 eral, computationally very expensive and time consufing
4 (J) N Qlea, es] 160 (80) 1 In particular, the ‘deeper’ the elimination process goes. (i
5 (J) 0 Qles] B the smaller the number of variables X\ X; is), the longer

is the time necessary to perform the computation and, above
all, the larger is the amount of memory that is required. The
latter issue is particularly critical. Indeed, for the exden
monomial in Q[X\X,]. If G-,[J] is a Groebner basis of gt hand, the last elimination ideal cannot be computed on
(J) with respect to>;, then G, [J] N Q[X\X,] is a basis the given PC, due to excessive memory uagée fourth
of the ith elimination ideal(J;) = (J) N QX\Xi] [29].  column reports the CPU tifi&, gy, required to calculate
The [-elimination monomial order implemented Maple is (J)NQ[es] by applying Sylvester's dialytic method @#([.J;],
a product order that inducegevlex orders on botfQ[X;]  for; = (... 4. In this case, computation time depends on the
andQ[X\X;]. In this perspective, the FGLM algorithm [30], dimension of T (w) and, thus, it normally decreases with
which converts a Groebner basis from one monomial order {ge number of variables iX\X;. Memory requirements are
another, may be called upon to compute elimination ideals @odest and the algorithm is ordinarily successful. It eragrg
type (J) N Q[X\X,], starting fromG[J]. By this approach, from the above consideration that a hybrid approach, which
a least-degree univariate polynomial in one of the originadjiminates a subset of variables by the FGLM algorithm and
variables may be (theoretically) obtained. further applies Sylvester's method on the Groebner basis of
Another method to compute a least-degree univariai@e corresponding elimination ideal, provides an effectiv
polynomial of (/) emerges from the following observation. strategy to compute a least-degree univariate polynomial i
Let Nz, be the number of generators i&[J], with (),
G[J)] being the Groebner basis df/;) with respect o For the numeric solutions of the problem to be actually
grevlex (X\X;). Furthermore, letw be the last variable in calculated, however, working with polynomials of degree as
X\X;. It is not difficult to verify thatG[.;] comprises a high as156 is unpractical and it poses substantial numerical
number of monomials iINX\X; — {w} which is exactly proplems. In this perspective, homotopy continuation rsffe
equal to Ng(y,). For example, the Groebner bagigJs] 3 robust alternative [26]. If no information @priori known
of (J) N Qlex, ez, e3] with respect togrevlex(er,e2,€3)  about the roots i/, the DGP of the 33-CDPR may be cast,
comprises45 polynomials 0 of degrees in ® and 36 of  on the basis of the degree of the polynomials contained in
degree9 in @), including 45 monomials ine, ande; (0f 7 into the larger family of all polynomial systems made up
degree ranging frond to 8), whereas the Groebner basispy 1 quartic, 2 cubics and 3 sextics 3 € PS. General
G[Js] of (J) N Qlez,es] with respect togrevlex(ez,e3)  members of this family have!3263 = 7776 isolated roots.
contains18 polynomials (5 of degreel7 in {e,e3} and3  This is, indeed, the number of path§,,. tracked by the
of degreel8 in {ey, e3}), including 18 monomials inez (of  homotopy-continuation software used in this paper, namely
degree ranging frorfi to 17). It follows that, ifw is assigned  Bertin; [31]. If the platform posture is described by Study
the role of ‘hidden’ variable, the resultant in of J may be coordinates,Npa:xs lowers to02463 = 3456, which is still a
obtained fromG[.J;] by Sylvester's dialytic method. Indeed, very high numberN,,.,. significantly improves if solutions
by writing the generators of?[.J,] in the form are computed starting from thredegree polynomials in
® chosen withinG[J3]. N,q:ns drops, in this case, t83 =
T (w) Bw =0, (18) 512. Computation ([:or]werSes in a fairly robust way. However,
where T (w) is a Ngs, x Nz, matrix that only depends _since only a subS(_at of the generators a\_/aila_ble for _the ideal
on w and E,, is a Ngy, column vector comprising all 1S used ¢ out 13 if homotopy continuation is applied to

monomials inG[J;] with variables inX\X; — {w}, the J, and3 out of 45 if homotopy continuation is applied to
sought-for resultant is G|J3)), the results must be successively sifted in order to

retain only those that actually lie in the variety df As
expected,156 solutions are finally obtained. If the roots in

156
det T(w) = > Lyw" =0, (19)
h=0

5Computation time may significantly increase depending on tme-co

with the coefficientsL;, only depending on the input data, PIeXIty of the coefficients of the polynomials i _
In a computation performed on a more powerful workstatibfyple

namely the r_0b0t g(_eometry and the cable Iengths. The degr&%mated a required memory usage of about 12GB, in order teedefi )
of det T(w) is confirmed to bel56. from (Ja).



® are computed viaz[Js], the problem solutions may be VIl. CONCLUSIONS
completed by calculating the corresponding rootsxi@s  This paper studied the kinematics and statics of under-
follows. = andy may be linearly eliminated from Egs. (4b) constrained cable-driven parallel robots with three cable
and (4c), so that algebraic functions= z (z,®) andy = iy crane configuration. For such robots, kinematics and
y (z,®) may be derived. By way of themy, andp; may statics are intrinsically coupled and they must be dealh wit
be written as quadratic expressions dnthus allowingz  simultaneously. This poses major challenges, since pasiti
and z” to be linearly computed. Back-substitution ofin  proplems gain remarkable complexity with respect to those
z =z (z ®) andy =y (z,®) completes the solution. Due of analogous rigid-link robots, such as the Gough-Stewart
to space limitations, only the real solutions of the examplﬁanipulator. This paper presented an original geometrico-
reported in Table Il are listed in the table. _ static model that allowed the direct position analysis to be

After an equilibrium configuration is found, it proves effectively performed in analytical form. The task consist
feasible only if it is stable and therein cable tensions arg, getermining the platform posture and the cable tensions
positive. Cable tensions may be computed by a suitable set@fce the cable lengths are assigned. By a hybrid procedure
linear independent relations chosen within Eq. (5), wherege|ying on Groebner bases and Sylvester's dialytic method,
stability may be a_ssessed by det_ermir)ing the definitenessp{yas shown that the problem admits, in general, 156 com-
the reduced Hessian matrH,. defined in [22]. In Table II, plex solutions, with results being confirmed by homotopy
the symbols>, >, <, < and <> denote, respectively, a sgntinuation.
positive-definite, a positive-semidefinite, a negativérule, The mentioned hybrid procedure appears to be innova-
a negative-semidefinite and an indefinite matrix. tive, in order to obtain a least-degree univariate polyrmi

It is worth observing that the procedures described spom a given polynomial ideal. Indeed, finding a Groebner
far are aimed t_o f_md an analytic solution to the probleny,sis suitable for elimination purposes may be a highly
and to ascertain its number of complex roots. Once thgemanding task. Even by using computationally efficient
latter information is known, more efficient computationaly,onomial orders (such agevlex) for initial computations
techniques may be used to numerically solve practical casggq suitable algorithms (such as the FGLM one) to convert
For example, the complete family of 33-CDPR DGPS liegases from the initial orders to the desired ones, memory
in a 21-dimensional parameter space, parametrized by thgage and calculation times may be so large that performing
geometric quantitiea;, b; andp;, i = 1...3. Accordingly, g fy|| elimination may easily prove unfeasible, even for
when the156 isolated roots of the DGP of a generic 33-proplems of moderate complexity. The technique presented
CDPR are known, ‘parameter’ homotopy continuation may, thjs paper, encompassing three steps, considerablygeedu
be applied to find the solutions for any other membegompuytation requirements, in terms of both memory and
of the family. In this case, onlyl56 paths need to be {ime First, a Grobner bas@ was calculated with respect to
tracked and the algorithm may be quite fast [26]. Anothegy, efficient monomial order (such gs:vlex). Then, a subset
possibly very efficient approach to solve the problem reliegs ihe original unknowns was eliminated by computing, by
on techniques based on interval analysis. This methodsloring,ay of the FGLM algorithm, a Groebner basis of a
about the significant advantage of easily incorporatindé t g itable elimination ideal. Finally, a least-degree uriata
calculation the constraiqts (6), as well as upcertaintiet:hé polynomial in one of the remaining unknowns was computed
parameter values, physmgl bounds. on variables ranges, ¢ applying Sylvester's dialytic method to the polynomials
[32]. Such an approach will be subject of future research. of ¢, The method is tailored to the particular structure of

V1. EQUILIBRIUM CONFIGURATIONS WITH UNLOADED the ideal emerging from the DGP of the 33-CDPR, but there
CABLES are chances to generalize it to fit more general cases.

It must be observed that the reported number of solutions
does not take into account constraints imposed by the sta-
bility of equilibrium and the sign of cable tensions. Once
si| <pi, i=1...3, (20) such constraints are imposed and the solutions are sifted,

. _ . ~ the number ofeasible configurations drastically reduces.
the number of tensioned cables for which equality relations

such as those in Eq. (2) hold &priori unknown. Accord- ACKN_OWLEDGMENT
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TABLE Il
REAL SOLUTIONS OF THEDGPOF A 33-CDPR

Geometric dimensions and loaaz = [10;0; 0], az = [0; 12; 0], by = [1;0;0], b2 = [0;1;0], bg = [0;0; 1], (p1, p2, p3) = (7.5,10,9.5), @ = 10.

Conf. (e1,e2,e3; x,9y,2) (11,72,73) H,

(—4.2220216376218525374, —5.9041632869515210360, —0.4719284164260346102 ;

1 +1.6804603696020390943, +3.5743047536049493407, +5.5605475750988856764) (+6.84, 43.05, +6.14) <>

2 (—3.3553981637732204646, +0.5425359168641715099, +1.7110227662077546889 ; (+5.26, +5.11, +5.81) >
+2.9313331749199504570, +4.0768903590846968732, +6.0451905744644536057) T

3 (—2.6616890629909497781, +0.4160373487571940226, +0.9655548628886102991 ; (—5.71, —4.85, —5.59) <>
+2.5977352480361477511, +3.8457865212868645040, —4.8661048045758031135) v T

4 (—2.5291311336353393166, +7.3670838551717188775, —3.0436947470784328872; (—1.40, —9.30, —9.83) >
+4.3757198849572551337, +5.8522722689950264632, —4.0010370837572794347) T
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