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Abstract: This paper addresses the problem of determining the singularity loci of 3-DOF pla-
nar parallel manipulators with revolute joints for a constant orientation of the mobile platform.
The case when the base joints are actuated is of primary concern and is proved here to lead to
singularity loci represented by curves of degree 42—an improved measure with respect to the
one already given in the literature. A particular case is studied when two of the platform joints
are coincident which allows the singularities to be studied geometrically. The case when the in-
termediate joints are actuated is also considered. On the basis of the presented study, important
observations are made on the nature of the singularity loci for both types of actuation.

1 Introduction

Undoubtedly, the most common architecture for a 3-DOF planar parallel maniput&d) (s the
3-RRRone. The reason is mostly practical—these PPMs are easiest to build. The fact that the ac-
tuators are fixed to the base allows the use of inexpensive DC drives and reduces the weight of the
mobile equipment. In addition, the links can be made of thin rods and even be curvexhli8ah”
1998) to decrease significantly the link interference. Finally, revolute joints have virtually no me-
chanical limits, which together with the previously mentioned feature, maximizes significantly the
workspace of RRRPPMs.

Another possible architecture for a 3-DOF PPMs is thiRRER one which is kinematically equiv-
alent to the 3RPR one. Both architectures, however, have their actuators as part of the mobile
equipment which decreases the manipulator’'s workspace and speed. As we will see in this paper,
while the singularity loci of 3RRR (3-RPR) PPMs are simple quadratic curves, the singularity loci
of 3-RRRPPMs are generally impossible to determine and represent analytically. What is more, to
the best of our knowledge, there has been only one article discussing their singularity loci.



The organization of this paper is as follows. In the next section, we determine the singularity
loci of 3-RRRPPMs for a constant orientation and prove that they are represented by a polynomial
of degree 42. Then, in Section 3, we consider a simplifi@RRPPM design in which two of
the platform joints are coincident which leads to singularity loci being four circles and a sextic.
Examples are then shown in Section 4 where we also discuss briefly the singularity loRIRN 3-
PPMs and then generalize the properties of the singularity loci for both types of actuation. Finally,
Section 5 presents the conclusions.

2 Singularity Loci of 3-RRR PPMs

Referring to Fig. 1, let us select a reference frame fixed to the base, callbddbeframewith

centerO and axesc andy. Similarly, let us select a reference frame fixed to the mobile platform,
called themobile framewith center at a poinf€’ and axes:’ andy’. Let us then denote the centers

of the base joints by;, of the intermediate joints by;, and of the mobile platform joints b#; (in

this paper; = 1, 2, 3). The vectors along line®0;, O; A;, O; B;, andC B; are respectively denoted

by o;, u;, r;, ands;. Throughout this paper, we will add the supersctijata vector when the latter

is expressed in the mobile frame, and no superscript when the vector is expressed in the base frame.

The mobile platform’s position is defined by vecter= [z, y]7, while its orientation is de-
scribed by angles> which is the angle between the bas@xis and the mobile’-axis. The two
coordinates of point’ expressed in the base frameandy, and the angle constitute the so-called
generalized coordinategontained in the vectay = [z, y, ¢|7. The latter defines completely the
pose(the position and orientation) of the mobile platform.

We will refer to the link connecting point3; andA; asproximal linki and to the link connecting
points A; and B; asdistal linki. Let all proximal links be of equal length and all distal links be
of equal length’s. The angle between proximal linkand the base-axis will be denoted by, and
will be referred to agrticular coordinatei with © = [0y, 6, 03]7.

We will now consider the task of computing the set of articular coordinates from the set of
generalized coordinates, referred to as itheerse kinematic problemGeometrically, for serial
chaini, the problem can be seen as the one of finding the intersection point(s) between a circle of
radius/; and centelO; and a circle of radiug, and centeB;. Clearly, depending on the position
of point B;, this problem may have two real solutions, a single one, or none at dll. = /5, the
problem may even have an infinite number of solutions.

Let the unit vector along distal linkbe denoted bw,;. Therefore, we have

lon; = v+ Rs; —u; — o, 1)

whereR is the rotation matrix defined by angte Squaring both sides of eq. 1 gives us
3=wv+Rs —u—0)T(v+Rs, —u; —0;), (2)
05 = el * + 63 = 2rf ;. (3)

In addition, we have; = /1 [cos 6;, sin 6;]7 and
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Figure 1: (a) A general and (b) a special 3-DORRBRplanar parallel manipulator.

wherexjgi andngi are the coordinates of poif; in the mobile frame, ando, andyo, are the
coordinates of poin®; in the base frame. Furthermore, as seen from the last definitjcaamdb;
are constants for a given orientation of the mobile platform. Therefore, eq. 3 may be written as

(T4a)® +y+b)>+0G-45

cosO; (r + a;) +sinb; (y + b;) = 57 = p;. (5)
1
In order to have a real solution to the above equation, the following inequality should hold true:
(+ai)?+ y+b)—pi=T; >0 (6)

Unlessl'; = 0, there exist two real solutions to eq. 5, determined uniquely from:

pi(y +bi) + (x + a;)0;V/T; pi(x +a;) — (y +b:)0iVTy

sinf; = cosf; = @)
Pi Pi
whered; = =1 is the so-calletbranch indexthat occupies a significant place in this study, and
pi = ||rill> = (z + a;)? + (y + b;)%. Note, that for each serial chain, there exist two possible

branches, and, hence, for the whole PPM, there exist bigimch sets Note also that eq. 7 is not
valid whenp; = 0, which may occur only i¥; = ¢, andB; = O;.

Having resolved the inverse kinematic problem, we may now proceed to obtaining the Jacobian
matrices by differentiating eq. 2 with respect to time, leading to

lon? ([ﬂ +¢Es; — (16; [_Si“'gib =0, (8)

cos 0;

wherekE is the orthogonal rotation matrix far = 7 /2 and
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Equation 8 may be written in the following vector form:

T T . T| — sin (91 ;
[€2ni ) €2ni ES’L} q-— €1€2ni |: COS 91:| HZ = 07 (10)
where
|+ a; —¥licosb;
fgnz— [y—i—bi—flsinﬁi] . (11)
Using the expressions from eq. 7, we may easily simplify eq. 10 to
[EQHZT, fgl’l;-TE Si] q+ 6Ty 91 =0. (12)
Finally, the velocity equations can be written in matrix form as:
521’1{ KQH?E S1 (51 vV Fl 0 0 . )
621’1%1 EQHI‘QFE S9 q+€1 0 (52\/F2 0 e = Jqq+€1J@® == 0, (13)
521’15 gQHgE S3 0 0 (53\/ Fg

whereJ, andJg are3 x 3 Jacobian matrices.

Thus, two different types of singularities may occur (Gosselin and Angeles, 1990). In Type |,
det(Jo) = 0, which happens whel; = 0. In Type Il, det(J,) = 0, which happens whethe three
lines associated with the distal links intersect at a single point or are all pardfet completeness,
let us only mention that there also exist singularities of Type Ill, which may occur \hen /5
andB; = O;.

It is the second type of singularities that is the subject of this study, though a major attention
will also be paid to the relationship between all types. Particularly, our study will be on the corre-
sponding singularity loci for a constant orientation of the mobile platform.

The singularity loci of Type | for a constant orientation are the boundaries of three annular re-
gions, thevertex spacesach defined by the inequalilyy > 0. The constant-orientation workspace
is the intersection of these vertex spaces. The singularity loci of Type Il (infgasels) are sim-
ply the centers of the vertex spaces with coordinétes;, —b;). The determination of singularity
loci of Type Il is, however, a cumbersome task due to the existence of the raglical&liminating
the radicals leads to a polynomial of high degeeeresponding to all eight branch sets

To our best knowledge, the only work attempting to resolve this problem has been reported by
Gosselin and Wang (1997). In that work, the authors have concluded that the resulting polynomial
is of degree 64 iny and 48 inx even though they have only considered a simplifideRIR PPM
design with collinear base and platform joints. Their remark that the reason for the high degree is
the fact that the singularity loci are for all branch sets and not only for a single one as well as the
high degree itself has motivated our research.

Indeed, in the next two sub-sections, we will describe the procedure used by us to prove that
the degree is in fact 42 using the computer algebra system Maplighout loss of generality, we
selectO = O, andC = B;. This implies thatu; = b; = ¢; = d; = 0. In addition we select
the baser-axis to pass through poitid, which implies thatd, = b,. Note, however, that in the
parameterization that we use, selecting the mobile platform axis to pass througtBpaoioés not
imply any significant simplification.

“The programs are available framttp://www.parallemic.org/Reviews/Review001.html



2.1 Special Case: Proximal and Distal Links of Equal Lengths

Let us first consider the special case when= ¢, despite the fact that it leads to singularities of
Type lll. The reason is that in this case, we may obtain the polynomial in symbolic form. We render
our problem dimensionless and get= ¢, = 1. Once the Jacobial, is expressed im, y, and the
parameters;, b;, c¢;, d;, andp;, we follow the procedure described below:

S1. Substitute the expressions,/T; with the parametera;.

S2. Obtaindet(J,). The denominator of this determinant8g; p2p3. Indeed,J, is not defined
whenB; = O, i.e., whenp; = 0. Eliminating these possibilities, we consider further only the
numerator£. This numerator is a function of andy that cannot be generally factored and
contains the three radica#s,/T; (actually the parameterd;) and the parameters. Note,
that this is the only expression that corresponds to the singularity loci for the given branch set.

S3. Eliminate the radical in/T;. Rewrite& in the formC; A, = Cs, whereC; andC, do not
containA;. Next, raise to square leading®@I'; = C3. BothI'; andC? are multiples ofp;
which can, therefore, be canceled. At this step, our new expresgieaC: (I /p1) — C3/p1,
does not contaid; and, hence, corresponds to two branch sets.

S4. Split & and substitute the term&2 and A2 with respectivelyl’; andI's. Note, that if we
attempt to perform this substitution directly &k, the resulting expression becomes too large
to allow to be further handled symbolically. Thigg, is written in parts as

E1=E81+ 1283+ 1300+ E14A2A3+E1 5+ E16 + E17A2 + E18A83+E19
E1,1 = Coo/(p2p3) Era = (Cr1/(p2p3)) Er = (Ci,2/p2)(Ts/p3)

E12=(Coa/(p2p3)) &5 = (Co2/p2)Ts3/ps  E18 = (Can/p3)(T2/p2)
&3 = (Ci0/(p2p3))  E16 = (Coo/p3)Ta/p2  Ei9 = Coa(Ta/p2)(T3/p3)

whereC; ;. (j, k = 0,1, 2) are coefficients that do not contaix, or Az. Furthermore, all the
divisions can be performed exactly.

S5. Eliminate the radical in/T's:

Ey = 52271F2 + 52272F2F3 + 2527152,2F2A3 — 52273 — 52274F3 — 2527352,4A3
Eon=E 3+ &7, Eap=E14, Eaz3=E1+E 5+ E6+E19, Eaua=E2+ &8

The new expressiof, does not contain; or d» and, hence, corresponds to the singularity loci
of four branch sets.

S6. Eliminate the radical in/T's:
Es3 = (2621629019 — 262,380,4)°T's — (€5 Ta + E3Tol's — E5 5 — €5 ,1'3)?

Finally, we substitute the expressions fgiin £, which becomes a polynomial in the variables
x andy but cannot be expanded in symbolic form. However, it can quickly be verified to be of degree
48 using the Maple commarabeff(  &s,(X,y)) . Furthermore, if we use the same command to
extract and simplify all the coefficients 6% corresponding to the terms of degree greater than 42,
we can observe that they are all zero. In addition, the coefficients of the terms of degree less than 8
are also zero which makeg afewnomialof degree 42.



2.2 General Case

In the case wher; # /5, we set only?; = 1 and follow a much simplified procedure. Firstly,
we assigrrandom integer valuet the coefficients;, b;, ¢;, andd; since the procedureannot be
performed symbolicallyThen, we eliminate the radical fT'; and divide the resulting expression
&1 by p1. Note that in this casg; is not a multiple ofp;. Next, we substitute the ternzsg andA§
with respectivelyi’; andI's. Then, we eliminate the radical ifiT';, divide the resulting expression
&> by p3, and substituté\2 with I's. Finally, we eliminate the radical igT's and divide the resulting
expressiort; by p3. The polynomial€; is again of degree 42, but this time the coefficients of all
possible terms are generally non-zero (except for the odd-power terms of degree 42).

3 Singularity Loci of 3-RRR PPMs with Coincident Platform Joints

In general, the polynomidafs cannot be factored. Special designs such as base and platform being
equilateral triangles or collinear do not lead to simplified results. One particular case, however,
simplifies greatly that polynomial and allows the singularity loci to be geometrically described.
This case also brings insight into the complex relationship between branches and singularity loci.

The particular case of interest occurs simply when two platform joints are coincident, e.g.,
when By = B, (Fig. 1b). Using the parameterization introduced previously, this case implies that
a1 = by = ¢ = dy = by = co = dy = 0. Now, we can either use the approach described in the
last section or observe the following. As mentioned before, singularities of Type Il occur when the
lines associated with the distal links intersect at one point or are all parallel. Since two of the lines
always intersect at poirtt, we have only two possible cases:

Case 1:PointsC, Bs, and A3 are collinear.

This case implies thahz = +[—sin¢, cos$]’. Hence, the corresponding singularity loci
consists of two circles of radiug and centers with coordinates + n3(¢2 + ||s3||) with the
following algebraic equations:

2 2
(x + a3 £+ 5203/ C:Q)) + dg) + (y + bg £ €2d3/ C:Q)) + dg) = 6% (14)

The following important observation can now be made. Each of the two circles is separated by
lines parallel tans into semicircles corresponding to the two possible branches of chain 3.

Case 2:PointsA4;, C, and A, are collinear.

This case has two subcases. In the first one, poeintand A, coincide which may occur at two
locations symmetric with respect to liri@, O,. Thus, the corresponding singularity loci are two
circles given by the following equations:

2
(z +az/2)* + (yj: \/ —a§/4> = /3. (15)

Again, each of the circles is divided into two semicircles by the li@gsl; and O, A, distin-
guished respectively by the branch indiegsandd2. Thus, each circle is divided into four arcs
corresponding to four different pairs of branch sets.



The second subcase occurs when== A,. Thus, the singularity loci are the coupler curve of
the four-bar mechanisi®; A; 4,05, defined by the following sextic (Hunt, 1978):

(x4 a2/2)% (2% +aow + 03— 3 +y*)? + 92 (2 + agw + a3 /2 + 05 — 05 +y*)? — (3a3y* = 0. (16)

This sextic, will also be divided in four parts, each corresponding to a branch subset defined by

91 anddy. Note that the sextic is symmetric with respect to thaxis and the linec = —ay/2.
Indeed, the sextic can be represented by the following parametric equation:

x = tpcos —ay/2, y=tpsinv a7
where

1
0= 5\/4(6% —03) — a3(1 — 2cos2 V) + 2a sin ¥y /403 — a%cos? 9, for 0 <9 < /2, (18)

wherey is the distance between poifitand the center of lin€&;0-, referred to as poind,., and?
is the angle between theaxis and the line).C.
Note, however, that the sextic described by eqalifayshas a solution at—as/2, 0), which
in some cases may be an isolated point that is actually outside the constant-orientation workspace,
while if eq. 18 has this point as a solution, the poimasisolated.
In conclusion, for a given branch set, we have two semi-circles definég, land a pair (sym-
metric with respect to lin€);0s) of circular arcs and arcs from a sextic definedyand d5.
All of these geometrical curves are parts of geometric objects defined by parametric equations and
constrained by limits on the parameters that can easily be computed.

4 Examples and Discussions

Based on a simple discretization approach, we have obtained the singularity loci corresponding to
all branch sets for two BRRPPM designs and represented them in Figs. 2 and 3. In these figures,
the singularity loci of Type Il are plotted in continuous line, while the boundaries of the constant-
orientation workspaces are drawn in dashed line.

Following the approach presented in the previous section, we have also obtained the singularity
loci corresponding to all branch sets for a giveRBRPPM design with two coincident platform
joints and represented them in Fig. 4. In this figure we have plotted in dashed line the complete
vertex spaces. In all three figures, the points marked with the star symbol represent the centers of
the vertex spaces. Also, note that the figures are not drawn to the same scale. More examples are
available at the same web address as the Maple programs.

Finally, for the case of RRR PPMs, kinematically equivalent to BPR PPMs, we refer the
reader to (Sefrioui and Gosselin, 1995). Briefly, we have the same vertex spaces and constant-
orientation workspace but the singularity loci of Type Il are singp@dratic curvesor the whole
workspace. However, the singularity loci are branch-independent and are the same for all eight
branch sets. Indeed, the singularities dRBR PPMs depend on the lin€g; B;. Thus, the singu-
larity loci of Type Il are completely independent from the singularity loci of Type |, i.e., the vertex
spaces. In addition, the singularity loci are greatly simplified if the PPM has a symmetric geometry.



Figure 2: Singularity loci corresponding to all branch séis=£ /5 = 1, as = —0.852, by = 0,
co = 0.889, dy =0, az3 = —0.426, b3 = —0.738, c3 = 0.444, d3 = 0.770).

Figure 3: Singularity loci corresponding to all branch séis£ 1, ¢/, = 1.350, a; = —1.150,
by =0, co = 1.200, dy = 0, a3 = —0.575, bg = —0.996, c3 = 0.600, d3 = 1.039).
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Figure 4: Singularity loci corresponding to all branch séis£ 1, ¢/, = 0.750, ao = —1.250,
ag = —0.425, by = —0.825, c3 = 0.325, d3 = 0.425).

Based on the detailed study of examples like the ones presented herein and on the procedure for
obtaining the polynomial of degree 42, we may summarize the following list of observations for the
singularity loci of 3RRRPPMs:

¢ No polynomial exists representing the singularity loci of Type Il for a given branch set. The
corresponding expression contains at least one radical.

e The singularity loci of Type Il are always inside the vertex spaces and if a point of contact
exists, then they are either tangential or normal to a vertex space at that point.

¢ Atthe points of contact, a change of a branch index occurs. Indeed, Fig. 4 illustrates how each
curve (a circle or the sextic) is separated into arcs corresponding to the different branches by
the points at which the curves are tangent to the vertex spaces.

e If the singularity loci of Type Il extend outside the constant-orientation workspace, then there
is a factorization in the polynomial of degree 42.

e The singularity loci of Type Il for a given branch set always divide the workspace into separate
regions, i.e., they are either closed curves or end at the workspace boundaries.

e The singularity loci of Type Il (wherf; = /), i.e., the centers of the vertex spaces, are part
of the singularity loci of Type II.



5 Conclusions

In this paper, we make important theoretical considerations regarding the singularity loci of planar
parallel manipulators with revolute joints. We show that the polynomial representing the singularity
loci of Type Il for all branches is of degree 42. We also point out a simplified manipulator design
for which the singularity loci are simple geometric entities defined by parametric equations. While
we do not propose any general method for the determination of the singularity loci for a given
branch set, we present discussions that are important in the design of such parallel manipulators.
For example, designers might consider trajectory planning with branch change in order to follow
trajectories free of singularities of Type Il that would otherwise be impossible for a single branch
set. The change of branch can be accomplished, for example, by using some mechanical or elec-
trical switch device placed at each intermediate revolute joint that automatically switches when the
corresponding serial chain is fully stretched.
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