Introduction to Robotics J-P. Merlet

INRIA, COPRIN project team

COPRIN project team

COPRIN project team

A team involved in the development of

- analysis and modeling of robots
- management of uncertainties in robotics
- design methodology for mechanisms

COPRIN project team

A team involved in the development of

- parallel robot
- assistance robotics

Robots

Robots

What is a robot?

Robots

What is a robot?

- No clear definition

Robots

What is a robot?

- No clear definition
- etymology: robota in Czech \rightarrow labor slave

Robots

What is a robot?
Historically an instrument of the gods and kings

Robots

What is a robot?
For the Greek and Roman entertainment machinery

Robots

What is a robot?
During the French Revolution: automata

Robots

What is a robot?
In the 60's a science-fiction concept

Robots

What is a robot?
In the late 60's industry is looking for machines that are able to produce controlled repetitive motion 24/24

Robots

What is a robot?
In the late 60's industry is looking for machines that are able to produce controlled repetitive motion 24/24

- to pick and place objects
- to perform assembly tasks
- for grinding and deburing operations

Robots

What is a robot?
In the late 60's industry is looking for machines that are able to produce controlled repetitive motion 24/24
they design the first robot manipulator

Robots

Nowadays robots are able to perform other tasks than industrial manipulation

- navigation
- medical: surgery, assistance
- spatial exploration
- simulator
- domestic tasks

Robots

v

The components of a robot

The components of a robot

- a collection of links (rigid bodies)

The components of a robot

- a collection of links (rigid bodies)
- the end-effector: the link that has to perform the motion
- the base: the link of the robot that is connected to the ground

The components of a robot

- a collection of links (rigid bodies)
- that are connected to each other by joints that allow motion(s) between the links

The components of a robot

Motion(s) of a rigid body

- a rigid body may translate in 3 directions
- a rigid body may rotate around these 3 directions

The components of a robot

Motion(s) of a rigid body

They are the 6 degrees of freedom (dof) of the body

The components of a robot

A joint will allow some dof between the links it connects

The components of a robot

A joint will allow some dof between the links it connects
Typically

- 1 dof: a rotation around a fixed axis (revolute joint)

The components of a robot

A joint will allow some dof between the links it connects
Typically

- 1 dof: a rotation around a fixed axis (revolute joint)
- 1 dof: a translation along a fixed axis (prismatic joint)

The components of a robot

A joint will allow some dof between the links it connects But there are joint that allows more dof

- 3 dof: ball and socket, 3 rotations around a fixed point

The components of a robot

A joint may be:

- passive: the link may move freely along the dof of the joint

The components of a robot

A joint may be:

- passive: the link may move freely along the dof of the joint

There are numerous type of passive joints and they are very important for robotics
\Rightarrow Tuesday afternoon, T. Gayral

The components of a robot

A joint may be:

- passive: the link may move freely along the dof of the joint
- actuated: an actuator imposes motion of the dof of the joint

The components of a robot

A joint may be:

- passive: the link may move freely along the dof of the joint
- actuated: an actuator imposes motion of the dof of the joint
- rotary motor for revolute joints
- linear motor for prismatic joints

The components of a robot

dof a robot: may be

- the number of dof of the end-effector that can be controlled by the robot
- the number of independent actuators

The components of a robot

- a collection of links (rigid bodies)
- that are connected to each other by joints
- actuators that move the actuated joints

The components of a robot

- a collection of links (rigid bodies)
- that are connected to each other by joints
- actuators that move the actuated joints
- sensors that measure the motion of the actuated joints

Mechanical architecture

Mechanical architecture

The way the links and joints are assembled to produce the motion of the end-effector

Mechanical architecture

The way the links and joints are assembled to produce the motion of the end-effector

For manipulators

Mechanical architecture

The way the links and joints are assembled to produce the motion of the end-effector
For manipulators

- serial structure: a serie of link-joint/link-joint

Mechanical architecture

The way the links and joints are assembled to produce the motion of the end-effector
For manipulators

- serial structure: a serie of link-joint/link-joint
- parallel structure: several independent chains connect the base to the end-effector

Mechanical architecture

A special case of parallel robot: parallel wire-driven robot: link are extensible wires

The robotics variables

The robotics variables

To define the pose of a rigid body you need:

- to define a reference frame ($O, \mathbf{x}, \mathbf{y}, \mathbf{z}$)

The robotics variables

To define the pose of a rigid body you need:

- to define a reference frame ($O, \mathbf{x}, \mathbf{y}, \mathbf{z}$)
- to choose a point C on the body

The robotics variables

To define the pose of a rigid body you need:

- to define a reference frame ($O, \mathbf{x}, \mathbf{y}, \mathbf{z}$)
- to choose a point C on the body

the coordinates of C in the reference frame allows to define the position of the body

The robotics variables

To define the pose of a rigid body you need:

- to define a mobile frame ($C, \mathrm{x}_{\mathrm{m}}, \mathbf{y}_{\mathbf{m}}, \mathrm{z}_{\mathrm{m}}$) that is rigidly attached to the body

The robotics variables

To define the pose of a rigid body you need:

- to define a mobile frame ($C, \mathrm{x}_{\mathrm{m}}, \mathbf{y}_{\mathbf{m}}, \mathrm{z}_{\mathrm{m}}$) that is rigidly attached to the body
- to define a rotation matrix \mathbf{R} such that $\mathbf{v}=\mathbf{R v}_{\mathbf{m}}$

The robotics variables

Rotation matrix:

- a 3×3 orthogonal matrix:

$$
\mathbf{R}^{T} \mathbf{R}=I_{3} \quad\left\|R_{i}\right\|=1 \quad R_{i} \cdot R_{j}=0
$$

The robotics variables

Rotation matrix:

- a 3×3 orthogonal matrix:
- although a rotation matrix has 9 components its special properties allows to obtain it with a minimum of 3 parameters

The robotics variables

For example the Euler angles ψ, θ, ϕ

The robotics variables

For example the Euler angles ψ, θ, ϕ
$\mathbf{R}=\left(\begin{array}{ccc}\cos \psi \cos \phi-\sin \psi \cos \theta \sin \phi & -\cos \psi \sin \phi-\sin \psi \cos \theta \cos \phi & \sin \psi \sin \theta \\ \sin \psi \cos \phi+\cos \psi \cos \theta \sin \phi & -\sin \psi \sin \phi+\cos \psi \cos \theta \cos \phi & -\cos \psi \sin \theta \\ \sin \theta \sin \phi & \sin \theta \cos \phi & \cos \theta\end{array}\right)$

The robotics variables

To define the pose of a rigid body you need:

- to define a mobile frame ($C, \mathbf{x}_{\mathrm{m}}, \mathbf{y}_{\mathrm{m}}, \mathbf{z}_{\mathrm{m}}$) that is rigidly attached to the body
- to define a rotation matrix \mathcal{R} such that $\mathbf{v}=\mathbf{R v}_{\mathbf{m}}$

the parameters of the rotation matrix allows to define the orientation of the rigid body

The robotics variables

To define the pose of a rigid body you need:

- 3 parameters for the translation
- at least 3 parameters for the orientation

The robotics variables

Variables for a robot:

The robotics variables

Variables for a robot:

- \mathbf{x} : the parameters that define the pose of the end-effector, generalized cartesian coordinates

The robotics variables

Variables for a robot:

- \mathbf{x} : the parameters that define the pose of the end-effector, generalized cartesian coordinates
- they are what you want to control

The robotics variables

Variables for a robot:

- \mathbf{x} : the parameters that define the pose of the end-effector, generalized cartesian coordinates
- they are what you want to control
- but what you are able to effectively control is the actuators

The robotics variables

Variables for a robot:

- \mathbf{x} : the parameters that define the pose of the end-effector, generalized cartesian coordinates
- Θ : the parameters of the actuator, the joint variables

The robotics variables

Variables for a robot:

- \mathbf{x} : the parameters that define the pose of the end-effector, generalized cartesian coordinates
- Θ : the parameters of the actuator, the joint variables
- to reach a given value for a joint variable you may use open loop control: very approximate control

The robotics variables

Variables for a robot:

- \mathbf{x} : the parameters that define the pose of the end-effector, generalized cartesian coordinates
- Θ : the parameters of the actuator, the joint variables
- to reach a given value for a joint variable you may use open loop control: very approximate control
- closed-loop control: you use the sensors to measure the value of the joint parameters and you have a control scheme that allows to reach the desired value: accurate control but not perfect

The robotics variables

Variables for a robot:

- \mathbf{x} : the parameters that define the pose of the end-effector, generalized cartesian coordinates
- Θ : the parameters of the actuator, the joint variables
- Θ_{m} : the measured joint variables

The robotics variables

Variables for a robot: you may also be in interested in the velocity

- $\dot{\mathrm{X}}$: the translation and angular velocity of the end-effector, generalized velocities
- $\dot{\Theta}$: the joint velocities
- Θ_{m} : the measured joint velocities

The robotics variables

Variables for a robot: you may also be in interested in the force/torques

- \mathcal{F} : the forces/torques exerted by the end-effector
- τ : the joint forces/torques

The robotics variables

Generally speaking you are interested in

- controlling the parameters in the end-effector space

The robotics variables

Generally speaking you are interested in

- controlling the parameters in the end-effector space
- but by applying a control in the joint space

The robotics variables

Generally speaking you are interested in

- controlling the parameters in the end-effector space
- but by applying a control in the joint space

Hence you have to establish the relations between these 2 spaces

The robotics variables

Generally speaking you are interested in

- controlling the parameters in the end-effector space
- but by applying a control in the joint space

Hence you have to establish the relations between these 2 spaces
This is the purpose of Modeling:
Monday 2-5 pm, Y. Papegay

Modeling example: Kinematics

Modeling example: Kinematics

Kinematics: the relations between \mathbf{X} and Θ

Modeling example: Kinematics

Kinematics: the relations between \mathbf{X} and Θ

- inverse kinematics: $\mathbf{X} \rightarrow \Theta$

Modeling example: Kinematics

Kinematics: the relations between \mathbf{X} and Θ

- inverse kinematics: $\mathbf{X} \rightarrow$ Theta
- direct kinematics: $\Theta_{\mathrm{m}} \rightarrow \mathbf{X}$

Modeling example: Kinematics

A very simple example: 1 dof planar arm
Z

Objective: starting from the current pose of the robot \mathbf{X}_{1} grasp the object located at $\mathbf{X}_{\mathbf{2}}$

Modeling example: Kinematics

in the reference frame $\mathbf{X =}=(\mathrm{x}, \mathrm{y})$
direct kinematics

$$
x=l \cos \theta \quad y=\sin \theta
$$

Modeling example: Kinematics

in the reference frame $\mathbf{X}=(\mathrm{x}, \mathrm{y})$
direct kinematics

$$
x=l \cos \theta \quad y=\sin \theta
$$

inverse kinematics

$$
\theta=\arctan (y / x)
$$

Modeling example: Kinematics

- use the sensors to obtain θ_{1}
- use the inverse kinematics to determine θ_{2}

Modeling example: Kinematics

- use the sensors to obtain θ_{1}
- use the inverse kinematics to determine θ_{2}

Typical control law: proportional

Modeling example: Kinematics

- use the sensors to obtain θ_{1}
- use the inverse kinematics to determine θ_{2}

Typical control law: proportional, the order θ_{c} (voltage, current) send to the motor at each sampling time is

$$
\theta_{c}=K_{p}\left(\theta_{2}-\theta_{m}\right)
$$

where K_{p} is a constant gain that has to be determined, not too large, not to low

Modeling example: Kinematics

Drawback:

- when θ_{m} become close to θ_{2}, then $\theta_{c} \approx 0$: static error, the end-effector does not reach $\mathbf{X}_{\mathbf{2}}$

Modeling example: Kinematics

Solution: proportional-integral control

$$
\theta_{c}=K_{p}\left(\theta_{2}-\theta_{m}\right)+K_{i} \int\left(\theta_{2}-\theta_{m}\right)
$$

Modeling example: Kinematics

Still a drawback: at the start if θ_{1} is far from θ_{2} the robot may move very quickly and we may overshoot θ_{2}

Modeling example: Kinematics

$$
\theta_{c}=K_{p}\left(\theta_{2}-\theta_{m}\right)+K_{i}\left(\theta_{2}-\theta_{m}\right)
$$

Solution: add a derivative term that limits the initial acceleration of the robot

$$
\theta_{c}=K_{p}\left(\theta_{2}-\theta_{m}\right)+K_{i} \int\left(\theta_{2}-\theta_{m}\right)-K_{d} \dot{\theta}
$$

Modeling example: Kinematics

Note: in this example the inverse and direct kinematics are very simple. This is not always the case

- for serial structure: inverse kinematics is complex, direct kinematics is simple
- for parallel structure: inverse kinematics is simple, direct kinematics is complex
- there may be multiple solutions for both the inverse and direct kinematics

Modeling example: Kinematics

Note: in this example the inverse and direct kinematics are very simple. This is not always the case

- for serial structure: inverse kinematics is complex, direct kinematics is simple
- for parallel structure: inverse kinematics is simple, direct kinematics is complex
- there may multiple solutions for both the inverse and direct kinematics

Kinematics requires sophisticated solving methods for non linear system of equations

Modeling example: Kinematics

Associated problems:

Modeling example: Kinematics

Associated problems:

- control assumes a perfect knowledge of l

Modeling example: Kinematics

Associated problems:

- control assumes a perfect knowledge of l
the initial knowledge of l may be improved by calibration

Modeling example: Kinematics

Associated problems:

- control assumes a perfect knowledge of l
the initial knowledge of l may be improved by calibration
Here for example we may use an external measurement mean that locate the end-effector

Modeling example: Kinematics

Associated problems:

- control assumes a perfect knowledge of l
the initial knowledge of l may be improved by calibration Here for example we may use an external measurement mean that locate the end-effector
- measure the end-effector location for various θ
- least-square estimation of l

Modeling example: Kinematics

Associated problems:

- control assumes a perfect knowledge of l
calibration: Tuesday 9-12 am, D. Daney

Modeling example: Kinematics

Associated problems:

- control assumes a perfect knowledge of l
- control assumes a perfect knowledge of \mathbf{X}_{2}

Modeling example: Kinematics

Associated problems:

- control assumes a perfect knowledge of l
- control assumes a perfect knowledge of \mathbf{X}_{2}

External mean may measure the real location of the object
Visual servoing: Wednesday 9-12am, R. Ramadour

Uncertainties

Uncertainties

A robot is a mechatronic system for which uncertainties are unavoidable

Uncertainties

A robot is a mechatronic system for which uncertainties are unavoidable

- in the modeling: the value of l in the previous example, in spite of the calibration

Uncertainties

A robot is a mechatronic system for which uncertainties are unavoidable

- in the modeling: the value of l in the previous example, in spite of the calibration
- in the environment: the location of \mathbf{X}_{2}

Uncertainties

A robot is a mechatronic system for which uncertainties are unavoidable

- in the modeling: the value of l in the previous example, in spite of the calibration
- in the environment: the location of \mathbf{X}_{2}
- in the measurement: the value of Θ_{m}

Uncertainties

These uncertainties leads to several problems

Uncertainties

These uncertainties leads to several problems

- what are the effects of the modeling and sensing on the performances of the robot: the analysis problem

Uncertainties

These uncertainties leads to several problems

- what are the effects of the modeling and sensing on the performances of the robot: the analysis problem
- what are the values of the modeling parameters that minimize these effects: the synthesis problem

Uncertainties

We have seen that

$$
x=l \cos \theta \quad y=\sin \theta
$$

Uncertainties

We have seen that

$$
x=l \cos \theta \quad y=\sin \theta
$$

Hence for small errors on θ_{m} we have

$$
\begin{aligned}
& \Delta x=-l \sin \theta \Delta \theta \\
& \Delta y=l \cos \theta \Delta \theta
\end{aligned}
$$

Uncertainties

Hence for small errors on θ_{m} we have

$$
\begin{aligned}
& \Delta x=-l \sin \theta \Delta \theta \\
& \Delta y=l \cos \theta \Delta \theta
\end{aligned}
$$

or in matrix form

$$
\Delta \mathbf{X}=\binom{-l \sin \theta}{l \cos \theta} \Delta \theta
$$

Uncertainties

In general for a robotics system we have

$$
\Delta \mathbf{X}=\mathbf{J}(\mathbf{X}, \boldsymbol{\Theta}) \Delta \theta \quad \Delta \theta=\mathbf{J}^{-\mathbf{1}}(\mathbf{X}, \boldsymbol{\Theta}) \Delta \mathbf{X}
$$

and \mathbf{J} is called the Jacobian matrix of the robot

Uncertainties

In general for a robotics system we have

$$
\Delta \mathbf{X}=\mathbf{J}(\mathbf{X}, \boldsymbol{\Theta}) \Delta \theta \quad \Delta \theta=\mathbf{J}^{-\mathbf{1}}(\mathbf{X}, \boldsymbol{\Theta}) \Delta \mathbf{X}
$$

and \mathbf{J} is called the Jacobian matrix of the robot

- as soon as the number of dof become large only one of the matrices $\mathbf{J}, \mathbf{J}^{\mathbf{- 1}}$ is known in symbolic form, while the other is not

Uncertainties

In general for a robotics system we have

$$
\Delta \mathbf{X}=\mathbf{J}(\mathbf{X}, \boldsymbol{\Theta}) \Delta \theta \quad \Delta \theta=\mathbf{J}^{\mathbf{- 1}}(\mathbf{X}, \boldsymbol{\Theta}) \Delta \mathbf{X}
$$

and \mathbf{J} is called the Jacobian matrix of the robot

- as soon as the number of dof become large only one of the matrices $\mathbf{J}, \mathbf{J}^{-1}$ is known in symbolic form, while the other is not
- these matrices are pose dependent

Uncertainties

In general for a robotics system we have

$$
\Delta \mathbf{X}=\mathbf{J}(\mathbf{X}, \boldsymbol{\Theta}) \Delta \theta \quad \Delta \theta=\mathbf{J}^{-\mathbf{1}}(\mathbf{X}, \boldsymbol{\Theta}) \Delta \mathbf{X}
$$

- $\left|\mathbf{J}^{\mathbf{- 1}}\right|=0$: even if $\Delta \theta=0$ we have $\Delta \mathbf{X} \neq 0$ (singularity)
- $|\mathbf{J}|=0$: even if $\Delta \mathbf{X}=0$ we have $\Delta \theta \neq 0$ (singularity)

Uncertainties

Managing uncertainties is important (imagine you are at the wrong end of a surgical robot!)

Thursday: 9-12 am, O. Pourtallier

Interval analysis

Interval analysis

There is another source of uncertainty that we have not yet mentioned...

Interval analysis

There is another source of uncertainty that we have not yet mentioned...
the computer

Interval analysis

A computer knows only a limited set of real numbers

Interval analysis

A computer knows only a limited set of real numbers
For example

- a computer does not know the number 0.1

Interval analysis

A computer knows only a limited set of real numbers
For example

- a computer does not know the number 0.1
- the closest number to 0.1 it knows are
- 0.099999994039536,
- 0.100000008940697

Interval analysis

A computer knows only a limited set of real numbers
A consequence is that a computer may calculate wrongly and sometimes by a very large amount: numerical roundoff errors

Interval analysis

To manage this uncertainty we may use interval analysis

Interval analysis

To manage this uncertainty we may use interval analysis
Basically instead of computing with numbers that are wrong we calculate with intervals that are guaranteed to include the exact value

Interval analysis

We may perform with intervals the same calculation than with numbers
For example if we have two intervals $X=[a, b], Y=[u, v]$ then

$$
Z=X+Y=[a+u, b+v]
$$

- interval operators may be implemented so that numerical round-off errors are managed
- hence the interval Z is guaranteed to include the exact result of the addition of X, Y

Interval analysis

There is no free lunch!. Hence we may have to pay for this guarantee
Example: let $X=[-1,2]$ and let us compute $X-X$

$$
\text { - }[-1,2]-[-1,2]=[-1,2]+[-2,1]=[-3,3]
$$

Hence

$$
X-X \neq 0
$$

Interval analysis

Example: $F=x^{2}+\cos (x), x \in[0,1]$
Problem: find $[A, B]$ such that: $A \leq F(x) \leq B \forall x \in[0,1]$

Interval analysis

$$
F=[0,1]^{2}+\cos ([0,1])
$$

Interval analysis

$$
F=[0,1]^{2}+\cos ([0,1])
$$

Interval analysis

$$
F=[0,1]^{2}+\cos ([0,1])=[0,1]+\cos ([0,1])
$$

Interval analysis

Interval analysis

Interval analysis

$$
F=[0,1]^{2}+\cos ([0,1])=[0,1]+[0.54,1]
$$

Interval analysis

$$
F=[0,1]^{2}+\cos ([0,1])=[0,1]+[0.54,1]=[0.54,2]
$$

Interval analysis

$$
F=[0,1]^{2}+\cos ([0,1])=[0,1]+[0.54,1]=[0.54,2]
$$

- 0 not included in $[0.54,2] \Rightarrow F \neq 0 \forall x \in[0,1]$

Interval analysis

$$
F=[0,1]^{2}+\cos ([0,1])=[0,1]+[0.54,1]=[0.54,2]
$$

- 0 not included in $[0.54,2] \Rightarrow F \neq 0 \forall x \in[0,1]$
- $F>0 \forall x \in[0,1]$
- $\forall x \in[0,1]$ we have $0.54 \leq F \leq 2$ (global optimization)

Another kinematic example

Another kinematic example

2 degrees of freedom planar robot:

- end-effector position defined by x, y
- joint variables: θ_{1}, θ_{2}

Another kinematic example

Another kinematic example

Hence

$$
\binom{\Delta x}{\Delta y}=\left(\begin{array}{cc}
l_{1} \sin \theta_{1}-l \sin \left(\theta_{1}-\theta_{2}\right) & l_{2} \sin \left(\theta_{1}-\theta_{2}\right) \\
l_{1} \cos \theta_{1}-l_{2} \cos \left(\theta_{1}-\theta_{2}\right) & l_{2} \cos \left(\theta_{1}-\theta_{2}\right)
\end{array}\right)\binom{\Delta \theta_{1}}{\Delta \theta_{2}}
$$

A more complex kinematic example

A more complex kinematic example

A planar wire-driven parallel robot with 2 wires

A more complex kinematic example

- the platform has 3 dof: x_{G}, y_{G}, θ
- we control only two joint variables ρ_{1}, ρ_{2}

A more complex kinematic example

inverse kinematics: if we give x_{G}, y_{G}, θ, then the wire lengths are easy to calculate

A more complex kinematic example

inverse kinematics: if we give x_{G}, y_{G}, θ, then the wire lengths are easy to calculate

But will the robot moves to the desired position?

A more complex kinematic example

direct kinematics:

- we know ρ_{1}, ρ_{2}
- determine x_{G}, y_{G}, θ

A more complex kinematic example

direct kinematics:

- we know ρ_{1}, ρ_{2}
- determine x_{G}, y_{G}, θ

Equations

- $\left\|A_{i} B_{i}\right\|=\rho_{i}$: 2 equations

2 equations, 3 unknowns, something is missing ...

A more complex kinematic example

direct kinematics:

- we know ρ_{1}, ρ_{2}
- determine x_{G}, y_{G}, θ

Equations

- $\left\|A_{i} B_{i}\right\|=\rho_{i}$: 2 equations
mechanical equilibrium

$$
\mathcal{F}=\mathbf{J}^{-\mathbf{T}} \tau
$$

3 equations, 2 more unknowns

A more complex kinematic example

direct kinematics:

- 5 unknowns: $x_{G}, y_{G}, \theta, \tau_{1}, \tau_{2}$
- 5 equations: $\left\|A_{i} B_{i}\right\|=\rho_{i}, \mathcal{F}=\mathbf{J}^{-\mathbf{T}} \tau$

A more complex kinematic example

direct kinematics:

- 5 unknowns: $x_{G}, y_{G}, \theta, \tau_{1}, \tau_{2}$
- 5 equations: $\left\|A_{i} B_{i}\right\|=\rho_{i}, \mathcal{F}=\mathbf{J}^{-\mathbf{T}} \tau$

Result

- there cannot be more than 24 solutions
- these solutions may be obtained by solving two 12 -th order univariate polynomial
- up to now only examples with 8 solutions have been found

Conclusions

Conclusions

Robotics is very multidisciplinary field that involves numerous other scientifi domains:

- mechanism science
- sensors and actuators
- electronic
- computer science
- mathematics: system solving, geometry
- control theory

We hope you will enjoy this module!

