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Abstract

Parallel mechanisms frequently contain an unstable type of singularity that has no counterpart in

serial mechanisms. When the mechanism is at or near this type of singularity, it loses the ability to

counteract external forces in certain directions. The determination of unstable singular con�gurations in

parallel robots is not trivial, and is usually attempted via exhaustive search of the workspace using an

accurate analytical model of the mechanism kinematics.

This paper investigates the determination of unstable singular poses for the platform type of parallel

mechanisms using a coordinate-independent approach. We also suggest a joint braking method for the

trajectory control in the presence of such singularities.

1 Introduction

Parallel robots provide a sti� connection between the payload and the base structure, with pose accuracy
that is superior to serial chain manipulators. The principal drawbacks concerning parallel robots are their
limited workspace, and the complexity of singularity analysis [5, 6, 7]. In contrast to serial chain manip-
ulators, singularities in parallel mechanisms have di�erent manifestations. This issue has been studied in
the multi-�nger grasping context in [8, 9] and more recently for general parallel mechanisms in [10, 11, 14].
In [10], the singularities are separated into two broad classi�cations: end-e�ector and actuator singularities.
The former is comparable to the serial arm case, where the end-e�ector loses a degree-of-freedom in the
task space. The latter is de�ned when a certain task wrench cannot be resisted by active joint torques.
Or equivalently, the task frame can move even when all the active joints are locked. These are called the
unstable con�gurations in [14] which correspond to unstable grasps in the multi-�nger grasp literature. The
unstable type of singularity is obviously unattractive, as unpredictable task motion could result.

The singularity condition in parallel mechanisms has been addressed using manipulability measures. Bicchi
et al. [8] present a manipulability measure for multi�ngered grasps in the form of a Rayleigh Quotient, and
presents methods of �nding minimum e�ort trajectories. This work is expanded to include passivity in the
joint space in [11, 12]. Gosselin and Angeles [15] start with a modi�ed version of the fundamental grasping
constraint where active joint rates are mapped to task rates, and de�nes three types of singularity via the
calculation of the determinant of two matrices. This is later used to develop a kinematic isotropy measure
implemented as a design tool in [21]. Chiacchio et al. [9] explore the velocity-torque duality and �nd the
composite Jacobian by post-multiplying the hand Jacobian by the psuedoinverse of the grasp map. The
paper provides examples of cooperative mechanisms to compare the system level approach to force-velocity
polytopes in [22]. Park et al. [10] employs a psuedo-Riemannian metric to analyze manipulabilty. The
method treats passivity in the joint space and mechanism redundancy, and gives an excellent treatment of
the non-degenerate and degenerate actuator singularity.

Several authors have proposed methods to determine unstable con�gurations in platform manipulators
through direct analysis of the forward kinematic constraints [1, 2, 3]. In [1], Husty investigates seven
constraint equations found from the forward kinematics of the GriÆs-Du�y type platform. He shows that
the mechanism exhibits self-motion of the end-e�ector at every pose in its workspace.

Actuator redundancy is proposed to deal with singularities and improve mechanism isotropy in the de-
velopment of a spherical parallel manipulator in the work by Leguay-Durand and Reboulet [25]. Actuator
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redundancy is also used in Ryu et al. [16, 17, 18] to eliminate unstable singularities found after the fabrication
of the Eclipse universal machining mechanism.

This paper reviews the di�erential kinematics of general parallel mechanisms, and addresses the determi-
nation of unstable end-e�ector poses of platform type of parallel mechanisms using a coordinate-independent
approach. The paper then addresses trajectory control of such mechanisms by using brakes in the neighbor-
hood of unstable singularities.
Terminology and Notation: Given a matrix G, we use eG to either denote the annihilator of G ( eGG = 0) or

the transpose of the annihilator of GT (G eG = 0). The distinction between the two cases will be clear from
the context.

2 Di�erential Kinematics of Parallel Robots

This section considers the di�erential kinematics of general rigid multibody systems. Consider a general
mechanism subject to kinematic constraints. The generalized coordinate (with the constraints removed) is
denoted by �. The active joint angles are denoted by �a and passive ones by �p. We order the angles so that
�T = [�Ta ; �Tp ]. For platform type of mechanisms, the kinematics are given by the grasping constraint:

Jh _� = GT vT (1)

The tall matrices GT and Jh (the Grasp Map and hand Jacobian, respectively) map the joint to task body
velocities that satisfy the constraints associated with the contacts between individual mechanism �ngers and
the grasped object. For force closure grasps, (1) can be rewritten.

vT = GT y
Jh _� = JT _� (2)

0 = fGT Jh _� = JC _� (3)

where fGT is the annihilator of GT . Partition JC and JT according to the dimension of �a and �p:

JC =
�
JCa

JCp

�
JT =

�
JTa JTp

�
:

Then (3) can be used to solve for _�p:
_�p = �Jy

Cp
JCa

_�a + eJCp
� (4)

where col( eJCp
) spans the null space of JCp

, and � is arbitrary. Substituting into (2), we have

vT = (JTa � JTpJ
y
Cp

JCa
) _�a + JTp

eJCp
�: (5)

De�ne the composite manipulability Jacobian as

JT = JTa � JTpJ
y
Cp

JCa
: (6)

In this paper, we will not address mechanisms that are under- or redundantly actuated, thus JT is square.
There are two cases of singularities in parallel robots:

1. Unmanipulable Singularity: This corresponds to con�gurations at which JT loses rank (minimum
singular value of JT is zero).

2. Unstable Singularity: This corresponds to con�gurations at which JTp
eJCp

6= 0 (maximum singular

value of JT is in�nite).

It may happen that JTp eJCp
= 0 but eJCp

6= 0. This corresponds to the existence of self motion involving only
passive joints in the mechanism but does not a�ect the task motion.

We can now de�ne the manipulability ellipsoid as the ellipsoid corresponding to JT . Additional weighting
matrices for active joint velocities and task velocities can also be included. Manipulability ellipsoids provide
a geometric visualization for singular con�gurations. At an unmanipulable singularity, the ellipsoid becomes
degenerate (the length of one or more axes become zero, implying that the ellipsoid has zero volume).
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At an unstable singularity, the ellipsoid becomes in�nite (the length of one or more axes become in�nite,
implying that arbitrary task velocity is possible even when active joint velocities are constrained). When the
mechanism is at a con�guration close to an unstable singularity, the ellipsoid would become badly conditioned
as one or more axes would be very large. When the mechanism is close to an unmanipulable con�guration,
the ellipsoid would also be badly conditioned, since the length of one or more of the axes will be close to
zero. Hence, a measure of the \closeness" to singularity may be chosen to be the condition number of JT .
However, this measure should be used in conjunction with the minimum singular value of JT to distinguish
between the two types of singularities.

The unstable singularity, unique to parallel mechanisms, presents a dangerous situation. When the
mechanism moves through these poses, it is unable to resist speci�c task wrenches, which can result in
undesirable and unavoidable end-e�ector motions.

2.1 Unstable Singularity in Platform Type Parallel Mechanisms: A Closer Look

Finding solutions to 0 = 1
det(JT )

is diÆcult, thus determination of unstable con�gurations in parallel

mechanisms is usually performed by an exhaustive search of the workspace using an accurate inverse kine-
matic model. This is not only computationally intensive, especially for 6-DOF mechanisms, but also is not
guaranteed to discover these poses [16].

In this section, we take a coordinate independent approach to �nding the singularities. The 6-DOF Eclipse
[16] will be used to illustrate the approach. We will focus on representing JCp

in a coordinate-independent
form.

Consider the 6-DOF parallel mechanism shown in Figures 1{2. The origin of the inertial frame, O, is
chosen to be at the center of the base. The three base joints, denoted a, b, c, rotate about O. Each base joint
is connected to a prismatic joint which in turn connects to a 1-DOF revolute joint with the axis of rotation
tangential to the base circle. The three revolute joints, denoted 1; : : : ; 3, connect to corresponding spherical
joints, denoted 4; : : : ; 6, spaced symmetrically about the platform.

Figure 1: Picture of Eclipse (used with permission from the Seoul National University)

The forward kinematics can be compactly written in the following form:

R0E = R01R14R4E
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Figure 2: Schematics of Eclipse

= R02R25R5E

= R03R36R6E (7)

~p0E = ~p0a + ~pa1 + ~p14 + ~p4E

= ~p0b + ~pb2 + ~p25 + ~p5E

= ~p0c + ~pc3 + ~p36 + ~p6E (8)

Let v̂ denote the cross product form of the vector v, �0i the rotation angles of the base joints, and �i;i+3 the
rotation angles of the pivot joints, we have

R0i = ebz�0i Ri;i+3 = e
dR0ihi�i;i+3

where z =
�
0 0 1

�T
, hi is the tangent vector to the base circle at the base joint, written in the inertial

frame, when the mechanism is in the zero con�guration. Written in the inertial frame, the translational
kinematics is

p0E = R01p0a +R01zd1 +R01R14p14 +R0Ep4E

= R02p0b +R02zd2 +R02R25p25 +R0Ep5E

= R03p0c +R03zd3 +R03R36p36 +R0Ep6E :

Note that we have parameterized the primatic joint so that the length of the joint is 0 at the zero con�guration.
The three base revolute joints (rotation about the base circle) and the three primatic joints are active

(i.e., �0i and di, i = 1; : : : ; 3). The pivot joint angles, �i;i+3, and the platform spherical joints, Ri+3;E , are
passive.

The di�erential kinematics in the coordinate-free form is given by

�
~!0E
d~p0E
dt0

�
=

"
~z 0 ~h1 I

~z � ~p0E ~z ~h1 � ~p1E �~p4E�

#2664
_�01
_d1
_�14
~!4E

3775

=

"
~z 0 ~h2 I

~z � ~p0E ~z ~h2 � ~p2E �~p5E�

#2664
_�02
_d2
_�25
~!5E

3775
4



=

"
~z 0 ~h3 I

~z � ~p0E ~z ~h3 � ~p3E �~p6E�

#2664
_�03
_d3
_�36
~!6E

3775 : (9)

To reduce the complexity, we make the following change of variables (which is always possible for platform
types of parallel mechanisms):

~!4E = ~!0E � ~h1 _�14 ~!5E = ~!0E � ~h2 _�25 ~!6E = ~!0E � ~h3 _�36: (10)

To investigate unstable singularities, we lock all the active joints (i.e., set all the active joint rates to zero):

JCp
_�p =

"
~h1 � ~p14 �~h2 � ~p25 0 ~p54�
~h1 � ~p14 0 �~h3 � ~p36 ~p64�

#2664
_�14
_�25
_�36
~!0E

3775 : (11)

Representing in a coordinate frame, JCp
is a 6 � 6 matrix. The mechanism is unstable if and only if that

JCp
loses rank. To simplify JCp

further, we post-multiply JCp
by a non-singular matrix (hn denotes the unit

vector perpendicular to the platform):

Jcp1 = JCp

2664
1 0 0 0 0 0
0 �1 0 0 0 0
0 0 �1 0 0 0

0 0 0 ~p64 ~p54 ~hn

3775 :

Note that
h
~p64 ~p54 ~hn

i
is nonsingular, since ~p64 and ~p54 are always independent and ~hn is orthogonal

to both of these vectors. After the multiplication and simplication using elementary column operations, we
obtain

Jcp1 =

"
~h1 � ~p14 ~p54 � ~hn ~h2 � ~p25 ~hn 0 0
~h1 � ~p14 ~p64 � ~hn 0 ~0 ~h3 � ~p36 ~hn:

#
(12)

This matrix is singular if if any one of the following conditions hold:

1. Let �1, �2, �3, as the planes that contain (~h1; ~p14), (~h2; ~p25), (~h3; ~p36), respectively (i.e., the planes
that contain the tangent vector to the base circle and the support arms). The mechanism is singular if
any one of these planes, �i, is coplanar with the platform. This is the same singularity that was found
in [16] using numerical means. Speci�cally,

~h1 � ~p14 k ~hn or ~h2 � ~p25 k ~hn or ~h3 � ~p36 k ~hn: (13)

2. There are also additional singularities that have not appeared in the literature. De�ne the following
conditions:

(A1): (~hn � (~hn � ~p45)) � (~h1 � ~p14) = 0

(A2): (~hn � (~hn � ~p45)) � (~h2 � ~p25) = 0

(B1): (~hn � (~hn � ~p64)) � (~h1 � ~p14) = 0

(B2): (~hn � (~hn � ~p64)) � (~h3 � ~p36) = 0

(C1): (~hn � (~hn � ~p56)) � (~h3 � ~p36) = 0

(C2): (~hn � (~hn � ~p56)) � (~h2 � ~p25) = 0

The singular conditions then consist of any one of the two conditions in groups A, B, or C, and any
one of the two conditions in the remaining two groups. Enumerating all combinations, we end up with
12 singularity conditions:
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f (A1,B1), (A1,B2), (A1,C1), (A1,C2), (A2,B1), (A2,B2), (A2,C1), (A2,C2), (B1,C1), (B1,C2),
(B2,C1), (B2,C2) g.

To characterize these conditions geometrically, recall the de�nition of �1, �2, �3, as the planes that
contain (~h1; ~p14), (~h2; ~p25), (~h3; ~p36), respectively. Then the singularity conditions above have the
following interpretation:

(A1): ~p45 ? �1

(A2): ~p45 ? �2

(B1): ~p64 ? �1

(B2): ~p64 ? �3

(C1): ~p56 ? �3

(C2): ~p56 ? �2:

This means that, among the three sides of the triangle linking the spherical joints on the platform, if
any two lie in the planes (�1; : : : �3) that they are connected to (there are two possibilities each), the
mechanism is singular. A particular case is as shown in Figure 3 where the platform face is vertical
which may occur during turning type of operation.

3

2

5

6

4

h2, h3, hn

Figure 3: Example of Eclipse Singularity

We will also use a planar platform to illustrate the coordinate-independent approach to �nding unstable
singularities. Consider a planar platform mechanism as shown in Figure 4. After eliminating the joint
velocity _�4; : : : ; _�6 as in (10) and locking the active primatic joints of the legs, the constraint Jacobian can
be written as

JCp
�p =

�
~z � ~p14 �~z � ~p25 0 ~z � ~p45
~z � ~p14 0 �~z � ~p36 ~z � ~p46

�2664
_�1
_�2
_�3
_�E

3775 : (14)

The singular con�gurations are given by (see Figure 5):

(A): ~p14 k ~p25 k ~p36
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(B): ~p14 k ~p25 k ~p45

(C): ~p25 k ~p36 k ~p45

(D): ~p14 k ~p36 k ~p45:

(E): ~p14 k ~p4I and ~p25 k ~p5I

where I is any point along ~p36

Singularity (A) corresponds to all three legs parallel. Singularities (B)-(D) correspond to any two of the legs
collinear with the platform. Singularity (E) corresponds to all three legs intersecting at the point I . It is
easy to see that JCp

loses rank for singularities (A)-(D). To see Case (E), the following elementary column
operations are helpful:

JCp
=

�
~z � ~p14 �~z � ~p25 0 ~z � ~p45
~z � ~p14 0 �~z � ~p36 ~z � ~p46

�
�

�
~z � ~p14 �~z � ~p25 0 ~z � ~p4I � ~z � ~p5I
~z � ~p14 0 �~z � ~p36 ~z � ~p4I � ~z � ~p6I

�
�

�
~z � ~p14 �~z � ~p25 0 ~z � ~p4I � ~z � ~p5I
~z � ~p14 0 �~z � ~p36 ~z � ~p4I

�
(since ~p6I is collinear with ~p36).

Though the coordinate{free form of JCp
facilitates �nding geometric conditions for the unstable singularities,

it is diÆcult to state in general if all the singularities are found. In the case of the planar platform, through
a careful analysis of the null space of JCp

for all possible cases, we can in fact conclude that the above are
all possible singularities.

x

y

1 2

3

4 6 5

d1 d2

d3

E

Figure 4: Planar Platform Mechanism

3 Methods for Arresting Kinematic Instability

Kinematic instability is a direct consequence of passivity in the parallel mechanism. At certain poses,
the active joints cannot resist task wrenches in certain directions, and end-e�ector self motion is possible
due to passive joint self motion. It is intuitive that solutions to this problem involve either redundancy or
application of additional constraint.

3.1 Redundant Actuation

As an example, we again consider a planar Stewart Platform shown in 6. The pose of the mechanism in
�gure 6 is unstable. Forces applied to the end-e�ector in a direction orthogonal to the actuators cannot be
resisted by the mechanism.

A possible remedy for this is to introduce a new set of active joint space variables in the form of an
additional active kinematic chain. An example of this is shown in �gure 7, where a 2R planar \�nger" grasps
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(a) (b)

(c) (d)

(e)

Figure 5: Singular Con�gurations of Planar Platform Mechanism

text

Passive Revolute Joints

Prismatic Actuators

End Effector

Figure 6: Planar Stewart Platform in Unstable Pose

the Stewart Platform at a passive joint. The resulting mechanism is a closed kinematic system with four
chains, and is stable in a kinematic sense.

While the new mechanism is stable, this approach has several problems. The cost of the complete mecha-
nism is considerably increased as new actuator and sensor hardware is required. The support \�nger" needs
to �nd the grasp point on the Stewart Platform (note that this point can be anywhere on the mechanism),
and link up appropriately. This may require complex reference sensing, and an intricate end-e�ector gripper
for the support mechanism. With the support �nger attached to the platform, the mechanism is redundantly
actuated, as �ve joint-space DOFs map to three task space DOFs. It is suggested that the intermittent need
for this support may not warrant its complexity.

Another approach involving redundant actuation activates an existing passive joint in the mechanism.
Figure 8 is an example using the Stewart Platform where one of the base revolute joints is activated. The
mechanism is has one redundant degree of freedom, and is stable. While this method does not have the
complexity of mating mechanisms, it may also not be feasible to replace a passive joint with actuator
hardware and sensing.

3.2 Additional Constraint

Another method to eliminate unstable singularity is to apply additional constraint to the mechanism. In
past literature, this has taken the form of bracing, where contact with a �xed surface or passive mechanism
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Passive Revolute Joints

Prismatic Actuators

End Effector Additional Kinematic Chain

Active Revolute Joints

Figure 7: Planar Stewart Platform with Additional Active Kinematic Chain

text

Passive Revolute Joints

Prismatic Actuators

End Effector

Activate Passive Revolute Joint

Figure 8: Planar Stewart Platform with Activated Passive Joint

constrains the robot from motion in selected task directions. A classic example of bracing is the application
of the bridge to the pool cue. In a planar context, the pool cue grasped in one hand is manipulable in 3
DOF. However, the task requires little or no motion o� the cue axis. The bridge applies constraint to the
cue to disallow this motion. While this is not an example of unstable singularity as the manipulator is serial,
the application reduces manipulability, which can be a key trade-o� in kinematically stabilizing a parallel
robot.

Figure 9 shows the planar Stewart Platform with an external brace. The contact between the platform
and the brace is such that no motion parallel to the end-e�ector is possible, thus the mechanism is stable.
This is another illustration of the trade-o� between manipulability and stability. The method of external
bracing has many of the same complications as redundant actuation using a second active �nger, including
the task where the Stewart Platform \�nds" the external brace, and the required grasp is made. Referring
again to the pool cue example, the mating of the cue to the bracing hand or bridge requires stereo vision
(eyes), and tactile sensing (skin). While this action is taken somewhat for granted by humans, it can be
an involved task for robots. The complications seem somewhat expensive in the kinematic stablization role

text

Passive Revolute Joints

Prismatic Actuators

End Effector

Passive Revolute Joint

"Pin" Connection

Figure 9: Planar Stewart Platform with External Brace
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text

Passive Revolute Joints

Prismatic Actuators

End Effector

Apply Brake to Passive Joint

Figure 10: Planar Stewart Platform with Braked Passive Joint

considering the the constraint delivered is required only in a small subset of the robot's workspace.
Analogous to activation of a passive joint is applying constraint using a passive joint, illustrated on the

Stewart Platform in �gure 10. This method applies a brake to the passive joint when the mechanism is in
the close neighborhood of unstable singularity. The trade-o� is that the mechanism is unmanipulable in
the locked condition. As the brake is embedded in the mechanism, there is no requirement of an external
mechanism, and the cost and signi�cant complexity of this is eliminated. The passive joint brake may provide
a less expensive and eÆcient alternative to redundant actuation.

4 Conclusions

Parallel mechanism o�ers advantages such as superior load to weight ratio and sti�ness. However, �nding
and avoiding unstable con�gurations in the workspace is in general a diÆcult task. Singularity determination
is usually done through an exhaustive search of the workspace. This procedure is time consuming, may miss
some singularities due to the granularity of the search, and does not o�er ready geometric insight of these
con�gurations. In this paper, we present a coordinate-free approach to �nding the unstable singularities. We
illustrated the procedure using a 6-DOF parallel machining center and a 3-DOF planar platform. Though
we cannot yet claim to have located all of the singularities, this procedure has already produced singularities
that have not been previous found.

We have also discussed di�erent strategies in dealing with the unstable singularities during manipulation,
including redundant actuation, additional constraint, and active braking.

Current research focuses on determining necessary and suÆcient conditions for unstable singularities using
the coordinate-free form of the constraint Jacobian, and stability condition for motion control with active
braking.
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