Managing the redundancy of N-1 wire-driven
parallel robots
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Abstract We consider wire-driven parallel robot with > 4 wires that are con-
nected at the same point on the platform. Such robot has 8 but.it is non re-

dundant (e.g. we cannot control the tension in the wiresharetwill always be
only at most 3 wires under tension simultaneously. We cemsidthis paper three
approaches that make this robot really redundant: elfsiticihe wires, using coun-
terweights in the wires or attaching the redundant wiresfieea point on the other
wires. We show that these methods may be effective butatjliire further studies.
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1 TheN—1wiredriven parallel robot

A wire-driven parallel robot has the same mechanical strecas a parallel robot
with rigid extensible legs but the linear actuators are sulted by wires that can
be coiled and uncoiled. Such robot has the advantages af be#chanically sim-
ple and to allow for large workspace (the leg length variaibeing much larger
than with rigid legs). Their main drawback is that wire canpdled but cannot
be pushed: hence kinematics cannot be decoupled fromsstasipecially for robot
having less than 6 d.o.f., and this added complexity explainy the kinematics of
such robot is still an open issue [5]. A large number of po&tmpplications has
led to a renewal of interest for wire-driven parallel robfis example for rescue
crane [2, 9, 11], assistance robots and rehabilitation{Bjpptic devices [1, 6].

In this paper we are considering a special class of wireedriparallel robot,
called theN — 1 robot, in which theN wires are all connected at the same p@nt
on the platform. IfN > 3, then the robot has 3 d.o.f., namely it allows to control the
position ofC but not the orientation of the platform. As soonM$> 4 such robot
is calledredundant, whatever the definition of redundancy is [7, 10]. Redundant
robot will be the topic of this paper, starting by an examrabf the reality of this
redundancy.
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2 IstheN — 1 robot redundant?

Using more than 3 non-elastic wires folNa— 1 robot is a natural idea to improve
the performances of this robot. Let us denoteMpyhe fixed output points of the
wires on the base and consider the workspace of this robatwbithe volumé/,
spanned by moving the convex hull of tAgs along the downward vertical (with an
upper limit which is the base plane and a lower limit deteediby the maximal
wire lengths). Hence adding a wire allows one to increaseavtitkspace volume as
soon as the addedl is not located within the convex hull of the previods.

It may also be sought that having redundant wire(s) allowes toncontrol the
tension distribution in the wires [4] and hence to improve ¢larrying capacity of
the robot. Unfortunately we have shown both theoreticafig axperimentally in
our ICRA paper from 2012 that this is not true if the wires aseelasticwhatever
the number of wiresis, at a given pose there will always be at most 3 wires
under tension while the other wires will be slack. Without going into the proof
let us explain intuitively this result. Consider a 3-1 roliofa poseCs that lies in
its Ve: the mechanical equilibrium &3 is satisfied and the tension in the 3 wires
are uniquely determined. If we add a 4th wire its length igjuely determined as
the distance betweely andCs. A wire system allows one to control either the wire
length or the wire tension (but not both). Hence:

¢ if we impose the length, then the mechanical equilibriunt beél satisfied with a
0 tension in the 4th wire

¢ if we impose a tension (i.e. the wire length is smaller thandistance between
A4,Cg3), thenC will move in a location different fronCs

Being unable to control the tensions in the wires is a disating result because
this is typically one of the most obvious advantage of reduncg. We will propose
in the next sections different ways to exploit the avaii@pibf additional wires for

tension management while preserving the pose of the pitatfor

3 Tension management

3.1 Elastic wires

As mentioned previously a drawback of non-elastic wirefié tension control is
difficult. This may be changed if we assume elasticity in thieesy Lett; be the
tension in wirei, l; its length at rest angy its length when under tension. If we
assume that the wire is a perfect linear spring we have

T =k(pi — i) (1)

wherek is the stiffness of the wire (assumed to be identical for &é&s). Consider
now a 3-1 robot submitted to a load of masand having all 3 wires connected at the
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center of mass of the load. The robot is submitted to a pucef@r = (0,0, —mg)T
and the tensiom in the wires may be calculated as

=17 2)

whereJT is the transpose of the jacobian matrix of the robot. For tirerise kine-
matics (IK) the coordinates y,z of C are known, which allows one to calculaté
and therp; as the distance betwe@n C. Using equation (2) we may then determine
the 1. The control length of the wire may thus be calculated as

-
h:m—i

But there are sources of uncertainties in the modelind, @ml;, on the location of
the A; and due to the fact that the wires are not exactly attachdueatdme point
on the platform. We will focus on the influence of the unceritaés onk andl;,
assuming that thd; have been calibrated while the influence of the colocatidhef
wire attachment points will be addressed in another papesrttherefore necessary
to investigate what is the influence of the stiffness on theepaf the robot for a
given control input. We have thus solved the forward kineécsafFK) problem i.e.
determine what are the possible coordinate€ &r givenl;s. Equation (2) allows
one to calculate as functions of the coordinates©fwhile equation (1) has now as
unknownsx,y, z, pi. The geometrical IK of the robot provides an additional e

p? =||AC|? 3)

Equation (1) is linear irp; and the result is reported in equation (3) to get a con-
straint equation irx,y,z. Repeating this process for all 3 wires leads to 3 constraint
equations. Using resultant on these equations allows fressive elimination of
X, ¥, leading to an univariate polynomial m This polynomial may be factored out
as the product of 2 polynomials of degree 22, 34. Note thatdpproach is less
efficient than the one proposed by Dietmaier [8] but has tvartdge of providing
directly thex,y,z. With this tool we may investigate the influence of uncetiam
onk andl; on the positioning.

As an example we consider the 3-1 wires robot with anchortpsin= (0,0,0),
Az =(0,400,0), Az = (400,0,0). The wire control values are givenlas=200,1, =
350 13 =300 which leads to the poge= 137.5,y = 96.875,z= —108208 for wires
without elasticity. To take into account the uncertaintytbe controll; and on the
stiffnessk we have considered a possiti@ error on theé; and a+0.1k error on the
k. We have then solved the FK for a random sampling of 1000 $&t$ within these
ranges. For a nominal value kf= 100 we have found that the variations xy,z
were in the ranges [-3.86,2.7], [-3.24,3.93], [-5.16,3.While thet variations were
[-15.49,14.23], [26.9,28.96], [-26.11,24.18]. For a noailivalue ofk = 3000 we
found out that the variations oqy, zwere in the ranges [-3.64,3.63], [-4.3,3.47], [-
6.32,6.14], while thea variations were [-20.58,19.46], [-40.1,36.2], [-44.24.30].
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Hence even small uncertainties on the values of thiead to significant positioning
errors for the robot.

We consider now a 4-1 robot with the purpose of using the rédocy to ad-
just the wire tension e.g. to minimize the criteHa= z}j 17. Using equation (2)
one can obtain three wire tensions as a linear function ofe¢h®ining one. With-
out lack of exhaustivity we may calculate, 1374 as a function off;. H is then a
quadratic function irry and it is therefore trivial to determing that leads to the
minimum ofH. For the IK, being given the pose of the load, thand equation (1)
we may determine the folis. To determine the influence on the positioning of the
uncertainties ok and onl;s we have to solve the FK problem.

In the FK problem thd;’s are given and we have to determine the pose of the
load. For that purpose we note that the first equation of (bal to determine
11 as function ofps, while equation (2) is used to determimg 13, 74. The three
remaining equations of (1) are then linearxyy,z. After solving this system we
report the result in the IK equations (3) after subtractimg equation for wire 1 to
the equations for wire 2, 3, 4. Together with (3) for wire 1shequations constitutes
a system of 4 equations in the unknowmsp,, ps, p4. One of this equation is linear
in p4 and is solved for this variable. The 3 remaining equatiorsoteda; , az, as,
are of degree (6,6,2), (3,3,3), (9,9,3)dn p2, ps. The four equationay, psas, az, a3
are linear in the monomials, ﬂz3,p§,p§ and hence the determinant of the matrix
of this linear system should be 0, which leads to a polynor#alof degree 15 in
p1, p2. Taking the resultant odiy,ap in p3 leads to a polynomial?, of degree 18
in p1, p2. The resultant of??;, &7, factors out in 2 polynomials of degree 76 and
96 in p;. Although this complete the theoretical solution, the degyf the involved
polynomial is too high to be used in practice and consequemt! have to resort
to a numerical procedure. For that purpose we solve therlisgstem (2) to get
T, T3, T4 as function ofry. Then the first equation of (1) is used to determipas a
function of p;. The three remaining equations of (1) together with the |datipns
(3) constitute a system of 7 equations in the 7 unknowgs, p1, p2, P3, P4- As all
unknowns may easily be bounded we have used an intervalsmagproach to
solve this system, all solutions being found in less thansaoend.

We have considered the 4-1 robot derived from the previolib@-adding a 4th
wire whose exit point on the baseAg = (400,400,0). We have then used the IK to
determine what should be theto reach the pose= 100y = 200,z= —200 while
minimizing z}j Ti2 for k=1000. The nominal values were determinedhas |, =
299558,13 =14 = 4121083 which leads ta; = 17, = 44145, 13 = 14 = 202238.
Using the FK with these values of the leads also to solutions in which only 3
wires are under tension, namely wires (1,2,3) or (1,2,4h lsases leading to the
same pose of the load with= 99.6834,y = 2002192,z= —2001581. It should be
noted that already elasticity does not allow for precisatjppsng as we are unable
to determine the final pose of the platform for given contnpiits.

We have then assumed similar errors on lheand onk than in the previous
example and have computed the FK solutions for 1000 setk kif ¢hosen ran-
domly. We found out that the variations &y, zwere in the ranges [-7.532, 4.579],
[-6.868, 5.75], [-7.6, 2.875] for a nominal value k= 100 and [-5.488, 4.7948],
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[-4.79, 4.262],[-5.1429, 4.247] fdt = 1000. Over the test set the mean values of
the 1j’s for k = 1000 were 467.606, 463.06, 278.35, 256.35 with a variatfdr o
192, 133.86], [-187.45, 138.09], [-274.185, 146.07], L 2%, 168.745]. Here again
we observe significant positioning errors and very largenghén the tensions. As

a conclusion adding elasticity in the wires for managingurethncy will require a
very good wire length control together with a perfect seffm calibration.

3.2 Using counterweights

The principle here is to attach known weight(s) on some w)refose to the plat-
form in order not to disturb the coiling of the wires. The posp of the counter-
weight is to change the direction of the tension(s) appliedhe platform in order
to possibly control the value of the wire tensions (in thistem a wire is under
tension if itst is negative).

Consider for example a 4-1 robot with a counterweight of nrag®n wire 4
located at poinM at a distancel of C (figure 2). For a given pose @ we are able
to calculate the values @h, p2, p3. Wire 4 exerts on the platform a forag, that is
directed alongVI C while it exerts a forca,4 on the counterweight that is directed
alongA4M. The mechanical equilibrium of the platform may be written a

=3
> TjAC/pj +114MC/d +(0,0,—mg)" =0 4)
=1

The mechanical equilibrium of the counterweight may betemitas:
—T14MC/d+ T24A4M /(2 — d) + (0,0, —mg)" =0 (5)

A direct consequence of equations (5) is thatnust lie in the vertical plane that
includesA4,C. This constraint, together with the equatioMdC||> = d?, ||[MA4| |2 =

(ps — d)?, allows one to determine the unique locationMdfas a function of;.
Substituting the values of the coordinatedvbinto equations (4, 5) leads to a linear
system of 5 equations in the unknowns 1z, 73, T14, T24. Hence the wire tensions
may be established as functions mf. their generic form ist; = B /W, whereR

is a polynomial of degree 8 ip; while W is quadratic in this variable. Figure 1
shows the values of the tensiag 12, 73 as a function ofo, at the pose (25,125,-
300) for a load of 80 kg and a counterweight of 5 kg located astadce 50 from
the platform together with the values of the tensions fordHerobot with wires 1,

2, 3. It may be seen that even for a relatively low counterivieigass the tensions
in the wire 2,3 are substantially lower while the tension irenl increases. We may
consider the problem of determining the valuepgfthat maximizeH = z}j Tj,

all tensions being negative or equal to 0. The derivativéofiith respect top,

is a 14th order polynomial ips and determining its positive roots allows one to
find p4 that maximizedd. We have then considered the cases where counterweights
were attached to a single wire at different location or a temeight was added to
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Fig. 1 The tensions in the wires of a 4-1 robot at the pose (25,125,f80@ load of 80 kg and
a counterweight of 5 kg on wire 4 located at a distance of 50 filoenplatform are shown as a
function of p4. The horizontal dashed lines show the value of the tension®iwites for the 3-1
robot without wire 4

several wires. Extensive numerical tests confirmed thatolyng counterweight(s)
tension in some wires may be significantly reduced but atékseaf a large increase
for the other wires and altogether no improvementHorNote that, as mentioned
by a reviewer, we may study the the problem by assuming teailttform is a rigid
line MC having 2R3T motion and this will lead to the same equatiombsrasaults.

In conclusion adding counterweight is a possibility to deih specific cases
(e.g. decreasing the tension in one wire so that it can bewulisrted) but is not a
solution for overall improvement of the tensions in the wire

3.3 Attaching wiresto wires

The idea here is to have some wires that are not connec@8uoto fixed location
on other wires. As an example we will consider a 4-1 robot inciWwhhe 4th wire
is attached at poiril; on wire 1 so that the distance betwedn andC when wire
1 is under tension if (figure 2). The unknowns for the IK are the 3 coordinates
of Mz and the 5 tensionsg, to 1s. First note that the mechanical equilibriumhat
imposes thaM;, Ay, A4,C are coplanar and that for givéviy, 11 the tensiongy, 15
may be derived from the mechanical equilibrium. Hence we oumsider only the
following 6 unknowns: the coordinates, y;,z of M1 and the tensiong, 7», 73. But
for a givenM1 the equilibrium condition of the load (2) is a linear systenmi, To, T3
that may be solved independently. Hence we may focus onlh@wanstraints on
M; i.e. |[M1C|| = I1 and the coplanarity condition betwedh, A, A4,C. We end
up with a system of 2 equations in 3 unknowns with one linearaégn and one
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Fig. 2 A 4-1 robot with a counterweight attached on wire 4 and a 4bbtevith wire 4 attached
to wire 1. This robot reaches some pose under the influence afygrav

quadratic equation. Consequently we are able to expredsraionst; to 15 as
functions of any single variable in the satyi,z;. As we have a free variable we
may choose it to optimize different criterion such as mizimg the sunH of the
force exerted by the motors or minimizing the maximbim, of the wire tensions.
Note that finding the optimal choice for these criterion isyealthough the tensions
are not algebraic expression of the free variable, the agévas ofH, Hyin with
respect to this variable are polynomials of degree 12 inrie Yariable.

As an example we have considered the posel110y = 150 z = —200 with
1 =100. If only 3 wires were used the critetibwas optimal when using wires 1, 2,
4 with a value of 1268.83 and wire tensions 669.85, 132.88,14% while forHp;n
the best configuration is obtained when using wires 1, 2, B witriteria value of
498.14 and wire tensions 375.116, 498.14, 413.17. We havecitnsidered the 4-1
redundant case, examining all possible wire configuratiSusprisingly although
we have tested numerous poses it appearsHhit never improved when using
redundancy, although we have not be able to figure out a ttiealrexplanation.

On the other handHy, has been improved for the test pose with a value of
430.082 with as main wires 1,2,4 and wire 3 attached to wifiehis corresponds to
a gain of 13.66% compared to the non redundant case. Fordbéswe have tested
all values ofl; between 10 and 130 with a step increment of 10 without ohsgrvi
any significant change iklyin. Finally we have performed 100 test with random
values for the coordinates Gfwithin the ranges [60,340], [60,340], [-300,-50] and
random values folp in the range [10,130]. The mean value for the improvement on
Hmin was 13.27% with a minimum value of 0 and a maximal value of B¥0B7%.
Hence attaching wires to other wires seems to be a feasihidsoto manage
tension distribution in the wires.

4 Conclusion

Although apparently redundanf\a— 1 robot withN > 4 does not allow to manage
tension distribution in the wires if they are not elasticn3i®n management using
the elasticity of the wires is quite difficult as the posifiogn of the platform is very
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sensitive to the stiffness of the wires and to wire lengthgtrmd. We have then in-
vestigated the use of adding counterweights in the wiresysty that the overall
tension distribution is not improved, although this salntmay lead to a decrease in
some tensions. Then we have examined attaching redundiaas twifixed location
on other wires: this simple solution is efficient to decretimevalue of the maxi-
mal tension although the sum of the wire tensions is not ingnioManagement of
redundancy opens numerous kinematics issues that are e investigated.
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