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Abstract We consider wire-driven parallel robot withN ≥ 4 wires that are con-
nected at the same point on the platform. Such robot has 3 d.o.f. but it is non re-
dundant (e.g. we cannot control the tension in the wires) as there will always be
only at most 3 wires under tension simultaneously. We consider in this paper three
approaches that make this robot really redundant: elasticity in the wires, using coun-
terweights in the wires or attaching the redundant wires to afixed point on the other
wires. We show that these methods may be effective but still require further studies.

Key words: cable robot,wire-driven parallel robot, redundancy

1 The N −1 wire driven parallel robot

A wire-driven parallel robot has the same mechanical structure as a parallel robot
with rigid extensible legs but the linear actuators are substituted by wires that can
be coiled and uncoiled. Such robot has the advantages of being mechanically sim-
ple and to allow for large workspace (the leg length variations being much larger
than with rigid legs). Their main drawback is that wire can bepulled but cannot
be pushed: hence kinematics cannot be decoupled from statics, especially for robot
having less than 6 d.o.f., and this added complexity explains why the kinematics of
such robot is still an open issue [5]. A large number of potential applications has
led to a renewal of interest for wire-driven parallel robotsfor example for rescue
crane [2, 9, 11], assistance robots and rehabilitation [3] or haptic devices [1, 6].

In this paper we are considering a special class of wire-driven parallel robot,
called theN −1 robot, in which theN wires are all connected at the same pointC
on the platform. IfN ≥ 3, then the robot has 3 d.o.f., namely it allows to control the
position ofC but not the orientation of the platform. As soon asN ≥ 4 such robot
is calledredundant, whatever the definition of redundancy is [7, 10]. Redundant
robot will be the topic of this paper, starting by an examination of the reality of this
redundancy.
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2 Is the N −1 robot redundant?

Using more than 3 non-elastic wires for aN −1 robot is a natural idea to improve
the performances of this robot. Let us denote byAi the fixed output points of the
wires on the base and consider the workspace of this robot which is the volumeVε
spanned by moving the convex hull of theAis along the downward vertical (with an
upper limit which is the base plane and a lower limit determined by the maximal
wire lengths). Hence adding a wire allows one to increase theworkspace volume as
soon as the addedAi is not located within the convex hull of the previousAis.

It may also be sought that having redundant wire(s) allows one to control the
tension distribution in the wires [4] and hence to improve the carrying capacity of
the robot. Unfortunately we have shown both theoretically and experimentally in
our ICRA paper from 2012 that this is not true if the wires are not elastic:whatever
the number of wires is, at a given pose there will always be at most 3 wires
under tension while the other wires will be slack. Without going into the proof
let us explain intuitively this result. Consider a 3-1 robotin a poseC3 that lies in
its Vε : the mechanical equilibrium atC3 is satisfied and the tension in the 3 wires
are uniquely determined. If we add a 4th wire its length is uniquely determined as
the distance betweenA4 andC3. A wire system allows one to control either the wire
length or the wire tension (but not both). Hence:

• if we impose the length, then the mechanical equilibrium will be satisfied with a
0 tension in the 4th wire

• if we impose a tension (i.e. the wire length is smaller than the distance between
A4,C3), thenC will move in a location different fromC3

Being unable to control the tensions in the wires is a disappointing result because
this is typically one of the most obvious advantage of redundancy. We will propose
in the next sections different ways to exploit the availability of additional wires for
tension management while preserving the pose of the platform.

3 Tension management

3.1 Elastic wires

As mentioned previously a drawback of non-elastic wires is that tension control is
difficult. This may be changed if we assume elasticity in the wires. Letτi be the
tension in wirei, li its length at rest andρi its length when under tension. If we
assume that the wire is a perfect linear spring we have

τi = k(ρi − li) (1)

wherek is the stiffness of the wire (assumed to be identical for all wires). Consider
now a 3-1 robot submitted to a load of massm and having all 3 wires connected at the



Managing the redundancy of N-1 wire-driven parallel robots 3

center of mass of the load. The robot is submitted to a pure forceF = (0,0,−mg)T

and the tensionτ in the wires may be calculated as

τ = JT
F (2)

whereJT is the transpose of the jacobian matrix of the robot. For the inverse kine-
matics (IK) the coordinatesx,y,z of C are known, which allows one to calculateJT

and thenρi as the distance betweenAi,C. Using equation (2) we may then determine
theτ. The control length of the wire may thus be calculated as

li = ρi −
τi

k

But there are sources of uncertainties in the modeling: onk, on li, on the location of
the Ai and due to the fact that the wires are not exactly attached at the same point
on the platform. We will focus on the influence of the uncertainities onk and li,
assuming that theAi have been calibrated while the influence of the colocation ofthe
wire attachment points will be addressed in another paper. It is therefore necessary
to investigate what is the influence of the stiffness on the pose of the robot for a
given control input. We have thus solved the forward kinematics (FK) problem i.e.
determine what are the possible coordinates ofC for given lis. Equation (2) allows
one to calculateτ as functions of the coordinates ofC while equation (1) has now as
unknownsx,y,z,ρi. The geometrical IK of the robot provides an additional equation

ρ2
i = ||AiC||2 (3)

Equation (1) is linear inρi and the result is reported in equation (3) to get a con-
straint equation inx,y,z. Repeating this process for all 3 wires leads to 3 constraint
equations. Using resultant on these equations allows for successive elimination of
x,y, leading to an univariate polynomial inz. This polynomial may be factored out
as the product of 2 polynomials of degree 22, 34. Note that this approach is less
efficient than the one proposed by Dietmaier [8] but has the advantage of providing
directly thex,y,z. With this tool we may investigate the influence of uncertainties
on k andli on the positioning.

As an example we consider the 3-1 wires robot with anchor pointsA1 = (0,0,0),
A2 = (0,400,0), A3 = (400,0,0). The wire control values are given asl1 = 200, l2 =
350, l3 = 300 which leads to the posex = 137.5,y = 96.875,z =−108.208 for wires
without elasticity. To take into account the uncertainty onthe controlli and on the
stiffnessk we have considered a possible±3 error on theli and a±0.1k error on the
k. We have then solved the FK for a random sampling of 1000 sets of k, l within these
ranges. For a nominal value ofk = 100 we have found that the variations onx,y,z
were in the ranges [-3.86,2.7], [-3.24,3.93], [-5.16,3.74], while theτ variations were
[-15.49,14.23], [26.9,28.96], [-26.11,24.18]. For a nominal value ofk = 3000 we
found out that the variations onx,y,z were in the ranges [-3.64,3.63], [-4.3,3.47], [-
6.32,6.14], while theτ variations were [-20.58,19.46], [-40.1,36.2], [-44.21,39.36].
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Hence even small uncertainties on the values of thel,k lead to significant positioning
errors for the robot.

We consider now a 4-1 robot with the purpose of using the redundancy to ad-
just the wire tension e.g. to minimize the criteriaH = ∑ j=4

j=1 τ2
j . Using equation (2)

one can obtain three wire tensions as a linear function of theremaining one. With-
out lack of exhaustivity we may calculateτ2,τ3τ4 as a function ofτ1. H is then a
quadratic function inτ1 and it is therefore trivial to determineτ1 that leads to the
minimum ofH. For the IK, being given the pose of the load, theτ and equation (1)
we may determine the fourlis. To determine the influence on the positioning of the
uncertainties onk and onlis we have to solve the FK problem.

In the FK problem theli’s are given and we have to determine the pose of the
load. For that purpose we note that the first equation of (1) allows to determine
τ1 as function ofρ1, while equation (2) is used to determineτ2,τ3,τ4. The three
remaining equations of (1) are then linear inx,y,z. After solving this system we
report the result in the IK equations (3) after subtracting the equation for wire 1 to
the equations for wire 2, 3, 4. Together with (3) for wire 1 these equations constitutes
a system of 4 equations in the unknownsρ1,ρ2,ρ3,ρ4. One of this equation is linear
in ρ4 and is solved for this variable. The 3 remaining equations, denoteda1,a2,a3,
are of degree (6,6,2), (3,3,3), (9,9,3) inρ1,ρ2,ρ3. The four equationsa1,ρ3a1,a2,a3

are linear in the monomials 1,ρ3,ρ2
3 ,ρ3

3 and hence the determinant of the matrix
of this linear system should be 0, which leads to a polynomialP1 of degree 15 in
ρ1,ρ2. Taking the resultant ofa1,a2 in ρ3 leads to a polynomialP2 of degree 18
in ρ1,ρ2. The resultant ofP1,P2 factors out in 2 polynomials of degree 76 and
96 inρ1. Although this complete the theoretical solution, the degree of the involved
polynomial is too high to be used in practice and consequently we have to resort
to a numerical procedure. For that purpose we solve the linear system (2) to get
τ2,τ3,τ4 as function ofτ1. Then the first equation of (1) is used to determineτ1 as a
function ofρ1. The three remaining equations of (1) together with the IK equations
(3) constitute a system of 7 equations in the 7 unknownsx,y,z,ρ1,ρ2,ρ3,ρ4. As all
unknowns may easily be bounded we have used an interval analysis approach to
solve this system, all solutions being found in less than onesecond.

We have considered the 4-1 robot derived from the previous 3-1 by adding a 4th
wire whose exit point on the base isA4 = (400,400,0). We have then used the IK to
determine what should be theli to reach the posex = 100,y = 200,z = −200 while
minimizing∑ j=4

j=1 τ2
i for k = 1000. The nominal values were determined asl1 = l2 =

299.558, l3 = l4 = 412.1083 which leads toτ1 = τ2 = 441.45, τ3 = τ4 = 202.238.
Using the FK with these values of thels leads also to solutions in which only 3
wires are under tension, namely wires (1,2,3) or (1,2,4), both cases leading to the
same pose of the load withx = 99.6834,y = 200.2192,z =−200.1581. It should be
noted that already elasticity does not allow for precise positioning as we are unable
to determine the final pose of the platform for given control inputs.

We have then assumed similar errors on thels and onk than in the previous
example and have computed the FK solutions for 1000 sets of (l,k) chosen ran-
domly. We found out that the variations onx,y,z were in the ranges [-7.532, 4.579],
[-6.868, 5.75], [-7.6, 2.875] for a nominal value ofk = 100 and [-5.488, 4.7948],
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[-4.79, 4.262],[-5.1429, 4.247] fork = 1000. Over the test set the mean values of
the τi’s for k = 1000 were 467.606, 463.06, 278.35, 256.35 with a variation of [-
192, 133.86], [-187.45, 138.09], [-274.185, 146.07], [-241.75, 168.745]. Here again
we observe significant positioning errors and very large change in the tensions. As
a conclusion adding elasticity in the wires for managing redundancy will require a
very good wire length control together with a perfect stiffness calibration.

3.2 Using counterweights

The principle here is to attach known weight(s) on some wire(s), close to the plat-
form in order not to disturb the coiling of the wires. The purpose of the counter-
weight is to change the direction of the tension(s) applied on the platform in order
to possibly control the value of the wire tensions (in this section a wire is under
tension if itsτ is negative).

Consider for example a 4-1 robot with a counterweight of massm4 on wire 4
located at pointM at a distanced of C (figure 2). For a given pose ofC we are able
to calculate the values ofρ1,ρ2,ρ3. Wire 4 exerts on the platform a forceτ14 that is
directed alongMC while it exerts a forceτ24 on the counterweight that is directed
alongA4M. The mechanical equilibrium of the platform may be written as:

j=3

∑
j=1

τ jAjC/ρ j + τ14MC/d +(0,0,−mg)T = 0 (4)

The mechanical equilibrium of the counterweight may be written as:

−τ14MC/d + τ24A4M/(ρ4−d)+(0,0,−m1g)T = 0 (5)

A direct consequence of equations (5) is thatM must lie in the vertical plane that
includesA4,C. This constraint, together with the equations||MC||2 = d2, ||MA4||

2 =
(ρ4 − d)2, allows one to determine the unique location ofM as a function ofρ4.
Substituting the values of the coordinates ofM into equations (4, 5) leads to a linear
system of 5 equations in the unknownsτ1,τ2,τ3,τ14,τ24. Hence the wire tensions
may be established as functions ofρ4: their generic form isτi = Pi/W , wherePi

is a polynomial of degree 8 inρ4 while W is quadratic in this variable. Figure 1
shows the values of the tensionτ1,τ2,τ3 as a function ofρ4 at the pose (25,125,-
300) for a load of 80 kg and a counterweight of 5 kg located at a distance 50 from
the platform together with the values of the tensions for the3-1 robot with wires 1,
2, 3. It may be seen that even for a relatively low counterweight mass the tensions
in the wire 2,3 are substantially lower while the tension in wire 1 increases. We may
consider the problem of determining the value ofρ4 that maximizesH = ∑ j=3

j=1 τ j,
all tensions being negative or equal to 0. The derivative ofH with respect toρ4

is a 14th order polynomial inρ4 and determining its positive roots allows one to
find ρ4 that maximizesH. We have then considered the cases where counterweights
were attached to a single wire at different location or a counterweight was added to
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Fig. 1 The tensions in the wires of a 4-1 robot at the pose (25,125,-300) for a load of 80 kg and
a counterweight of 5 kg on wire 4 located at a distance of 50 fromthe platform are shown as a
function ofρ4. The horizontal dashed lines show the value of the tensions in the wires for the 3-1
robot without wire 4

several wires. Extensive numerical tests confirmed that by adding counterweight(s)
tension in some wires may be significantly reduced but at the cost of a large increase
for the other wires and altogether no improvement forH. Note that, as mentioned
by a reviewer, we may study the the problem by assuming that the platform is a rigid
line MC having 2R3T motion and this will lead to the same equations and results.

In conclusion adding counterweight is a possibility to dealwith specific cases
(e.g. decreasing the tension in one wire so that it can be disconnected) but is not a
solution for overall improvement of the tensions in the wires.

3.3 Attaching wires to wires

The idea here is to have some wires that are not connected toC but to fixed location
on other wires. As an example we will consider a 4-1 robot in which the 4th wire
is attached at pointM1 on wire 1 so that the distance betweenM1 andC when wire
1 is under tension isl1 (figure 2). The unknowns for the IK are the 3 coordinates
of M1 and the 5 tensionsτ1 to τ5. First note that the mechanical equilibrium atM1

imposes thatM1,A1,A4,C are coplanar and that for givenM1,τ1 the tensionsτ4,τ5

may be derived from the mechanical equilibrium. Hence we mayconsider only the
following 6 unknowns: the coordinatesx1,y1,z1 of M1 and the tensionsτ1,τ2,τ3. But
for a givenM1 the equilibrium condition of the load (2) is a linear system in τ1,τ2,τ3

that may be solved independently. Hence we may focus only on the constraints on
M1 i.e. ||M1C|| = l1 and the coplanarity condition betweenM1,A1,A4,C. We end
up with a system of 2 equations in 3 unknowns with one linear equation and one
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Fig. 2 A 4-1 robot with a counterweight attached on wire 4 and a 4-1 robot with wire 4 attached
to wire 1. This robot reaches some pose under the influence of gravity

quadratic equation. Consequently we are able to express alltensionsτ1 to τ5 as
functions of any single variable in the setx1,y1,z1. As we have a free variable we
may choose it to optimize different criterion such as minimizing the sumH of the
force exerted by the motors or minimizing the maximumHmin of the wire tensions.
Note that finding the optimal choice for these criterion is easy: although the tensions
are not algebraic expression of the free variable, the derivatives ofH, Hmin with
respect to this variable are polynomials of degree 12 in the free variable.

As an example we have considered the posex = 110,y = 150,z = −200 with
l1 = 100. If only 3 wires were used the criteriaH was optimal when using wires 1, 2,
4 with a value of 1268.83 and wire tensions 669.85, 132.83, 466.14, while forHmin

the best configuration is obtained when using wires 1, 2, 3 with a criteria value of
498.14 and wire tensions 375.116, 498.14, 413.17. We have then considered the 4-1
redundant case, examining all possible wire configurations. Surprisingly although
we have tested numerous poses it appears thatH is never improved when using
redundancy, although we have not be able to figure out a theoretical explanation.

On the other handHmin has been improved for the test pose with a value of
430.082 with as main wires 1,2,4 and wire 3 attached to wire 4.This corresponds to
a gain of 13.66% compared to the non redundant case. For this pose we have tested
all values ofl1 between 10 and 130 with a step increment of 10 without observing
any significant change inHmin. Finally we have performed 100 test with random
values for the coordinates ofC within the ranges [60,340], [60,340], [-300,-50] and
random values forl1 in the range [10,130]. The mean value for the improvement on
Hmin was 13.27% with a minimum value of 0 and a maximal value of 37.714087%.
Hence attaching wires to other wires seems to be a feasible solution to manage
tension distribution in the wires.

4 Conclusion

Although apparently redundant aN −1 robot withN ≥ 4 does not allow to manage
tension distribution in the wires if they are not elastic. Tension management using
the elasticity of the wires is quite difficult as the positioning of the platform is very
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sensitive to the stiffness of the wires and to wire lengths control. We have then in-
vestigated the use of adding counterweights in the wires, showing that the overall
tension distribution is not improved, although this solution may lead to a decrease in
some tensions. Then we have examined attaching redundant wires to fixed location
on other wires: this simple solution is efficient to decreasethe value of the maxi-
mal tension although the sum of the wire tensions is not improved. Management of
redundancy opens numerous kinematics issues that are worthbeing investigated.

References

[1] Arcara, P., et al.: Perception of depth information by means of a wire-actuated
haptic interface. In: IEEE Int. Conf. on Robotics and Automation, pp. 3443–
3348. San Francisco ( April, 24-28, 2000)

[2] Behzadipour, S., Khajepour, A.: Design of reduced dof parallel cable-based
robots. Mechanism and Machine Theory39(10), 1051–1065 ( October 2004)

[3] Bennour, S., Harshe, M., Romdhane, L., Merlet, J.P.: A robotic application
for analysis and control of human motion. In: 4eme Congrès International
Conception et Mod́elisation des Systèmes Ḿecaniques CMSM. Sousse ( May
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