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Abstract. This paper studies the kinematics and statics of cable-driven parallel robots with less
than six cables, in crane configuration. A geometrico-static model is provided, together with a
general procedure aimed at effectively solving, in analytical form, the inverse and direct position
problems. The stability of equilibrium is assessed within the framework of a constrained opti-
mization problem, for which a purely algebraic formulation is provided. A spatial robot with three
cables is studied as an application example.

Key words: Under-constrained cable-driven parallel robots, geometric analysis, static analysis.

1 Introduction

Cable-driven parallel robots (CDPRs) are ordinarily referred to as fully-constrained
or under-constrained, depending on whether all six degreesof freedom (dofs) of the
moving platform are controlled or not [1]. It is well known that, in the general case,
fully-constrained CDPRs require at least seven cables, andonly six in crane config-
uration, namely when gravity acts as an additional cable. The distinction between
the two aforementioned categories of robots is somewhat fictitious, since a theoret-
ically fully-constrained CDPR is, in considerable parts ofits workspace, actually
under-constrained, namely when a full restraint would require a negative tension
in some cable. Permanently under-constrained CDPRs with less than six cables are
furthermore used in a number of applications, such as rescueoperations, in which
a limitation of dexterity is acceptable in order to decreasecomplexity, set-up time,
likelihood of cable interference, etc.

The above considerations motivate a careful study of under-constrained robots.
However, while fully-constrained CDPRs have been extensively investigated [2],
few studies have been dedicated to under-constrained ones [3, 4, 5]. A major chal-
lenge in the study of these robots consists in the intrinsic coupling between kinemat-
ics and statics (or dynamics). Indeed, while in a fully-constrained CDPR the plat-
form posture is determined in a purely geometric way by assigning the cable lengths
(provided that all cables are under tension), in an under-constrained CDPR the pose
depends on both cable lengths and equilibrium equations. Consequently, kinematics
and statics must be dealt with simultaneously. Furthermore, as the platform posture
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depends on the applied load, it may change due to external disturbances. Hence, it
is of great importance to investigate equilibrium stability [5, 6].

This paper presents a kinematic and static study of under-constrainednn-CDPRs,
in crane configuration. An under-constrainednn-CDPR is controlled byn cables and
it exhibits n distinct anchor points on both the base and the platform, with n < 6.
A geometrico-static model is presented, together with a general procedure aimed
at effectively solving, in analytical form, the inverse anddirect position problems.
These consist in determining the overall robot configuration (and cable tensions)
oncen configuration variables (e.g., platform posture coordinates or cable lengths)
are given. The problem of equilibrium stability is formulated as a constrained op-
timization problem, and a purely algebraic method, which rules out the need of
differentiation, is provided. The geometrico-static study of a general 33-CDPR is
outlined as an application example.

2 Geometrico-static model

Let a mobile platform be connected to a fixed base byn cables, with 2≤ n ≤ 5.
Ai andBi are, respectively, the anchor points of theith cable on the frame and the
platform, andsi = Bi −Ai (Fig. 1a). The setC of theoretical geometrical constraints
imposed on the platform comprises the relations

|si |=
√

si · si = ρi , i = 1. . .n, (1)

whereρi is the length of theith-cable, which is assumed, for apparent practical
reasons, strictly positive (so that, as a consequence,Bi 6≡ Ai).

Since onlyn geometrical constraints are enforced, the platform preserves 6−n
degrees of freedom, with its posture being determined by equilibrium laws. If Q$e,
with Q> 0, is an arbitrary external wrench acting on the platform (including inertia
forces, in case of dynamic conditions) and(τi/ρi)$i is the force exerted by theith
cable ($e and$i/ρi are assumed to be unit screws), then

n

∑
i=1

τi

ρi
$i +Q$e = 0, (2)

with
τi ≥ 0, i = 1. . .n. (3)

Equations (1)-(2) amount to 6+ n scalar relations involving 6+ 2n variables,
namely, the cable tensions and lengths, and the variables parameterizing the plat-
form posture. In general, a finite set of system configurations may be determined if
n of such variables are assigned.

In this paper, onlystatic equilibrium is considered andQ$e is assumed to be a
constantforce applied on a pointG of the platform (e.g., the platform weight acting
through its center of mass). Hence, Eqs. (1)-(2) are algebraic, or may be easily
rendered so. If Eq. (2) is written as
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

= 0, (4)

M is a 6× (n+1) matrix only depending on the platform posture and equilibrium
is possible only if

rank(M)≤ n, (5)

namely, if the cables and the line of action of$e span the samen-dimensional sys-
tem of lines. Within the domain of rigid-body mechanics, theproblem isstatically
determinateif the equality holds,indeterminateotherwise. In the former case, it is
always possible to replace Eq. (4) with 6− n scalar relations that do not contain
the unknownsτi , i = 1. . .n. In fact, the linear dependence of$1, . . . ,$n and$e is a
purely geometrical condition. A most straightforward strategy consists in computing
cable tensions by way ofn linearly independent relations chosen within Eq. (4), then
substituting them back into the remaining ones. The resulting equations, however,
exhibit a remarkable complexity. A more convenient strategy consists in setting all
(n+1)×(n+1) minors ofM equal to zero, which amounts to

( 6
n+1

)
scalar relations,

among which 6−n linearly independent ones may be suitably chosen. By such an
approach, the resulting equations are significantly simpler. Furthermore, since they
donot comprise cable lengths, they lead to a partial decoupling ofthe system equa-
tions, with cable lengths only appearing in Eq. (1). Such an approach may also be
applied when the problem is statically indeterminate.

Depending on the variables designated as input, one may tackle an inverse geo-
metric problem (IGP), ifn variables concerning the platform posture are assigned,
or a direct one (DGP), if cable lengths are given. The IGP takes particular advan-
tage of the partial decoupling of system equations, since the platform configuration
may be computed by simply solving the 6−n relations emerging from Eq. (5). Ca-
ble lengths and tensions may be subsequently (and straightforwardly) computed by
Eq. (1) and a suitable set of linear independent relations chosen within Eq. (4). The
set ofadmissiblesolutions consists of all those for which cable tensions arenon-
negative (cf. Eq. (3)) and the platform equilibrium is stable (cf. §3). The DGP is
remarkably more complex, since in this case the platform configuration must be de-
termined by simultaneously solving both the 6−n relations emerging from Eq. (5)
and then relations in Eq. (1).

It must be said that Eq. (1) represents a set oftheoreticalconstraints, since the
actualconstraint imposed by a generic cable consists in that

|si |=
√

si · si ≤ ρi . (6)

The above refinement causes no concern when the IGP is dealt with, for in this case
the theoreticalvalues of cable lengths are conveniently computed by Eq. (1), after
the platform posture has been established. Conversely, when the DGP is tackled,
cable lengths are assigned as inputs, anda priori nothing assures thatall cables are
called upon to sustain the load. Indeed, if a subsetW of cable indexes exists such
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that card(W ) < n and$e ∈ span
{

$ j , j ∈ W
}

, equilibrium configurations possibly
exist such that|sk|< ρk, for all k 6∈W , and thusτk = 0. These are legitimate solutions
of the problem at hand. It follows that the overall solution set is obtained by solving
the DGP forall possibleconstraint sets{|s j |= ρ j , j ∈ W }, with W ⊆ {1. . .n} and
card(W ) ≤ n, and by retaining, for each corresponding solution set, thesolutions
for which |sk|< ρk, k 6∈ W . In general, this amounts to solving∑n−1

h=0

( n
n−h

)
DGPs.

A caveat is worth to be mentioned. Equation (5) is only anecessarycondition for
equilibrium. In very special conditions, it may happen thatequilibrium is not possi-
ble, in spite of Eq. (5) being fulfilled and irrespective of the sign of cable tensions. In
particular, this occurs ifM loses its full rank because a subset of itsn first columns
becomes linearly dependent, i.e. if the rank loss is ‘concentrated’ among the set of
screws associated with the cable lines. In this case, the rank of the block1 M1...6,1...n

is at most equal ton−1 and Eq. (2) may be satisfied only if rank(M)≤ n−1. Cases
like the one described here, however, are sufficiently unlikely to occur not to be,
in practice, of particular concern. Nonetheless, a check ofthe rank ofM1...6,1...n is
advisable before attempting to solve for cable tensions.

Throughout the text, the following notation is adopted (Fig. 1a).Oxyzis a Carte-
sian coordinate frame fixed to the base, withi, j andk being unit vectors along the
coordinate axes.Gx′y′z′ is a Cartesian frame attached to the platform.e is a unit
vector directed as$e, x = G−O, ai = Ai −O, ri = Bi −G, si = Bi −Ai = x+ri −ai ,
ui = (Ai −Bi)/ρi = −si/ρi andri j = ri − r j , with i, j = 1. . .n, i 6= j. Without loss
of generality,O is chosen to coincide withA1 (so thata1 = 0) andk = e. If bi is
the projection ofBi −G on Gx′y′z′, Φ is the array grouping the variables param-
eterizing the platform orientation with respect to the fixedframe andR(Φ) is the
corresponding rotation matrix, thenri = R(Φ)bi . The platform posture is described
by the arrayX = (x;Φ), with the components ofx in Oxyzbeing denoted, for the
sake of brevity, asx, y andz. If O is chosen as the reduction pole of moments,$i

and$e may be respectively expressed, in axis coordinates, as$i = [si ; ai × si ] and
$e = [e; x× e]. Accordingly,M becomes

M =

[
x+ r1 · · · x+ ri −ai · · · e

0 · · · ai × (x+ ri) · · · x× e

]

, (7)

or, equivalently, after subtracting the first column from the columns 2 throughn,

M′ =

[
x+ r1 · · · ri1−ai · · · e

0 · · · ai × (x+ ri) · · · x× e

]

. (8)

3 The stability of equilibrium

Let an equilibrium configuration
(
X̄, ρ̄1 . . . ρ̄m

)
be considered, withm being the

number ofactiveconstraints (i.e. the number of cables contributing to supporting

1 The notationMhi j,klm denotes the block matrix obtained from rowsh, i and j, and columnsk, l
andmof M. When all columns ofM are used, the corresponding subscripts are omitted.
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Fig. 1: 22-CDPR: (a) general model; (b) equilibrium configurations in the casea2 =
(10,0,−2), b1 = (−0.5,0,−0.5), b2 = (3,0,0), andρ1 = ρ2 = 7.

the platform). By a convenient reordering of indexes, taut cables may be assumed to
be the firstm, with m≤ n. Since the platform preserves 6−m dofs, it may displace
under the effect of a change in the external force acting on it, while cable lengths
remain unvaried (for the sake of simplicity, it is assumed that the number of cables
in tension does not change because of the perturbation, which is reasonable, but not
necessarily true). The problem of assessing equilibrium stability is, thus, in order.
In particular,G may generally move within a closed region ofR

3 (in some cases, a
surface or a curve). Ifg is the frontier of this region, the equilibrium is stable any
time the potential energyU associated with the external forceQ$e, namely−Qe ·x,
is at a minimum ong. Loosely speaking, the platform is at rest in all pointsḠ of g
in which the variety tangent tog is perpendicular toe, with the equilibrium being
stable if and only if a neighborhoodWḠ of Ḡ exists such that(P− Ḡ) · e < 0, for
all P∈ (g∩WḠ). In such a condition, when the platform displaces under the effect
of a perturbation, the original configuration is restored ifthe perturbation ceases.
Figure 1b helps to depict this concept. The figure shows the locusg of the positions
that G may assume for an exemplifying 22-CDPR, under the constraints (1) and
with m= n = 2. If the platform is thought of as the coupler of a four-bar linkage
whose grounded links are the cables (with assigned lengths), g is the coupler curve
of G, namely a bicursal sextic. The stationary configurations ofG are the points of
g in which the tangent line is perpendicular toe, with U being at a minimum inḠ2

andḠ4. These are the stable equilibrium poses (of course, since cable tensions must
be negative in the configurations lying above the base, and positive otherwise,Ḡ4 is
de factothe only feasible configuration for the example at hand). Finding the min-
ima of a constrained function is a classical issue in optimization theory. An efficient
algorithmic formalization is presented in the following.

At equilibrium, the variation of theglobal potential energy of the platform due
to a virtual displacement of it must be zero. Such a variationis the opposite of the
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work carried out by all forces acting on the platform, namely

δL =−
m

∑
i=1

τiui ·δBi −Qe ·δG= 0. (9)

If δx and δΘ are, respectively, the virtual displacement ofG and the virtual
rotation of the platform, thenδG= δx andδBi = δ si = δx+δΘ × ri , so that

δL =−
(

m

∑
i=1

τiui +Qe

)

·δx−
(

m

∑
i=1

τiri ×ui

)

·δΘ = f ·δx+m ·δΘ = 0. (10)

Equation (10), from whichf andm are inferred to be zero, is clearly equivalent
to Eq. (2), by lettingn= m. Since, forρi = ρ̄i , δ (|si |−ρi) = δ |si | and

δ |si |=
si ·δ si

ρi
=

si ·δx+ ri × si ·δΘ
ρi

=−(ui ·δx+ ri ×ui ·δΘ) , (11)

δL may be written as

δL =−Qe ·δx+
m

∑
i=1

τiδ (|si |−ρi), (12)

i.e., as the virtual variation of the Lagrange function

L =−Qe ·x+
m

∑
i=1

τi (|si |−ρi), (13)

with Lagrange multipliers coinciding with the cable tensions, namely, with the
forces necessary to impose the geometrical constraints [7]2. Such an observation is
useful, since it allows the stability characteristics of the equilibrium to be assessed
by evaluating the definiteness of the reduced HessianHr of L, i.e. the Hessian of
L taken with respect to the configuration variables, further projected on the tangent
space of the constraintsC [7]. An algebraic expression ofHr is derived hereafter.

The second-order variation ofδL is given by

δ 2L =−Qe ·δ 2x+
m

∑
i=1

τi
δ si ·δ si

ρi
+

m

∑
i=1

τi
si ·δ 2si

ρi
, (14)

with δ 2si = δ 2x+ δ 2Θ × ri + δΘ × (δΘ × ri) . Enforcing f = m = 0 in Eq. (14)
yields

δ 2L =
m

∑
i=1

τi

ρi
{δx ·δx−2δx · (ri ×δΘ)− (ri ×δΘ) · [(x−ai)×δΘ ]} (15)

2 Equation (9) plus the relations{τi > 0, |si | = ρi} for i = 1. . .m and{τi = 0, |si | < ρi} for i =
m. . .n are equivalent to the Karush-Kuhn-Tucker conditions for theminimization ofL under the
constraints (6), provided that$1, . . . ,$m are linearly independent.
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or, in matrix notation,

δ 2L =
m

∑
i=1

τi

ρi

[
δxTδx−2δxT r̃iδΘ +δΘT r̃i (x̃− ãi)δΘ

]
, (16)

whereñ denotes, for a generic vectorn, the skew-symmetric matrix expressing the
operatorn×. δ 2L is a bilinear form in the twist space of the platform. If the plat-
form virtual displacement is expressed, in ray coordinates, asδ t = [δx;δΘ ], andI3

denotes the 3×3 identity matrix, the symmetric matrix associated with this form is

Hp =
m

∑
i=1

τi

ρi

[
I3 −r̃i

r̃i
1
2 (r̃i x̃− r̃i ãi + x̃r̃i − ãi r̃i)

]

, (17)

which represents the pseudo-Hessian ofL (Hp is not a true and proper Hessian,
sinceδΘ is not generally integrable).

The tangent space ofC is obtained by setting Eq. (11) equal to zero for all values
of i. In matrix notation, this amounts to

Jpδ t =






sT
1 (r1× s1)

T

...
...

sT
m (rm× sm)

T






[
δx
δΘ

]

= 0, (18)

where theith row of Jp coincides with$i , expressed in axis coordinates and assum-
ing G as the moment pole.Jp is the pseudo-Jacobian of the constraint equations.

If Np is any 6× (6−m) matrix whose columns generate the null space ofJp, the
reduced Hessian ofC is the following(6−m)× (6−m) matrix:

Hr = NT
pHpNp. (19)

A sufficient condition for the equilibrium to be stable consists inHr being positive
definite.

If the method described above is applied to the example portrayed in Fig. 1b,
results in agreement with those expected are obtained. The equilibrium configu-
rations are thereal solutions of the DGP of the robot3, i.e. Ḡ1 = (1.94,−6.43),
Ḡ2 = (5.98,−2.89), Ḡ3 = (6.31,−0.42) andḠ4 = (4.18,6.07). Since the problem
is planar,Hp andJp are, respectively, 3×3 and 2×3 matrices, so that the reduced
Hessian is a scalar.Hr is positive inḠ2 andḠ4 and negative inḠ1 andḠ3, namely

Hr |Ḡ1
=−29589, Hr |Ḡ2

= 18709, Hr |Ḡ3
=−22875, Hr |Ḡ4

= 61650. (20)

If τ = (τ1,τ2), corresponding cable tensions are

τḠ1
=−(8.6,2.3), τḠ2

=−(24.2,22.7), τḠ3
= (22.1,24.5), τḠ4

= (6.0,5.6). (21)

3 The analytical solution of the DGP of the general 22-CDPR willbe reported in a future paper.
As the class of a generic coupler curve is 12 [8], there are 12 lines tangent to it passing through the
point at infinity perpendicular toe, so that the DGP admits up to 12 complex solutions [5].
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4 Application example: the 33-CDPR

Due to space limitations, only a brief outline of the IGP and the DGP of the 33-
CDPR is sketched hereafter. Technical details and convenient discussions about
empty and nonzero-dimensional solution sets will be provided in future papers.

Whenn= 3, Eq. (5) is satisfied and rank(M) = 3 only if $1, $2, $3 and$e belong
to the same tridimensional subspace of lines [8]. Letting all 4× 4 minors ofM′

vanish leads to 15 polynomial equations inx andΦ of the form p j = 0 . We look
for the varietyV of the ideal generated by such equations. If three configuration
variables are known (as in the IGP), any threep j , say pl , ph, pk, may be chosen
and a corresponding (generally zero-dimensional) varietyVlhk is obtained.V is the
intersection of the five varieties that may be generated thisway. Clearly, a primary
objective of the solving algorithm consists in limiting thenumber of varieties to be
computed to the lowest possible value, possibly to just one.

It is useful observing that lettingBi ≡ Ai causes theith column ofM to vanish
(sincesi = ai × si = 0) and, hence, it causes all 4×4 minors ofM (and thus ofM′)
to be zero. It follows that a configuration for whichBi ≡ Ai always belongs toV:
we call it a trivial solution and we need to discard it (cf.§2). This observation is
particularly important for the IGP with assigned orientation. In this case, in fact, it
is always possible to displace the platform (with a given orientation) so as to su-
perimposeBi ontoAi . Consequently, all varietiesVlhk necessarily contain the trivial
solutions corresponding toBi ≡ Ai , namelyx̄i = ai − ri , i = 1. . .3.

Inverse geometric problem. When the orientation is assigned, all vectorsri ,
i = 1. . .3, are known. If the equations

p1 := detM′
1236= 0, p2 := detM′

1235= 0, p3 := detM′
1234= 0 (22)

are considered, it may be proven thatV ≡V123. Such equations comprise the lowest-
degree polynomials among all minors ofM′. In particular,p1 is quadratic inx andy,
whereasp2 andp3 are quadratic inx, y andz. By eliminatingzandy from Eq. (22),
a 4th-degree polynomial equation inx may be obtained, i.e.p123 = 0. Since three
roots ofp123 necessarily correspond to trivial solutions, the fourth root is real and it
may be computed by Vieta’s formulas in closed form. The problem admits, thus, a
single solution. Of course, it is admissible only if the corresponding cable tensions
are nonnegative and the equilibrium is stable.

When the positionx is assigned,r1, r2 andr3 are unknown. If the Rodrigues
parameterse1, e2 ande3 are chosen to describe the platform orientation, the relations
in Eq. (22) assume a particularly favorable structure. Indeed, after lettingri = Rbi ,
i = 1. . .3, p1, p2 and p3 become quartic polynomials ine1, e2 ande3. The minors
of M′ other thanM′

1234, M′
1235 and M′

1236 yield, instead, sextic equations in the
Rodrigues parameters. Another useful quartic is obtained as follows. By setting the
minorsM′

j456, j = 1. . .3, equal to zero, one has that(x+ r1)detM′
456,234= 0. The

variety defined by the above equation comprises the trivial solutionx =−r1 and the
set of all configurations for which
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p8 := detM′
456,234= 0. (23)

Eq. (23) is, indeed, of degree four ine1, e2 ande3 (and it is quadratic inx, y, z). It is
well known that three polynomial equations of the same totaldegree always admit
a Sylvester-type resultant free from extraneous polynomial factors [9]. For the case
of three quartics, such a resultant is a univariate 64th-degree polynomial in one of
the unknowns, saye3. However, if the resultant ofp1, p2 and p3 is attempted to
be computed, it appears to be identically nought. Conversely, if any one amongp1,
p2 andp3 is replaced byp8, the expected 64th-degree polynomial is obtained. The
problem admits, thus, at the most 64 solutions.

Direct geometric problem. When cable lengths are assigned, the platform con-
figuration has to be determined. Equation (5) provides up to 15 (non-independent)
polynomial equations in the platform posture variables. Among them, Eqs. (22) and
(23) are of degree four ine1, e2 ande3 and degree two inx, y, z.

Equation (1) provides three further relations in the platform posture variables. In
particular, one may conveniently consider

q1 := |s1|2−ρ2
1 = 0, (24a)

q2 := |s2|2−ρ2
2 −|s1|2+ρ2

1 = 0, (24b)

q3 := |s3|2−ρ2
3 −|s1|2+ρ2

1 = 0, (24c)

which, after clearing the denominator 1+e2
1+e2

2+e2
3, are quadratic ine1, e2 and

e3. q1 is also quadratic in the elements ofx, whereasq2 andq3 are linear in these
variables.

The point-to-point distance relations in Eq. (24) represent the typical constraints
governing the forward kinematics of parallel manipulatorswith telescoping legs
connected to the base and the platform by ball-and-socket joints. In particular, the
DGP of the general Gough-Stewart manipulator depends on sixequations of this
sort, one of which is equivalent to Eq. (24a) and five more to Eqs. (24b)-(24c).
This problem is known to be very difficult and it has attractedthe interest of re-
searchers for several years [10, 11]. The DGP of the 33-CDPR appears to be even
more complex. In fact, three equations analogous to Eqs. (24b)-(24c), namelylin-
ear in the components ofx andquadraticin the components ofΦ , are replaced by
relationships that are, at least,quadraticin the components ofx andquartic in the
components ofΦ (cf. Eqs. (22) and (23)). Possible simplifications may, indeed, arise
from the fact that some power-products ofx, y andz actually miss in the equations
emerging from Eq. (5). The redundancy of such equations may also play a role. The
problem appears to be a daunting task and it has not been solved yet.

5 Conclusions

This paper studied the kinematics and statics of under-constrained cable-driven par-
allel robots with less than six cables, in crane configuration. In these robots, kine-
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matics and statics are intrinsically coupled and they must be dealt with simultane-
ously. This poses major challenges.

A geometrico-static model was presented, together with an original and general
procedure aimed at effectively solving the inverse and direct position problems in
analytical form. A spatial robot with three cables was considered as a case study,
in order to show the feasibility of the presented approach. It was shown that the
position problems that arise gain remarkable complexity with respect to those of
analogous rigid-link robots, such as the Gough-Stewart manipulator. The inverse
analysis may lead up to 64 solutions, when the platform position is assigned and the
its orientation and the cable lengths must be determined. The direct problem, with
the platform posture being unknown and the cable lengths being given, appears to
be a much more difficult task and it will be the subject of future research.

A purely algebraic method, based on a constrained optimization formulation,
was provided for the assessment of equilibrium stability. The method proposed in
[5] differs from the one presented here in that it determinesthe stability of equilib-
rium by looking at the Hessian of anunconstrainedpotential, explicitly expressed as
a function of a number of independent coordinates equal to the number of tensioned
cables. Such a mapping is, generally, very difficult to obtain (indeed, Michaelet al.
[5] apply important simplifications on the geometry of the robot) and extensive dif-
ferential symbolic computation is needed. The advantage ofthe method described
here consists in that it relies on a reduced Hessian of which apurely algebraic for-
mulation is provided, and it may be very simply applied to themost general cases,
with no need to perform any differentiation.
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