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Abstract: This paper addresses the problem of determining the singularity loci of 3-DOF pla-
nar parallel manipulators with revolute joints for a constant orientation of the mobile platform.
The case when the base joints are actuated is of primary concern and is proved here to lead to
singularity loci represented by curves of degree 42—an improved measure with respect to the
one already given in the literature. A particular case is studied when two of the platform joints
are coincident which allows the singularities to be studied geometrically. The case when the in-
termediate joints are actuated is also considered. On the basis of the presented study, important
observations are made on the nature of the singularity loci for both types of actuation.

1 Introduction

Undoubtedly, the most common architecture for a 3-DOF planar parallel manipulator (PPM) is the
3-RRRone. The reason is mostly practical—these PPMs are easiest to build. The fact that the ac-
tuators are fixed to the base allows the use of inexpensive DC drives and reduces the weight of the
mobile equipment. In addition, the links can be made of thin rods and even be curved (Sch¨onherr,
1998) to decrease significantly the link interference. Finally, revolute joints have virtually no me-
chanical limits, which together with the previously mentioned feature, maximizes significantly the
workspace of 3-RRRPPMs.

Another possible architecture for a 3-DOF PPMs is the 3-RRRone which is kinematically equiv-
alent to the 3-RPR one. Both architectures, however, have their actuators as part of the mobile
equipment which decreases the manipulator’s workspace and speed. As we will see in this paper,
while the singularity loci of 3-RRR (3-RPR) PPMs are simple quadratic curves, the singularity loci
of 3-RRRPPMs are generally impossible to determine and represent analytically. What is more, to
the best of our knowledge, there has been only one article discussing their singularity loci.
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The organization of this paper is as follows. In the next section, we determine the singularity
loci of 3-RRRPPMs for a constant orientation and prove that they are represented by a polynomial
of degree 42. Then, in Section 3, we consider a simplified 3-RRRPPM design in which two of
the platform joints are coincident which leads to singularity loci being four circles and a sextic.
Examples are then shown in Section 4 where we also discuss briefly the singularity loci of 3-RRR
PPMs and then generalize the properties of the singularity loci for both types of actuation. Finally,
Section 5 presents the conclusions.

2 Singularity Loci of 3-RRRPPMs

Referring to Fig. 1, let us select a reference frame fixed to the base, called thebase frame, with
centerO and axesx andy. Similarly, let us select a reference frame fixed to the mobile platform,
called themobile frame, with center at a pointC and axesx′ andy′. Let us then denote the centers
of the base joints byOi, of the intermediate joints byAi, and of the mobile platform joints byBi (in
this paper,i = 1, 2, 3). The vectors along linesOOi, OiAi, OiBi, andCBi are respectively denoted
by oi, ui, ri, andsi. Throughout this paper, we will add the superscript′ to a vector when the latter
is expressed in the mobile frame, and no superscript when the vector is expressed in the base frame.

The mobile platform’s position is defined by vectorv = [x, y]T , while its orientation is de-
scribed by angleφ which is the angle between the basex-axis and the mobilex′-axis. The two
coordinates of pointC expressed in the base frame,x andy, and the angleφ constitute the so-called
generalized coordinates, contained in the vectorq = [x, y, φ]T . The latter defines completely the
pose(the position and orientation) of the mobile platform.

We will refer to the link connecting pointsOi andAi asproximal linki and to the link connecting
pointsAi andBi asdistal link i. Let all proximal links be of equal length̀1 and all distal links be
of equal length̀ 2. The angle between proximal linki and the basex-axis will be denoted byθi and
will be referred to asarticular coordinatei with Θ = [θ1, θ2, θ3]T .

We will now consider the task of computing the set of articular coordinates from the set of
generalized coordinates, referred to as theinverse kinematic problem. Geometrically, for serial
chaini, the problem can be seen as the one of finding the intersection point(s) between a circle of
radius`1 and centerOi and a circle of radius̀2 and centerBi. Clearly, depending on the position
of point Bi, this problem may have two real solutions, a single one, or none at all. If`1 = `2, the
problem may even have an infinite number of solutions.

Let the unit vector along distal linki be denoted byni. Therefore, we have

`2ni = v + Rs′i − ui − oi, (1)

whereR is the rotation matrix defined by angleφ. Squaring both sides of eq. 1 gives us

`2
2 = (v + Rs′i − ui − oi)T (v + Rs′i − ui − oi), (2)

`2
2 = ||ri||2 + `2

1 − 2rT
i ui. (3)

In addition, we haveui = `1 [cos θi, sin θi]T and

ri =
[

x + cos φ x′
Bi

− sin φ y′Bi
− xOi

y + sin φ x′
Bi

− cos φ y′Bi
− yOi

]
≡

[
x + ai

y + bi

]
, (4)
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Figure 1: (a) A general and (b) a special 3-DOF 3-RRRplanar parallel manipulator.

wherex′
Bi

andy′Bi
are the coordinates of pointBi in the mobile frame, andxOi andyOi are the

coordinates of pointOi in the base frame. Furthermore, as seen from the last definition,ai andbi

are constants for a given orientation of the mobile platform. Therefore, eq. 3 may be written as

cos θi (x + ai) + sin θi (y + bi) =
(x + ai)2 + (y + bi)2 + `2

1 − `2
2

2`1
≡ pi. (5)

In order to have a real solution to the above equation, the following inequality should hold true:

(x + ai)2 + (y + bi)2 − p2
i ≡ Γi ≥ 0 (6)

UnlessΓi = 0, there exist two real solutions to eq. 5, determined uniquely from:

sin θi =
pi(y + bi) + (x + ai)δi

√
Γi

ρi
, cos θi =

pi(x + ai) − (y + bi)δi

√
Γi

ρi
, (7)

whereδi = ±1 is the so-calledbranch indexthat occupies a significant place in this study, and
ρi = ||ri||2 = (x + ai)2 + (y + bi)2. Note, that for each serial chain, there exist two possible
branches, and, hence, for the whole PPM, there exist eightbranch sets. Note also that eq. 7 is not
valid whenρi = 0, which may occur only if̀ 1 = `2 andBi ≡ Oi.

Having resolved the inverse kinematic problem, we may now proceed to obtaining the Jacobian
matrices by differentiating eq. 2 with respect to time, leading to

`2nT
i

([
ẋ
ẏ

]
+ φ̇E si − `1θ̇i

[− sin θi

cos θi

])
= 0, (8)

whereE is the orthogonal rotation matrix forφ = π/2 and

si =
[

ai + xOi

bi + yOi

]
≡

[
ci

di

]
. (9)
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Equation 8 may be written in the following vector form:
[
`2nT

i , `2nT
i Esi

]
q̇− `1`2nT

i

[− sin θi

cos θi

]
θ̇i = 0, (10)

where

`2ni =
[

x + ai − `1 cos θi

y + bi − `1 sin θi

]
. (11)

Using the expressions from eq. 7, we may easily simplify eq. 10 to[
`2nT

i , `2nT
i Esi

]
q̇ + `1δi

√
Γi θ̇i = 0. (12)

Finally, the velocity equations can be written in matrix form as:
 `2nT

1 `2nT
1 Es1

`2nT
2 `2nT

2 Es2

`2nT
3 `2nT

3 Es3


 q̇ + `1


 δ1

√
Γ1 0 0

0 δ2

√
Γ2 0

0 0 δ3

√
Γ3


 Θ̇ = Jqq̇ + `1JΘΘ̇ = 0, (13)

whereJq andJΘ are3×3 Jacobian matrices.
Thus, two different types of singularities may occur (Gosselin and Angeles, 1990). In Type I,

det(JΘ) = 0, which happens whenΓi = 0. In Type II,det(Jq) = 0, which happens whenthe three
lines associated with the distal links intersect at a single point or are all parallel. For completeness,
let us only mention that there also exist singularities of Type III, which may occur when`1 = `2

andBi ≡ Oi.
It is the second type of singularities that is the subject of this study, though a major attention

will also be paid to the relationship between all types. Particularly, our study will be on the corre-
sponding singularity loci for a constant orientation of the mobile platform.

The singularity loci of Type I for a constant orientation are the boundaries of three annular re-
gions, thevertex spaces, each defined by the inequalityΓi ≥ 0. The constant-orientation workspace
is the intersection of these vertex spaces. The singularity loci of Type III (in case`1 = `2) are sim-
ply the centers of the vertex spaces with coordinates(−ai, −bi). The determination of singularity
loci of Type II is, however, a cumbersome task due to the existence of the radicals

√
Γi. Eliminating

the radicals leads to a polynomial of high degreecorresponding to all eight branch sets.
To our best knowledge, the only work attempting to resolve this problem has been reported by

Gosselin and Wang (1997). In that work, the authors have concluded that the resulting polynomial
is of degree 64 iny and 48 inx even though they have only considered a simplified 3-RRRPPM
design with collinear base and platform joints. Their remark that the reason for the high degree is
the fact that the singularity loci are for all branch sets and not only for a single one as well as the
high degree itself has motivated our research.

Indeed, in the next two sub-sections, we will describe the procedure used by us to prove that
the degree is in fact 42 using the computer algebra system Maple∗. Without loss of generality, we
selectO ≡ O1 andC ≡ B1. This implies thata1 = b1 = c1 = d1 = 0. In addition we select
the basex-axis to pass through pointO2 which implies thatd2 = b2. Note, however, that in the
parameterization that we use, selecting the mobile platform axis to pass through pointB2 does not
imply any significant simplification.

∗The programs are available fromhttp://www.parallemic.org/Reviews/Review001.html
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2.1 Special Case: Proximal and Distal Links of Equal Lengths

Let us first consider the special case when`1 = `2 despite the fact that it leads to singularities of
Type III. The reason is that in this case, we may obtain the polynomial in symbolic form. We render
our problem dimensionless and set`1 = `2 = 1. Once the JacobianJq is expressed inx, y, and the
parametersai, bi, ci, di, andρi, we follow the procedure described below:

S1. Substitute the expressionsδi

√
Γi with the parameters∆i.

S2. Obtaindet(Jq). The denominator of this determinant is8ρ1ρ2ρ3. Indeed,Jq is not defined
whenBi ≡ Oi, i.e., whenρi = 0. Eliminating these possibilities, we consider further only the
numerator,E . This numerator is a function ofx andy that cannot be generally factored and
contains the three radicalsδi

√
Γi (actually the parameters∆i) and the parametersρi. Note,

that this is the only expression that corresponds to the singularity loci for the given branch set.

S3. Eliminate the radical in
√

Γ1. RewriteE in the formC1∆1 = C2, whereC1 andC2 do not
contain∆i. Next, raise to square leading toC2

1Γ1 = C2
2 . Both Γ1 andC2

2 are multiples ofρ1

which can, therefore, be canceled. At this step, our new expression,E1 = C2
1(Γ1/ρ1)−C2

2/ρ1,
does not containδ1 and, hence, corresponds to two branch sets.

S4. Split E1 and substitute the terms∆2
2 and∆2

3 with respectivelyΓ2 andΓ3. Note, that if we
attempt to perform this substitution directly inE1, the resulting expression becomes too large
to allow to be further handled symbolically. Thus,E1 is written in parts as

E1 = E1,1 + E1,2∆3 + E1,3∆2 + E1,4∆2∆3 + E1,5 + E1,6 + E1,7∆2 + E1,8∆3 + E1,9

E1,1 = C0,0/(ρ2ρ3) E1,4 =
(C1,1/(ρ2ρ3)

) E1,7 =
(C1,2/ρ2

)
(Γ3/ρ3)

E1,2 =
(C0,1/(ρ2ρ3)

) E1,5 =
(C0,2/ρ2

)
Γ3/ρ3 E1,8 =

(C2,1/ρ3

)
(Γ2/ρ2)

E1,3 =
(C1,0/(ρ2ρ3)

) E1,6 =
(C2,0/ρ3

)
Γ2/ρ2 E1,9 = C2,2(Γ2/ρ2)(Γ3/ρ3)

whereCj,k (j, k = 0, 1, 2) are coefficients that do not contain∆2 or ∆3. Furthermore, all the
divisions can be performed exactly.

S5. Eliminate the radical in
√

Γ2:

E2 = E2
2,1Γ2 + E2

2,2Γ2Γ3 + 2E2,1E2,2Γ2∆3 − E2
2,3 − E2

2,4Γ3 − 2E2,3E2,4∆3

E2,1 = E1,3 + E1,7, E2,2 = E1,4, E2,3 = E1,1 + E1,5 + E1,6 + E1,9, E2,4 = E1,2 + E1,8

The new expressionE2 does not containδ1 or δ2 and, hence, corresponds to the singularity loci
of four branch sets.

S6. Eliminate the radical in
√

Γ3:
E3 = (2E2,1E2,2Γ2 − 2E2,3E2,4)2Γ3 − (E2

2,1Γ2 + E2
2,2Γ2Γ3 − E2

2,3 − E2
2,4Γ3)2

Finally, we substitute the expressions forρi in E3, which becomes a polynomial in the variables
x andy but cannot be expanded in symbolic form. However, it can quickly be verified to be of degree
48 using the Maple commandcoeff( E3,(x,y)) . Furthermore, if we use the same command to
extract and simplify all the coefficients ofE3 corresponding to the terms of degree greater than 42,
we can observe that they are all zero. In addition, the coefficients of the terms of degree less than 8
are also zero which makesE3 a fewnomialof degree 42.
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2.2 General Case

In the case wheǹ1 6= `2, we set only`1 = 1 and follow a much simplified procedure. Firstly,
we assignrandom integer valuesto the coefficientsai, bi, ci, anddi since the procedurecannot be
performed symbolically. Then, we eliminate the radical in

√
Γ1 and divide the resulting expression

E1 by ρ1. Note that in this caseΓi is not a multiple ofρi. Next, we substitute the terms∆2
2 and∆2

3

with respectivelyΓ2 andΓ3. Then, we eliminate the radical in
√

Γ2, divide the resulting expression
E2 byρ2

2, and substitute∆2
3 with Γ3. Finally, we eliminate the radical in

√
Γ3 and divide the resulting

expressionE3 by ρ4
3. The polynomialE3 is again of degree 42, but this time the coefficients of all

possible terms are generally non-zero (except for the odd-power terms of degree 42).

3 Singularity Loci of 3-RRRPPMs with Coincident Platform Joints

In general, the polynomialE3 cannot be factored. Special designs such as base and platform being
equilateral triangles or collinear do not lead to simplified results. One particular case, however,
simplifies greatly that polynomial and allows the singularity loci to be geometrically described.
This case also brings insight into the complex relationship between branches and singularity loci.

The particular case of interest occurs simply when two platform joints are coincident, e.g.,
whenB1 ≡ B2 (Fig. 1b). Using the parameterization introduced previously, this case implies that
a1 = b1 = c1 = d1 = b2 = c2 = d2 = 0. Now, we can either use the approach described in the
last section or observe the following. As mentioned before, singularities of Type II occur when the
lines associated with the distal links intersect at one point or are all parallel. Since two of the lines
always intersect at pointC, we have only two possible cases:

Case 1:PointsC, B3, andA3 are collinear.
This case implies thatn3 = ±[− sinφ, cos φ]T . Hence, the corresponding singularity loci

consists of two circles of radius̀1 and centers with coordinateso3 + n3(`2 + ||s3||) with the
following algebraic equations:

(
x + a3 ± `2c3/

√
c2
3 + d2

3

)2

+
(

y + b3 ± `2d3/
√

c2
3 + d2

3

)2

= `2
1. (14)

The following important observation can now be made. Each of the two circles is separated by
lines parallel ton3 into semicircles corresponding to the two possible branches of chain 3.

Case 2:PointsA1, C, andA2 are collinear.
This case has two subcases. In the first one, pointsA1 andA2 coincide which may occur at two

locations symmetric with respect to lineO1O2. Thus, the corresponding singularity loci are two
circles given by the following equations:

(x + a2/2)2 +
(

y ±
√

`2
1 − a2

2/4
)2

= `2
2. (15)

Again, each of the circles is divided into two semicircles by the linesO1A1 andO2A2 distin-
guished respectively by the branch indicesδ1 andδ2. Thus, each circle is divided into four arcs
corresponding to four different pairs of branch sets.
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The second subcase occurs whenA1 6≡ A2. Thus, the singularity loci are the coupler curve of
the four-bar mechanismO1A1A2O2, defined by the following sextic (Hunt, 1978):

(x+a2/2)2(x2 +a2x+ `2
2− `2

1 +y2)2 +y2(x2 +a2x+a2
2/2+ `2

2 − `2
1 +y2)2− `2

2a
2
2y

2 = 0. (16)

This sextic, will also be divided in four parts, each corresponding to a branch subset defined by
δ1 andδ2. Note that the sextic is symmetric with respect to they-axis and the linex = −a2/2.
Indeed, the sextic can be represented by the following parametric equation:

x = ±% cos ϑ − a2/2, y = ±% sin ϑ (17)

where

% =
1
2

√
4(`2

1 − `2
2) − a2

2(1 − 2 cos2 ϑ) ± 2a2 sin ϑ
√

4`2
2 − a2

2 cos2 ϑ, for 0 ≤ ϑ ≤ π/2, (18)

where% is the distance between pointC and the center of lineO1O2, referred to as pointOc, andϑ
is the angle between thex-axis and the lineOcC.

Note, however, that the sextic described by eq. 16alwayshas a solution at(−a2/2, 0), which
in some cases may be an isolated point that is actually outside the constant-orientation workspace,
while if eq. 18 has this point as a solution, the point isnot isolated.

In conclusion, for a given branch set, we have two semi-circles defined byδ3, and a pair (sym-
metric with respect to lineO1O2) of circular arcs and arcs from a sextic defined byδ1 and δ2.
All of these geometrical curves are parts of geometric objects defined by parametric equations and
constrained by limits on the parameters that can easily be computed.

4 Examples and Discussions

Based on a simple discretization approach, we have obtained the singularity loci corresponding to
all branch sets for two 3-RRRPPM designs and represented them in Figs. 2 and 3. In these figures,
the singularity loci of Type II are plotted in continuous line, while the boundaries of the constant-
orientation workspaces are drawn in dashed line.

Following the approach presented in the previous section, we have also obtained the singularity
loci corresponding to all branch sets for a given 3-RRRPPM design with two coincident platform
joints and represented them in Fig. 4. In this figure we have plotted in dashed line the complete
vertex spaces. In all three figures, the points marked with the star symbol represent the centers of
the vertex spaces. Also, note that the figures are not drawn to the same scale. More examples are
available at the same web address as the Maple programs.

Finally, for the case of 3-RRR PPMs, kinematically equivalent to 3-RPR PPMs, we refer the
reader to (Sefrioui and Gosselin, 1995). Briefly, we have the same vertex spaces and constant-
orientation workspace but the singularity loci of Type II are simplequadratic curvesor the whole
workspace. However, the singularity loci are branch-independent and are the same for all eight
branch sets. Indeed, the singularities of 3-RRR PPMs depend on the linesOiBi. Thus, the singu-
larity loci of Type II are completely independent from the singularity loci of Type I, i.e., the vertex
spaces. In addition, the singularity loci are greatly simplified if the PPM has a symmetric geometry.
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Figure 2: Singularity loci corresponding to all branch sets (`1 = `2 = 1, a2 = −0.852, b2 = 0,
c2 = 0.889, d2 = 0, a3 = −0.426, b3 = −0.738, c3 = 0.444, d3 = 0.770).

Figure 3: Singularity loci corresponding to all branch sets (`1 = 1, `2 = 1.350, a2 = −1.150,
b2 = 0, c2 = 1.200, d2 = 0, a3 = −0.575, b3 = −0.996, c3 = 0.600, d3 = 1.039).

8



Figure 4: Singularity loci corresponding to all branch sets (`1 = 1, `2 = 0.750, a2 = −1.250,
a3 = −0.425, b3 = −0.825, c3 = 0.325, d3 = 0.425).

Based on the detailed study of examples like the ones presented herein and on the procedure for
obtaining the polynomial of degree 42, we may summarize the following list of observations for the
singularity loci of 3-RRRPPMs:

• No polynomial exists representing the singularity loci of Type II for a given branch set. The
corresponding expression contains at least one radical.

• The singularity loci of Type II are always inside the vertex spaces and if a point of contact
exists, then they are either tangential or normal to a vertex space at that point.

• At the points of contact, a change of a branch index occurs. Indeed, Fig. 4 illustrates how each
curve (a circle or the sextic) is separated into arcs corresponding to the different branches by
the points at which the curves are tangent to the vertex spaces.

• If the singularity loci of Type II extend outside the constant-orientation workspace, then there
is a factorization in the polynomial of degree 42.

• The singularity loci of Type II for a given branch set always divide the workspace into separate
regions, i.e., they are either closed curves or end at the workspace boundaries.

• The singularity loci of Type III (wheǹ1 = `2), i.e., the centers of the vertex spaces, are part
of the singularity loci of Type II.
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5 Conclusions

In this paper, we make important theoretical considerations regarding the singularity loci of planar
parallel manipulators with revolute joints. We show that the polynomial representing the singularity
loci of Type II for all branches is of degree 42. We also point out a simplified manipulator design
for which the singularity loci are simple geometric entities defined by parametric equations. While
we do not propose any general method for the determination of the singularity loci for a given
branch set, we present discussions that are important in the design of such parallel manipulators.
For example, designers might consider trajectory planning with branch change in order to follow
trajectories free of singularities of Type II that would otherwise be impossible for a single branch
set. The change of branch can be accomplished, for example, by using some mechanical or elec-
trical switch device placed at each intermediate revolute joint that automatically switches when the
corresponding serial chain is fully stretched.
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