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Abstract. This paper studies the kinematics and statics of cable-drieeallpl robots with less
than six cables, in crane configuration. A geometrico-static tisdgrovided, together with a
general procedure aimed at effectively solving, in analyfican, the inverse and direct position
problems. The stability of equilibrium is assessed within the fraomkvef a constrained opti-
mization problem, for which a purely algebraic formulationtieydded. A spatial robot with three
cables is studied as an application example.
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1 Introduction

Cable-driven parallel robots (CDPRs) are ordinarily refdrto as fully-constrained
or under-constrained, depending on whether all six degrefesedom (dofs) of the
moving platform are controlled or not [1]. It is well knownat in the general case,
fully-constrained CDPRs require at least seven cablespalytsix in crane config-
uration, namely when gravity acts as an additional cable. diktinction between
the two aforementioned categories of robots is somewhitdicd, since a theoret-
ically fully-constrained CDPR s, in considerable partsitsfworkspace, actually
under-constrained, namely when a full restraint would rega negative tension
in some cable. Permanently under-constrained CDPRs va#ttlean six cables are
furthermore used in a number of applications, such as resgerations, in which
a limitation of dexterity is acceptable in order to decreaamplexity, set-up time,
likelihood of cable interference, etc.

The above considerations motivate a careful study of undestrained robots.
However, while fully-constrained CDPRs have been extemgiinvestigated [2],
few studies have been dedicated to under-constrained 8nés%]. A major chal-
lenge in the study of these robots consists in the intrinsiptng between kinemat-
ics and statics (or dynamics). Indeed, while in a fully-dcaised CDPR the plat-
form posture is determined in a purely geometric way by assgthe cable lengths
(provided that all cables are under tension), in an undesttained CDPR the pose
depends on both cable lengths and equilibrium equationssézpently, kinematics
and statics must be dealt with simultaneously. Furtherpawé¢he platform posture
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depends on the applied load, it may change due to exterrtatlosces. Hence, it
is of great importance to investigate equilibrium stapil, 6].

This paper presents a kinematic and static study of undest@nechn-CDPRs,
in crane configuration. An under-constraimedCDPR is controlled by cables and
it exhibits n distinct anchor points on both the base and the platforn wit 6.
A geometrico-static model is presented, together with seg@rmprocedure aimed
at effectively solving, in analytical form, the inverse aglidect position problems.
These consist in determining the overall robot configurafend cable tensions)
oncen configuration variables (e.g., platform posture coordinatr cable lengths)
are given. The problem of equilibrium stability is formwddtas a constrained op-
timization problem, and a purely algebraic method, whicleswut the need of
differentiation, is provided. The geometrico-static stud a general 33-CDPR is
outlined as an application example.

2 Geometrico-static model

Let a mobile platform be connected to a fixed basentgables, with 2< n < 5.

A andB; are, respectively, the anchor points of itiecable on the frame and the
platform, ands = B; — A; (Fig. 1a). The se¥ of theoretical geometrical constraints
imposed on the platform comprises the relations

s|=vs-s=p, i=1..n, @)

where p; is the length of thdth-cable, which is assumed, for apparent practical
reasons, strictly positive (so that, as a consequdBicg A)).

Since onlyn geometrical constraints are enforced, the platform prese— n
degrees of freedom, with its posture being determined biliequm laws. If Q%,
with Q > 0, is an arbitrary external wrench acting on the platforngl(iding inertia
forces, in case of dynamic conditions) afw/p;) $i is the force exerted by thi¢gh
cable . and$;/p; are assumed to be unit screws), then

n T
g =0 2
7p|$|+Q$e : )
with

>0, i=1...n 3

Equations (1)-(2) amount to-6 n scalar relations involving & 2n variables,
namely, the cable tensions and lengths, and the variabtesngterizing the plat-
form posture. In general, a finite set of system configuratioay be determined if
n of such variables are assigned.

In this paper, onlystatic equilibrium is considered an@$. is assumed to be a
constantforce applied on a poir® of the platform (e.g., the platform weight acting
through its center of mass). Hence, Egs. (1)-(2) are alggboa may be easily
rendered so. If Eq. (2) is written as
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(T1/p1)
[$1 %] © |=0 (@)
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M is a 6x (n+ 1) matrix only depending on the platform posture and equilifori
is possible only if
rankM) <n, (5)

namely, if the cables and the line of action$&fspan the same-dimensional sys-
tem of lines. Within the domain of rigid-body mechanics, gieblem isstatically
determinatéf the equality holdsindeterminateotherwise. In the former case, it is
always possible to replace Eg. (4) with-6 scalar relations that do not contain
the unknowns;, i = 1...n. In fact, the linear dependence %f,...,$, and$. is a
purely geometrical condition. A most straightforward gy consists in computing
cable tensions by way oflinearly independent relations chosen within Eq. (4), then
substituting them back into the remaining ones. The regukiquations, however,
exhibit a remarkable complexity. A more convenient strategnsists in setting all
(n+1) x (n+1) minors ofM equal to zero, which amounts (gil) scalar relations,
among which 6- n linearly independent ones may be suitably chosen. By such an
approach, the resulting equations are significantly simplethermore, since they
do notcomprise cable lengths, they lead to a partial decouplirthetystem equa-
tions, with cable lengths only appearing in Eq. (1). Suchgpr@ach may also be
applied when the problem is statically indeterminate.

Depending on the variables designated as input, one maletaoknverse geo-
metric problem (IGP), ifh variables concerning the platform posture are assigned,
or a direct one (DGP), if cable lengths are given. The IGPgalaticular advan-
tage of the partial decoupling of system equations, sine@tatform configuration
may be computed by simply solving the-61 relations emerging from Eq. (5). Ca-
ble lengths and tensions may be subsequently (and straglatfdly) computed by
Eqg. (1) and a suitable set of linear independent relationsamwithin Eq. (4). The
set ofadmissiblesolutions consists of all those for which cable tensionsname
negative (cf. Eq. (3)) and the platform equilibrium is s&altf. §3). The DGP is
remarkably more complex, since in this case the platfornfigoration must be de-
termined by simultaneously solving both the-@ relations emerging from Eq. (5)
and thenrelations in Eq. (1).

It must be said that Eq. (1) represents a sehebreticalconstraints, since the
actualconstraint imposed by a generic cable consists in that

Is|=+vs-5 <pi. (6)

The above refinement causes no concern when the IGP is déalfaviin this case
thetheoreticalvalues of cable lengths are conveniently computed by Eqaftgr
the platform posture has been established. Converselyp WeeDGP is tackled,
cable lengths are assigned as inputs, apdori nothing assures thatl cables are
called upon to sustain the load. Indeed, if a sul#gedf cable indexes exists such
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that card#’) < n and$. € span{$;,j € # }, equilibrium configurations possibly
exist such thallse| < py, for allk ¢ #, and thusy, = 0. These are legitimate solutions
of the problem at hand. It follows that the overall solutietis obtained by solving
the DGP forall possibleconstraint set$|s;| = pj, j € #'}, with # C {1...n} and
card#’) < n, and by retaining, for each corresponding solution setstiations
for which |s¢| < px, K¢ #. In general, this amounts to solving—3 (,,",) DGPs.

A caveat is worth to be mentioned. Equation (5) is onheaessargondition for
equilibrium. In very special conditions, it may happen thauilibrium is not possi-
ble, in spite of Eq. (5) being fulfilled and irrespective o tign of cable tensions. In
particular, this occurs i loses its full rank because a subset ofifirst columns
becomes linearly dependent, i.e. if the rank loss is ‘cotraéed’ among the set of
screws associated with the cable lines. In this case, theafdhe block M 1.61.n
is at most equal ta— 1 and Eq. (2) may be satisfied only if rgitk) < n— 1. Cases
like the one described here, however, are sufficiently ehfiko occur not to be,
in practice, of particular concern. Nonetheless, a chedk®fank ofM1 g1 is
advisable before attempting to solve for cable tensions.

Throughout the text, the following notation is adopted (Hig).Oxyzis a Carte-
sian coordinate frame fixed to the base, wjthandk being unit vectors along the
coordinate axesGXYZ is a Cartesian frame attached to the platfoenis a unit
vector directed a$e, Xx=G—-0,3=A - O, ri=Bi—G,5 =B — A =X+ri — a,
ui = (A —Bj)/pi=—s/p andrjj =ri—rj, withi,j =1...n,i # j. Without loss
of generality,O is chosen to coincide with; (so thata; = 0) andk = e. If b; is
the projection ofB; — G on GXy'Z, @ is the array grouping the variables param-
eterizing the platform orientation with respect to the fixeime andR(®) is the
corresponding rotation matrix, thep= R (@) b;. The platform posture is described
by the arrayX = (x; @), with the components of in Oxyzbeing denoted, for the
sake of brevity, ax, y andz If O is chosen as the reduction pole of momefis,
and$. may be respectively expressed, in axis coordinate$; as[s; a x s] and
$ = [e; x x €. Accordingly,M becomes

| X4ryeee X+ri—a oo e
M_[ 0 ~--a4-><(x+ri)---x><e]’ ()

or, equivalently, after subtracting the first column frora ttolumns 2 through,

o [x4rie ra—a e
M _|: o .. ax(x+ri)... XX6:|. (8)

3 The stability of equilibrium

Let an equilibrium configuratior()?,p_l...ﬁm) be considered, wittm being the
number ofactive constraints (i.e. the number of cables contributing to sujig

1 The notatiorM hij kim denotes the block matrix obtained from rolys and j, and columns, |
andmof M. When all columns oM are used, the corresponding subscripts are omitted.
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Fig. 1: 22-CDPR: (a) general model; (b) equilibrium confagions in the casay, =
(107 05 72)5 bl = (7057 07 705)1 b2 = (3a 07 0)1 andpl =pP2= 7.

the platform). By a convenient reordering of indexes, talles may be assumed to
be the firstm, with m < n. Since the platform preserves-6n dofs, it may displace
under the effect of a change in the external force acting,omhtle cable lengths
remain unvaried (for the sake of simplicity, it is assumeat the number of cables
in tension does not change because of the perturbationhwéhieasonable, but not
necessarily true). The problem of assessing equilibrilahiliy is, thus, in order.
In particular,G may generally move within a closed regionR®t (in some cases, a
surface or a curve). Ifj is the frontier of this region, the equilibrium is stable any
time the potential enerdy associated with the external for@$e, namely—Qe- x,
is at a minimum org. Loosely speaking, the platform is at rest in all poiGtsf g
in which the variety tangent tg is perpendicular t@, with the equilibrium being
stable if and only if a neighborhoddi; of G exists such thatP — G) - e < 0, for
all P € (gNnWg). In such a condition, when the platform displaces under tleete
of a perturbation, the original configuration is restorethié perturbation ceases.
Figure 1b helps to depict this concept. The figure shows thigsig of the positions
that G may assume for an exemplifying 22-CDPR, under the cons¢rdir) and
with m= n = 2. If the platform is thought of as the coupler of a four-bakége
whose grounded links are the cables (with assigned lengjlis}he coupler curve
of G, namely a bicursal sextic. The stationary configuration§ afe the points of
g in which the tangent line is perpendiculargowith U being at a minimum i,
andG,. These are the stable equilibrium poses (of course, siride tansions must
be negative in the configurations lying above the base, asitiymotherwise(z, is
de factothe only feasible configuration for the example at hand)difig the min-
ima of a constrained function is a classical issue in opttidn theory. An efficient
algorithmic formalization is presented in the following.

At equilibrium, the variation of thglobal potential energy of the platform due
to a virtual displacement of it must be zero. Such a variaigsahe opposite of the
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work carried out by all forces acting on the platform, namely

m
5L:__Zriui'5Bi_Qe'5G:O~ (9)

If dx and 6O are, respectively, the virtual displacement@fand the virtual
rotation of the platform, thedG = dx anddB; = ds = dx + dO x rj, so that

oL=— (iTiUH_Qe) -OX — (im‘i ><ui> 200 =f-0x+m-060 =0. (10)

Equation (10), from whicli andm are inferred to be zero, is clearly equivalent
to Eq. (2), by lettingh = m. Since, forp; = pi, 4 (|s| — pi) = d|s| and

5|S|:s-pés :S-5x+|;><s.5@ (- Sxarixu-50). (1)
I 1

oL may be written as
m
oL =—Qe-dx+ ZlTi5(\S|—Pi)7 12)
i=
i.e., as the virtual variation of the Lagrange function
m
L:—Qe'X+ZTi(|S|_Pi)7 (13)
i=

with Lagrange multipliers coinciding with the cable temsp namely, with the

forces necessary to impose the geometrical constrairts$dth an observation is

useful, since it allows the stability characteristics & trguilibrium to be assessed

by evaluating the definiteness of the reduced Hesdiaof L, i.e. the Hessian of

L taken with respect to the configuration variables, furthhejgzted on the tangent

space of the constraints [7]. An algebraic expression &f; is derived hereafter.
The second-order variation 8L is given by

m .. Sa m .. 52
5°L = —Qe- 8%+ eri 95 - 0§ +eris 0 S, (14)
= Pi i£ Pi

with 8%s = & + 60 x r; + 60 x (60 x rj). Enforcingf = m = 0 in Eq. (14)
yields

8oL = i;' (8- 5% — 25% - (i % 3O) — (1 x 80) - [(x—a;) x 30]}  (15)

2 Equation (9) plus the relations > 0,|s| = pi} fori=1...mand {5 = 0,|s| < p;} fori =
m...n are equivalent to the Karush-Kuhn-Tucker conditions forrtfieimization ofL under the
constraints (6), provided th&, ..., $n, are linearly independent.
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or, in matrix notation,

m -

5°L = Z 5 [6xT 5% — 26X {60 + 6OTT; (X — &) 60, (16)
&1 Pi

wherefi denotes, for a generic vectoy the skew-symmetric matrix expressing the

operatomx. &2L is a bilinear form in the twist space of the platform. If thatpl

form virtual displacement is expressed, in ray coordinaest = [0x; 60], andl3

denotes the 3 3 identity matrix, the symmetric matrix associated withstftrm is

TR {'3 - (17)
P_i: P fi %(Fii—Fiéj—F)N(Fi—éiFi) !

which represents the pseudo-HessiarLdH,, is not a true and proper Hessian,

sincedO is not generally integrable).

The tangent space &f is obtained by setting Eq. (11) equal to zero for all values
of i. In matrix notation, this amounts to

sl (rixs)' 5
Jpdt=| : : [ 5;;} —0, (18)
sh (rmxsm)’

where thdth row of J, coincides with$;, expressed in axis coordinates and assum-
ing G as the moment pold,, is the pseudo-Jacobian of the constraint equations.

If N is any 6x (6 —m) matrix whose columns generate the null spacépthe
reduced Hessian &f is the following(6 — m) x (6 —m) matrix:

Hy = NGHpNp. (19)

A sufficient condition for the equilibrium to be stable caisiinH, being positive
definite.

If the method described above is applied to the example @@t in Fig. 1b,
results in agreement with those expected are obtained. @iibeium configu-
rations are theeal solutions of the DGP of the robdti.e. Gy = (1.94,-6.43),
G, = (5.98 —2.89), G3 = (6.31,—0.42) andG, = (4.18,6.07). Since the problem
is planarH, andJ, are, respectively, 3 and 2x 3 matrices, so that the reduced
Hessian is a scalat; is positive inG, andG4 and negative ifs; andGs, namely

Hrlg, = —29589 H(|g, = 18709 H/|g, = —22875 H|g, = 61650  (20)
If T =(11,T2), corresponding cable tensions are

15, = —(8.6,2.3), T, = —(242,227), 15, = (221,245), 15, = (6.0,5.6). (21)

3 The analytical solution of the DGP of the general 22-CDPR hdllreported in a future paper.
As the class of a generic coupler curve is 12 [8], there arenE3 liangent to it passing through the
point at infinity perpendicular te, so that the DGP admits up to 12 complex solutions [5].
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4 Application example: the 33-CDPR

Due to space limitations, only a brief outline of the IGP ahd DGP of the 33-
CDPR is sketched hereafter. Technical details and comexiscussions about
empty and nonzero-dimensional solution sets will be prediih future papers.

Whenn = 3, Eqg. (5) is satisfied and rafl ) = 3 only if $;, $,, $3 and$e belong
to the same tridimensional subspace of lines [8]. Lettingtat 4 minors of M’
vanish leads to 15 polynomial equationsxitand @ of the formp; = 0 . We look
for the varietyV of the ideal generated by such equations. If three configurat
variables are known (as in the IGP), any thige say pi, ph, Pk, may be chosen
and a corresponding (generally zero-dimensional) vakiglyis obtainedV is the
intersection of the five varieties that may be generatedwhis Clearly, a primary
objective of the solving algorithm consists in limiting thember of varieties to be
computed to the lowest possible value, possibly to just one.

It is useful observing that lettinB; = A; causes théth column ofM to vanish
(sinces = a; x 5 = 0) and, hence, it causes alk#4 minors ofM (and thus oM’)
to be zero. It follows that a configuration for whi& = A; always belongs t¥:
we call it atrivial solution and we need to discard it (§R). This observation is
particularly important for the IGP with assigned orientatiln this case, in fact, it
is always possible to displace the platform (with a giveretation) so as to su-
perimposeB; onto A;. Consequently, all varietieg,, necessarily contain the trivial
solutions corresponding 8 = A;, namelyx; =a —rj,i=1...3.

Inverse geometric problem. When the orientation is assigned, all vectors
i =1...3, are known. If the equations

p]_ = detM 3.236: 0, p2 = detM 3_235: 0, p3 = detM 1234: 0 (22)

are considered, it may be proven tWat V123 Such equations comprise the lowest-
degree polynomials among all minorsif. In particular,p; is quadratic ik andy,
whereag, and ps are quadratic irx, y andz. By eliminatingz andy from Eq. (22),

a 4th-degree polynomial equationxmmay be obtained, i.g123 = 0. Since three
roots ofpy23 necessarily correspond to trivial solutions, the fourthtiie real and it
may be computed by Vieta’s formulas in closed form. The probhdmits, thus, a
single solution. Of course, it is admissible only if the @sponding cable tensions
are nonnegative and the equilibrium is stable.

When the positiorx is assignedri, ro andrz are unknown. If the Rodrigues
parameters;, & andes are chosen to describe the platform orientation, the oalati
in Eq. (22) assume a particularly favorable structure. éndafter letting; = Rb;,
i=1...3, p1, p2 and ps become quartic polynomials &, e, andes. The minors
of M’ other thanM’,3, M’,35 and M’ ,54 yield, instead, sextic equations in the
Rodrigues parameters. Another useful quartic is obtaisddlbws. By setting the
minorsM’ 4se, j = 1...3, equal to zero, one has that+r1) detMjgq,3,= 0. The
variety defined by the above equation comprises the trivlat®nx = —r, and the
set of all configurations for which
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Pg = detM 2‘56*,234 =0. (23)

Eq. (23) is, indeed, of degree fourén, e andes (and it is quadratic i, y, 2). It is

well known that three polynomial equations of the same tégjree always admit

a Sylvester-type resultant free from extraneous polynbfaéors [9]. For the case

of three quartics, such a resultant is a univariate 64tlmegegolynomial in one of
the unknowns, sags. However, if the resultant op;, p2 and ps is attempted to

be computed, it appears to be identically nought. Conwgrgelny one amongp;,

p2 and ps is replaced bypg, the expected 64th-degree polynomial is obtained. The
problem admits, thus, at the most 64 solutions.

Direct geometric problem. When cable lengths are assigned, the platform con-
figuration has to be determined. Equation (5) provides ugbtnbn-independent)
polynomial equations in the platform posture variables.ofmthem, Egs. (22) and
(23) are of degree four gy, €, andes and degree two iR, y, z

Equation (1) provides three further relations in the platf@osture variables. In
particular, one may conveniently consider

0= |s1? - pZ =0, (24a)
G = [s2l” — pF — [s1f* + pf = O, (24b)
Os = |sg|? — p5 — [sa|?+pf =0, (24¢)

which, after clearing the denominator+les + €5 + €3, are quadratic iy, & and
e3. (1 is also quadratic in the elementsxfwhereas), andgs are linear in these
variables.

The point-to-point distance relations in Eq. (24) représies typical constraints
governing the forward kinematics of parallel manipulataigh telescoping legs
connected to the base and the platform by ball-and-sockesjdn particular, the
DGP of the general Gough-Stewart manipulator depends omcgiations of this
sort, one of which is equivalent to Eq. (24a) and five more ts.Kg4b)-(24c).
This problem is known to be very difficult and it has attracted interest of re-
searchers for several years [10, 11]. The DGP of the 33-COipRas to be even
more complex. In fact, three equations analogous to Eq¥){@4ic), namelyin-
ear in the components of andquadraticin the components ob, are replaced by
relationships that are, at leaqyadraticin the components of andquarticin the
components of (cf. Egs. (22) and (23)). Possible simplifications may, adiarise
from the fact that some power-productsxpfy andz actually miss in the equations
emerging from Eq. (5). The redundancy of such equations risaypday a role. The
problem appears to be a daunting task and it has not beerdsate

5 Conclusions

This paper studied the kinematics and statics of undertianed cable-driven par-
allel robots with less than six cables, in crane configuratin these robots, kine-
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matics and statics are intrinsically coupled and they masddmlt with simultane-
ously. This poses major challenges.

A geometrico-static model was presented, together withriginal and general
procedure aimed at effectively solving the inverse andctlippsition problems in
analytical form. A spatial robot with three cables was cdaestd as a case study,
in order to show the feasibility of the presented approackals shown that the
position problems that arise gain remarkable complexithwespect to those of
analogous rigid-link robots, such as the Gough-Stewartipodator. The inverse
analysis may lead up to 64 solutions, when the platform jposi$ assigned and the
its orientation and the cable lengths must be determined.difect problem, with
the platform posture being unknown and the cable lengthsgbgiven, appears to
be a much more difficult task and it will be the subject of fetoesearch.

A purely algebraic method, based on a constrained optifoizdbrmulation,
was provided for the assessment of equilibrium stabilitye Thethod proposed in
[5] differs from the one presented here in that it determihesstability of equilib-
rium by looking at the Hessian of amconstrainegotential, explicitly expressed as
a function of a number of independent coordinates equaktotimber of tensioned
cables. Such a mapping is, generally, very difficult to ab{aideed, Michaeét al.
[5] apply important simplifications on the geometry of theaot and extensive dif-
ferential symbolic computation is needed. The advantagheofnethod described
here consists in that it relies on a reduced Hessian of whilrely algebraic for-
mulation is provided, and it may be very simply applied to thest general cases,
with no need to perform any differentiation.
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