Introduction to Robotics
J-P. Merlet
INRIA, COPRIN project team
COPRIN project team
COPRIN project team

A team involved in the development of

- analysis and modeling of robots
- management of uncertainties in robotics
- design methodology for mechanisms
COPRIN project team
A team involved in the development of

- parallel robot
- assistance robotics
Robots
Robots

What is a robot ?
Robots

What is a robot?

• No clear definition
Robots

What is a robot?

- No clear definition
- **etymology:** *robota* in Czech → labor slave
Robots

What is a robot?

Historically an instrument of the gods and kings.
Robots

What is a robot?

For the Greek and Roman entertainment machinery
Robots

What is a robot?

During the French Revolution: *automata*
Robots

What is a robot?

In the 60’s a science-fiction concept
Robots

What is a robot?

In the late 60’s industry is looking for machines that are able to produce controlled repetitive motion 24/24.
Robots

What is a robot?

In the late 60's industry is looking for machines that are able to produce controlled repetitive motion 24/24

• to pick and place objects
• to perform assembly tasks
• for grinding and deburring operations
• ...
Robots

What is a robot?

In the late 60’s industry is looking for machines that are able to produce controlled repetitive motion 24/24 they design the first robot manipulator
Robots

Nowadays robots are able to perform other tasks than *industrial manipulation*

- navigation
- medical: surgery, assistance
- spatial exploration
- simulator
- domestic tasks
- ...
Robots
The components of a robot
The components of a robot

- a collection of links (rigid bodies)
The components of a robot

- a collection of **links** (rigid bodies)
 - the **end-effector**: the link that has to perform the motion
 - the **base**: the link of the robot that is connected to the ground
The components of a robot

- a collection of **links** (rigid bodies)
- that are connected to each other by **joints** that allow motion(s) between the links
The components of a robot

Motion(s) of a rigid body

- a rigid body may \textit{translate} in 3 directions
- a rigid body may \textit{rotate} around these 3 directions
The components of a robot

Motion(s) of a rigid body

They are the 6 degrees of freedom (dof) of the body
The components of a robot

A joint will allow some dof between the links it connects.
The components of a robot

A joint will allow some dof between the links it connects. Typically

- 1 dof: a rotation around a fixed axis (revolute joint)
The components of a robot

A joint will allow some dof between the links it connects. Typically

- 1 dof: a rotation around a fixed axis (revolute joint)
- 1 dof: a translation along a fixed axis (prismatic joint)
The components of a robot

A joint will allow some dof between the links it connects.
But there are joint that allows more dof:

- 3 dof: ball and socket, 3 rotations around a fixed point.
The components of a robot

A joint may be:

- **passive**: the link may move freely along the dof of the joint
The components of a robot

A joint may be:

- **passive**: the link may move freely along the dof of the joint

There are numerous type of passive joints and they are very important for robotics

⇒ Tuesday afternoon, T. Gayral
The components of a robot

A **joint** may be:

- **passive**: the link may move freely along the dof of the joint
- **actuated**: an **actuator** imposes motion of the dof of the joint
The components of a robot

A joint may be:

- **passive**: the link may move freely along the dof of the joint
- **actuated**: an actuator imposes motion of the dof of the joint
 - **rotary motor** for revolute joints
 - **linear motor** for prismatic joints
The components of a robot
dof a robot: may be

• the number of dof of the end-effector that can be controlled by the robot

• the number of independent actuators
The components of a robot

• a collection of **links** (rigid bodies)
• that are connected to each other by **joints**
• **actuators** that move the actuated joints
The components of a robot

- a collection of **links** (rigid bodies)
- that are connected to each other by **joints**
- **actuators** that move the actuated joints
- **sensors** that measure the motion of the actuated joints
Mechanical architecture
Mechanical architecture
The way the links and joints are assembled to produce the motion of the end-effector
Mechanical architecture
The way the links and joints are assembled to produce the motion of the end-effector

For manipulators
Mechanical architecture
The way the links and joints are assembled to produce the motion of the end-effector

For *manipulators*

- **serial structure**: a serie of link-joint/link-joint
Mechanical architecture
The way the links and joints are assembled to produce the motion of the end-effector

For *manipulators*

- **serial structure**: a series of link-joint/link-joint
- **parallel structure**: several independent chains connect the base to the end-effector
Mechanical architecture
A special case of parallel robot: **parallel wire-driven robot**: link are extensible wires
The robotics variables
The robotics variables

To define the pose of a rigid body you need:

- to define a reference frame \((O, x, y, z)\)
The robotics variables

To define the pose of a rigid body you need:

- to define a reference frame \((O, x, y, z)\)
- to choose a point \(C\) on the body
The robotics variables

To define the pose of a rigid body you need:

- to define a reference frame \((O, x, y, z)\)
- to choose a point \(C\) on the body

the coordinates of \(C\) in the reference frame allows to define the **position** of the body
The robotics variables

To define the pose of a rigid body you need:

- to define a mobile frame \((C, x_m, y_m, z_m)\) that is rigidly attached to the body
The robotics variables

To define the pose of a rigid body you need:

- to define a mobile frame \((C, x_m, y_m, z_m)\) that is rigidly attached to the body
- to define a rotation matrix \(R\) such that \(v = Rv_m\)
The robotics variables

Rotation matrix:

- a 3×3 orthogonal matrix:

$$ \mathbf{R}^T \mathbf{R} = I_3 \quad \| \mathbf{R}_i \| = 1 \quad \mathbf{R}_i \cdot \mathbf{R}_j = 0 $$
The robotics variables

Rotation matrix:

- a 3×3 orthogonal matrix:
- although a rotation matrix has 9 components its special properties allows to obtain it with a minimum of 3 parameters
The robotics variables

For example the Euler angles ψ, θ, ϕ
The robotics variables

For example the **Euler angles** \(\psi, \theta, \phi \)

\[
R = \begin{pmatrix}
\cos \psi \cos \phi - \sin \psi \cos \theta \sin \phi & - \cos \psi \sin \phi - \sin \psi \cos \theta \cos \phi & \sin \psi \sin \theta \\
\sin \psi \cos \phi + \cos \psi \cos \theta \sin \phi & - \sin \psi \sin \phi + \cos \psi \cos \theta \cos \phi & - \cos \psi \sin \theta \\
\sin \theta \sin \phi & \sin \theta \cos \phi & \cos \theta
\end{pmatrix}
\]
The robotics variables

To define the pose of a rigid body you need:

- to define a mobile frame \((C, x_m, y_m, z_m)\) that is rigidly attached to the body
- to define a rotation matrix \(\mathcal{R}\) such that \(v = \mathcal{R}v_m\)

The parameters of the rotation matrix allows to define the orientation of the rigid body
The robotics variables

To define the pose of a rigid body you need:

- 3 parameters for the translation
- at least 3 parameters for the orientation
The robotics variables

Variables for a robot:
The robotics variables

Variables for a robot:

- x: the parameters that define the pose of the end-effector, generalized cartesian coordinates
The robotics variables

Variables for a robot:

- x: the parameters that define the pose of the end-effector, \textit{generalized cartesian coordinates}
- they are what you \textit{want to control}
The robotics variables

Variables for a robot:

- x: the parameters that define the pose of the end-effector, **generalized cartesian coordinates**
 - they are what you **want to control**
 - but what you are able to **effectively control** is the actuators
The robotics variables

Variables for a robot:

• x: the parameters that define the pose of the end-effector, generalized cartesian coordinates

• Θ: the parameters of the actuator, the joint variables
The robotics variables

Variables for a robot:

• \(x \): the parameters that define the pose of the end-effector, \textit{generalized cartesian coordinates}

• \(\Theta \): the parameters of the actuator, the \textit{joint variables}
• to reach a given value for a joint variable you may use \textit{open loop control}: \textit{very approximate control}
The robotics variables

Variables for a robot:

- \mathbf{x}: the parameters that define the pose of the end-effector, generalized cartesian coordinates
- Θ: the parameters of the actuator, the joint variables
 - to reach a given value for a joint variable you may use open loop control: very approximate control
 - closed-loop control: you use the sensors to measure the value of the joint parameters and you have a control scheme that allows to reach the desired value: accurate control but not perfect
The robotics variables

Variables for a robot:

- \(x \): the parameters that define the pose of the end-effector, \textit{generalized cartesian coordinates}
- \(\Theta \): the parameters of the actuator, the \textit{joint variables}
- \(\Theta_m \): the \textit{measured joint variables}
The robotics variables

Variables for a robot: you may also be interested in the velocity

- \dot{X}: the translation and angular velocity of the end-effector, generalized velocities
- Θ: the joint velocities
- Θ_m: the measured joint velocities
The robotics variables

Variables for a robot: you may also be interested in the force/torques

- \(F \): the forces/torques exerted by the end-effector
- \(\tau \): the joint forces/torques
The robotics variables

Generally speaking you are interested in

• controlling the parameters in the end-effector space
The robotics variables

Generally speaking you are interested in

• controlling the parameters in the **end-effector** space

• **but** by applying a control in the **joint** space
The robotics variables

Generally speaking you are interested in

- controlling the parameters in the end-effector space
- but by applying a control in the joint space

Hence you have to establish the relations between these 2 spaces
The robotics variables

Generally speaking you are interested in

- controlling the parameters in the end-effector space
- but by applying a control in the joint space

Hence you have to establish the relations between these 2 spaces

This is the purpose of **Modeling**:

Monday 2-5 pm, Y. Papegay
Modeling example: Kinematics
Modeling example: Kinematics

Kinematics: the relations between X and Θ
Modeling example: Kinematics

Kinematics: the relations between X and Θ

- **inverse kinematics**: $X \rightarrow \Theta$
Modeling example: Kinematics

Kinematics: the relations between X and Θ

- **inverse kinematics**: $X \rightarrow \text{Theta}$
- **direct kinematics**: $\Theta_m \rightarrow X$
Modeling example: Kinematics

A very simple example: 1 dof planar arm

Objective: starting from the current pose of the robot X_1 grasp the object located at X_2
Modeling example: Kinematics

in the reference frame \(\mathbf{X} = (x,y) \)

direct kinematics

\[
x = l \cos \theta \quad y = \sin \theta
\]
Modeling example: Kinematics

in the reference frame \(X = (x, y) \)

direct kinematics

\[
x = l \cos \theta \quad y = \sin \theta
\]

inverse kinematics

\[
\theta = \arctan(y/x)
\]
Modeling example: Kinematics

- use the sensors to obtain θ_1
- use the inverse kinematics to determine θ_2
Modeling example: Kinematics

- use the sensors to obtain θ_1
- use the inverse kinematics to determine θ_2

Typical control law: proportional
Modeling example: Kinematics

• use the sensors to obtain θ_1
• use the inverse kinematics to determine θ_2

Typical control law: proportional, the order θ_c (voltage, current) send to the motor at each sampling time is

$$\theta_c = K_p(\theta_2 - \theta_m)$$

where K_p is a constant gain that has to be determined, not too large, not too low
Modeling example: Kinematics

\[\theta_c = K_p(\theta_2 - \theta_m) \]

Drawback:

- when \(\theta_m \) become close to \(\theta_2 \), then \(\theta_c \approx 0 \): static error, the end-effector does not reach \(X_2 \)
Modeling example: Kinematics

Solution: proportional-integral control

\[\theta_c = K_p(\theta_2 - \theta_m) + K_i \int (\theta_2 - \theta_m) \]
Modeling example: Kinematics

\[\theta_c = K_p (\theta_2 - \theta_m) + K_i \int (\theta_2 - \theta_m) \]

Still a drawback: at the start if \(\theta_1 \) is far from \(\theta_2 \) the robot may move very quickly and we may overshoot \(\theta_2 \)
Modeling example: Kinematics

\[\theta_c = K_p(\theta_2 - \theta_m) + K_i \int (\theta_2 - \theta_m) \]

Solution: add a derivative term that limits the initial acceleration of the robot

\[\theta_c = K_p(\theta_2 - \theta_m) + K_i \int (\theta_2 - \theta_m) - K_d \dot{\theta} \]
Modeling example: Kinematics

Note: in this example the inverse and direct kinematics are very simple. This is not always the case

• for serial structure: inverse kinematics is complex, direct kinematics is simple

• for parallel structure: inverse kinematics is simple, direct kinematics is complex

• there may be multiple solutions for both the inverse and direct kinematics
Modeling example: Kinematics

Note: in this example the inverse and direct kinematics are very simple. This is not always the case

- for *serial structure*: inverse kinematics is **complex**, direct kinematics is **simple**
- for *parallel structure*: inverse kinematics is **simple**, direct kinematics is **complex**
- there may **multiple solutions** for both the inverse and direct kinematics

Kinematics requires sophisticated solving methods for non linear system of equations
Modeling example: Kinematics

Associated problems:
Modeling example: Kinematics

Associated problems:

- control assumes a perfect knowledge of l
Modeling example: Kinematics

Associated problems:

• control assumes a perfect knowledge of l

the initial knowledge of l may be improved by calibration
Modeling example: Kinematics

Associated problems:

• control assumes a perfect knowledge of l

the initial knowledge of l may be improved by calibration

Here for example we may use an external measurement

mean that locate the end-effector
Modeling example: Kinematics

Associated problems:

- control assumes a perfect knowledge of l
- the initial knowledge of l may be improved by calibration

Here for example we may use an external measurement.

- measure the end-effector location for various θ
- least-square estimation of l
Modeling example: Kinematics

Associated problems:

- control assumes a perfect knowledge of \(l \)

calibration: Tuesday 9-12 am, D. Daney
Modeling example: Kinematics

Associated problems:

• control assumes a perfect knowledge of l
• control assumes a perfect knowledge of X_2
Modeling example: Kinematics

Associated problems:

• control assumes a perfect knowledge of l
• control assumes a perfect knowledge of X_2

External mean may measure the real location of the object

Visual servoing: Wednesday 9-12am, R. Ramadour
Uncertainties
Uncertainties

A robot is a mechatronic system for which uncertainties are unavoidable.
Uncertainties

A robot is a mechatronic system for which uncertainties are unavoidable

• in the modeling: the value of l in the previous example, in spite of the calibration
Uncertainties

A robot is a mechatronic system for which uncertainties are unavoidable

- in the **modeling**: the value of l in the previous example, in spite of the calibration
- in the **environment**: the location of X_2
Uncertainties

A robot is a mechatronic system for which uncertainties are unavoidable

- in the modeling: the value of l in the previous example, in spite of the calibration
- in the environment: the location of X_2
- in the measurement: the value of Θ_m
Uncertainties

These uncertainties leads to several problems
Uncertainties

These uncertainties leads to several problems

• what are the effects of the modeling and sensing on the performances of the robot: the analysis problem
Uncertainties

These uncertainties leads to several problems

- what are the effects of the modeling and sensing on the performances of the robot: the analysis problem
- what are the values of the modeling parameters that minimize these effects: the synthesis problem
Uncertainties

We have seen that

\[x = l \cos \theta \quad y = \sin \theta \]
Uncertainties

We have seen that

\[x = l \cos \theta \quad y = \sin \theta \]

Hence for small errors on \(\theta_m \) we have

\[\Delta x = -l \sin \theta \Delta \theta \]
\[\Delta y = l \cos \theta \Delta \theta \]
Uncertainties

Hence for small errors on θ_m we have

$$\Delta x = -l \sin \theta \Delta \theta$$
$$\Delta y = l \cos \theta \Delta \theta$$

or in matrix form

$$\Delta \mathbf{X} = \begin{pmatrix} -l \sin \theta \\ l \cos \theta \end{pmatrix} \Delta \theta$$
Uncertainties

In general for a robotics system we have

\[\Delta X = J(X, \Theta) \Delta \theta \]
\[\Delta \theta = J^{-1}(X, \Theta) \Delta X \]

and \(J \) is called the Jacobian matrix of the robot
Uncertainties

In general for a robotics system we have

$$\Delta X = J(X, \Theta)\Delta \theta \quad \Delta \theta = J^{-1}(X, \Theta)\Delta X$$

and J is called the Jacobian matrix of the robot

- as soon as the number of dof become large only one of the matrices J, J^{-1} is known in symbolic form, while the other is not
Uncertainties

In general for a robotics system we have

\[\Delta X = J(X, \Theta) \Delta \theta \quad \Delta \theta = J^{-1}(X, \Theta) \Delta X \]

and \(J \) is called the \textbf{Jacobian matrix} of the robot

- as soon as the number of dof become large only one of the matrices \(J \), \(J^{-1} \) is known in symbolic form, while the other is not
- these matrices are pose dependent
Uncertainties

In general for a robotics system we have

\[\Delta X = J(X, \Theta) \Delta \theta \quad \Delta \theta = J^{-1}(X, \Theta) \Delta X \]

- \(|J^{-1}| = 0\): even if \(\Delta \theta = 0\) we have \(\Delta X \neq 0\) (singularity)
- \(|J| = 0\): even if \(\Delta X = 0\) we have \(\Delta \theta \neq 0\) (singularity)
Uncertainties

Managing uncertainties is *important* (imagine you are at the wrong end of a surgical robot!)

Thursday: 9-12 am, O. Pourtallier
Interval analysis
Interval analysis

There is another source of uncertainty that we have not yet mentioned . . .
Interval analysis

There is another source of uncertainty that we have not yet mentioned . . .
Interval analysis

A computer knows only a limited set of real numbers
Interval analysis

A computer knows only a **limited set** of real numbers

For example

- a computer does not know the number 0.1
Interval analysis

A computer knows only a limited set of real numbers

For example

• a computer does not know the number 0.1

• the closest number to 0.1 it knows are

 • 0.099999994039536,

 • 0.100000008940697
Interval analysis

A computer knows only a limited set of real numbers.

A consequence is that a computer may calculate wrongly and sometimes by a very large amount: numerical round-off errors.
Interval analysis

To manage this uncertainty we may use interval analysis.
Interval analysis

To manage this uncertainty we may use **interval analysis**. Basically instead of computing with **numbers** that are **wrong**, we calculate with **intervals** that are guaranteed to include the **exact value**.
Interval analysis

We may perform with intervals the same calculation than with numbers.

For example if we have two intervals \(X = [a, b], Y = [u, v] \) then

\[
Z = X + Y = [a + u, b + v]
\]

- interval operators may be implemented so that numerical round-off errors are managed.
- hence the interval \(Z \) is guaranteed to include the exact result of the addition of \(X, Y \).
Interval analysis

There is no free lunch!. Hence we may have to pay for this guarantee.

Example: let $X = [-1, 2]$ and let us compute $X - X$

- $[-1, 2] - [-1, 2] = [-1, 2] + [-2, 1] = [-3, 3]$

Hence

$$X - X \neq 0$$
Interval analysis

Example: \(F = x^2 + \cos(x), \ x \in [0, 1] \)

Problem: find \([A, B]\) such that: \(A \leq F(x) \leq B \ \forall \ x \in [0, 1] \)
Interval analysis

\[F = [0, 1]^2 + \cos([0, 1]) \]
Interval analysis

\[F = [0, 1]^2 + \cos([0, 1]) \]
Interval analysis

\[F = [0, 1]^2 + \cos([0, 1]) = [0, 1] + \cos([0, 1]) \]
Interval analysis

\[F = [0, 1]^2 + \cos([0, 1]) = [0, 1] + \cos([0, 1]) \]
Interval analysis

\[F = [0, 1]^2 + \cos([0, 1]) = [0, 1] + [0.54, 1] \]
Interval analysis

\[F = [0, 1]^2 + \cos([0, 1]) = [0, 1] + [0.54, 1] \]
Interval analysis

\[F = [0, 1]^2 + \cos([0, 1]) = [0, 1] + [0.54, 1] = [0.54, 2] \]
Interval analysis

\[F = [0, 1]^2 + \cos([0, 1]) = [0,1]+[0.54,1] = [0.54, 2] \]

- 0 not included in [0.54,2] \(\Rightarrow \) \(F \neq 0 \ \forall \ x \in [0, 1] \)
Interval analysis

\[F = [0, 1]^2 + \cos([0, 1]) = [0,1]+[0.54,1] = [0.54, 2] \]

- 0 not included in [0.54,2] \(\Rightarrow \) \(F \neq 0 \ \forall \ x \in [0, 1] \)
- \(F > 0 \ \forall \ x \in [0, 1] \)
- \(\forall \ x \in [0, 1] \) we have \(0.54 \leq F \leq 2 \) (global optimization)
Another kinematic example
Another kinematic example

2 degrees of freedom planar robot:

- end-effector position defined by x, y
- joint variables: θ_1, θ_2
Another kinematic example

\[x = l_1 \cos \theta_1 + l_2 \cos(\theta_2 - \theta_1) \]
\[y = l_1 \sin \theta_1 + l_2 \sin(\theta_2 - \theta_1) \]
Another kinematic example

Hence

\[
\begin{pmatrix}
\Delta x \\
\Delta y
\end{pmatrix} =
\begin{pmatrix}
l_1 \sin \theta_1 - l \sin(\theta_1 - \theta_2) & l_2 \sin(\theta_1 - \theta_2) \\
l_1 \cos \theta_1 - l_2 \cos(\theta_1 - \theta_2) & l_2 \cos(\theta_1 - \theta_2)
\end{pmatrix}
\begin{pmatrix}
\Delta \theta_1 \\
\Delta \theta_2
\end{pmatrix}
\]
A more complex kinematic example
A more complex kinematic example

A planar wire-driven parallel robot with 2 wires
A more complex kinematic example

- the platform has 3 dof: \(x_G, y_G, \theta \)
- we control only two joint variables \(\rho_1, \rho_2 \)
inverse kinematics: if we give x_G, y_G, θ, then the wire lengths are easy to calculate
A more complex kinematic example

inverse kinematics: if we give x_G, y_G, θ, then the wire lengths are easy to calculate

But will the robot moves to the desired position?
A more complex kinematic example

direct kinematics:

- we know ρ_1, ρ_2
- determine x_G, y_G, θ
A more complex kinematic example

direct kinematics:

• we know ρ_1, ρ_2
• determine x_G, y_G, θ

Equations

• $||A_iB_i|| = \rho_i$: 2 equations

2 equations, 3 unknowns, something is missing . . .
A more complex kinematic example

direct kinematics:
- we know ρ_1, ρ_2
- determine x_G, y_G, θ

Equations
- $||A_i B_i|| = \rho_i$: 2 equations

mechanical equilibrium

$$\mathcal{F} = \mathbf{J}^{-T} \tau$$

3 equations, 2 more unknowns
A more complex kinematic example

direct kinematics:

- 5 unknowns: $x_G, y_G, \theta, \tau_1, \tau_2$
- 5 equations: $||A_iB_i|| = \rho_i, \mathcal{F} = J^{-T}\tau$
A more complex kinematic example

direct kinematics:

• 5 unknowns: $x_G, y_G, \theta, \tau_1, \tau_2$

• 5 equations: $||A_i B_i|| = \rho_i, \mathcal{F} = J^{-T} \tau$

Result

• there cannot be more than 24 solutions

• these solutions may be obtained by solving two 12-th order univariate polynomial

• up to now only examples with 8 solutions have been found
Conclusions
Conclusions

Robotics is very multidisciplinary field that involves numerous other scientific domains:

- mechanism science
- sensors and actuators
- electronic
- computer science
- mathematics: system solving, geometry
- control theory

We hope you will enjoy this module!