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Abstract: Within this paper an analysis of the Hexapod Telescope's kinematic
structure is presented. We develop a specially adapted algorithm for the direct kine-
matics of the device and a new method for the singularity analysis.

1 Introduction

The 1.5-m-HEXAPOD-Telescope (HPT) is a unique construction world-wide. It
presents revolutionary new ideas in astronomical telescope design: not only its me-
chanics but also its optical telescope assembling. It was originally developed by the
company VERTEX (former Krupp Industrietechnik) in collaboration with the astro-
nomical institute of the University in Bochum. Instead of the traditional two axes
support, a six degree of freedom Stewart-Gough platform (SGP) mechanism is used
to permit the telescope the right pointing and tracking of stellar objects. The HPTs
primary mirror is realized as a hybrid structure consisting of a light-weight Carbon
Fibre Reinforced Plastic (CFRP) structure permanently �xed to a 55 mm thin Ze-
rodur faceplate, produced by Carl Zeiss in Jena, that forms the re�ecting surface.
Piezo-electrical ceramic positioners, integrated into the CFRP structure, serve as ac-
tive interface between the CFRP structure and the optical surface. Compared to a
classical telescope of the same mirror diameter, the Hexapod-Telescope allows for a
weight reduction by a factor of 15! Both the low weight and the extremely good
optical quality make the HPT an ideal candidate for larger telescopes in space, the
moon and the stratosphere. For the near future the telescope will be placed, for as-
tronomical research, at one of the best astronomical places on the earth; at the Cerro
Armazones in Chile (Chini [1]).

From point of view of Kinematics the design of this platform has the classical
layout of a 6-6 Stewart-Gough platform manipulator, as it is used for �ight simula-



Figure 1: Hexapod Telescope

tors or milling machines. It was built already 10 years ago but because of lack of
research money a lot of theoretical issues (like control algorithms, direct kinematics
singularity analysis) never were solved and therefore it never went into operation.
Recently theoretical research on the kinematics of the HPT was resumed and within
this contribution the �rst results are reported. The paper is organized as follows: The
�rst part deals with an specially for the HPT adapted version of the general solution
algorithm of the direct kinematics and the second part reports some results on the
singularity theory of this manipulator. We believe that the methods reported herein
can be used for all parallel manipulators of a similar design.

2 Direct Kinematics

Within this section we shall adapt the direct kinematics algorithm of a general
Stewart-Gough Platform developed in [3] to the HPT. Because of the special ge-
ometry of this example we shall have simpli�cations of the general algorithm and
we shall show that some special constraint equations can be produced. All this sim-
pli�cations will allow us to keep the joint parameters general for a big part of the



computation.
The HPT consists of a base and a platform connected by six legs via ball and

socket joints at the base and U-joints at the platform. The anchor points of the
joints are speci�ed in a geometric special way: They are located on the vertices of a
semi-regular hexagon which is generated by the following geometric process: take an
equilateral triangle and cut it with a circle centered at the centroid of the triangle.
The six points of the intersection of the circle and the triangle are the vertices of the
semi-regular hexagon. Coordinate systems are attached to platform and base so that
the origin is located at the centroid of the hexagon and the x-axis is aligned with one
of the symmetry axes and the y-axis is in the plane of the hexagon. x-,y- and z-axes
form a right handed coordinate system (Fig. 2). The left side of Fig. 2 shows the
layout of the base anchor points (Bi) and the right side shows the platform anchor
points pi. The dimensions used by the manufacturer (VERTEX) are also shown in
this Figure. But for the calculation we need Cartesian coordinates Bxi; Byi; pxi; pyi
which are listed in the Table 2. Now we employ the kinematic mapping, introduced

Figure 2: Coordinates of the HPT

by Study [8] to map three-dimensional motions using the Study-parameters into a
seven-dimensional image space (Husty et al. [4]). A general anchor-point in the
moving system Mpi is denoted by:

Mpi =
�
1 ai bi 0

�T
; (1)



joint base (Bi) platform (pi)

no. Bxi Byi Bzi pxi pyi pzi

i [mm] [mm] [mm] [mm] [mm] [mm]

1 752 274 0 426 517 0

2 -139 788 0 235 627 0

3 -613 514 0 -661 110 0

4 -613 -514 0 -661 -110 0

5 -139 -788 0 235 -627 0

6 752 274 0 426 -517 0

Table 1: The nominal parameters of the HPT

whereas a general anchor-point in the base system will be denoted by

BBi =
�
1 Ai Bi 0

�T
; (2)

or expressed in non-homogeneous coordinates:

Mpi =
�
ai bi 0

�T
; BBi =

�
Ai Bi 0

�T
(3)

The transformation of the platform points Mpi to the base is given by:

Bpi =
B TM �M pi; (4)

where Study's parametrization was used for the parametrization of the transformation
matrix. Omitting the index i the expanded Eq.4 is:
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with

l = 2(y1x0 � y0x1 + y3x2 � y2x3);

m = 2(y2x0 � y0x2 + y1x3 � y3x1);

n = 2(y3x0 � y3x1 + y2x1 � y1x2):

(6)

With this parametrization a point (x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3); xi 6= 0
ful�lling the Study condition x0y0+x1y1+x2y2+x3y3 = 0 represents a valid position
of the platform coordinate system with respect to the base coordinate system.



To solve the direct kinematic problem we break up the platform so that the joints
and a piece of the platform, together with its mobile-system, hangs at the end of a
leg. This mobile-system has �ve degrees of freedom, because its only constraint is,
that the distance between the two anchor-points is constant. So the platform anchor-
point is constrained to move on the surface of a sphere, with constant radius. This
constraint is re�ected by Eq.7, developed in Husty [3].
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In Eq. 7 the coordinates of the base joint center are (A;B; 0)T and the platform joint
center is (a; b; 0)T . Furthermore the abbreviation R = A2+B2+a2+b2�r2 was used.
Note that this constraint equation is already a serious simpli�cation compared to the
general constraint equation in [3], because the z-coordinates of all the anchor points in
both base and platform are zero. Now we apply this equation to the HPT. We insert
the design parameters of Table 2 into the Eq. 7 and show how the general solution
algorithm simpli�es because of the symmetries of the design parameters. For each leg
we get a constraint equation hi (i = 1 : : : 6). One of these equations is displayed, all
others are similar.
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We compute di�erences of the constraint equations hi and two more helpful equations:

U1 = h1 � h6 (with S1 = (�R1 +R6)/64)
U2 = h2 � h5 (with S2 = (�R2 +R5)=32)
U3 = h3 � h4 (with S3 = (�R3 +R4)=32)
U4 = h1 � h2 (with S4 = (�R2 +R1)=4)
U5 = h5 � h6 (with S5 = (�R5 +R6)=4)
U6 = x0y0 + x1y1 + y2x2 + x3y3 (Study-quadric)

Expanded we have the surprisingly simple di�erence equations:
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U6 :x0y0 + x1y1 + y2x2 + x3y3 = 0

We add the following helpful equations:

U7 : h1 � h2 + h3 � h4 + h5 � h6 = 0 (with W1 = (R2 � R1 � R3 +R4 � R5 +R6)=32)

U8 : h4 � h5 = 0 (with S8 = R5 � R4)

In our example:
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Note that y0; y1; y2; y3 are linear in the di�erence equations and so we take U2; U3; U4

and U6 and solve for y0; y1; y2; y3. After that only the Euler parameters remain to be
solved for. At this point we still have the option to normalize the Euler parameters
and this case it is reasonable to set x0 = 1. With this assignment we have eliminated a
theoretical possible, but practical useless set of solutions where the telescope platform
would be rotated by 180Æ. Now the solutions for yi are substituted into the remaining
equations. Essentially only three di�erent equations remain: U7; U8; h1. U7 is still of
degree 2 and has not changed because it did not contain yi. U8 is a polynomial of
degree 4 and h1 is of degree 8. Using resultant method we eliminate x1 from these
three polynomials and create two new polynomials T1(x2; x3; Ri) and T2(x2; x3; Ri). T1
is of degree 6 in the variable x2 and T2 is of degree 16 in x2. But in both polynomials
x2 appears only in even powers:
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2

2
+ k2x

4

2
+ k3x

6

2
= 0

T2 : p0 + p1x
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In T1 and T2 ki; i = 0; : : : ; 3 and pi; i = 0 : : : 8 are functions of the variable x3 and the
leg parameters Ri. Note that the leg parameters are still general! It is not di�cult



to calculate the resultant of T1 and T2 to eliminate x2. We get a polynomial in ki
and pi which is of degree 11 squared. But unfortunately in back substituting for
ki and pi we get to big expressions. On the other hand there is no problem to do
this back substitution for a given set of leg parameters Ri. This results in the �nal
univariate polynomial which is of degree 18 (squared). It should be noted that the
�nal polynomial also could be computed by substituting the leg parameters into T1
and T2 and then performing the elimination of the variable x2. The remarkable fact
is that T1 and T2 can be stored and the computation of the univariate polynomial for
the direct kinematics of the HPT consists of substituting the leg parameters into T1
and T2, computing one resultant and a factoring of the resultant!1

3 Singularity Analysis

Within this section a singularity analysis of the HPT is presented. Singular con�gu-
rations are de�ned as con�gurations where the screws of the lines piBi are linearly
dependent. This means that the determinant of the of the matrix J consisting of the
six Plücker vectors of the lines is equal to zero. We refer to the general explanation
of this matrix in Karger [5], where an detailed explanation of the structure of matrix
J and its determinant was given. Generally this determinant represents a �ve dimen-
sional surface K on the six dimensional hyper surface given by the Study condition.
From [5] it is known that K is of degree eight and that this surface for a �xed position
of the platform is of degree three (see [6]). For the HPT it is no problem to com-
pute these surfaces for any position or orientation. Both surfaces can be visualized
because they live either in the three dimensional space (x0 : x1 : x2 : x3) when a
position is given or in the three dimensional space (l; m; n) when an orientation is
given. Translation parameters l; m; n can be computed by solving the linear system
Eq. 6.

Fig. 4 shows a degree three singularity surface belonging to a �xed orientation of the
platform. The chosen orientation is shown by the tripod. Fig. 3 shows a degree eight
singularity surface for a given orientation of the HPT. This surface is always inside
the unit sphere because the Euler parameters (x0 : x1 : x2 : x3) have been normalized
x2
0
+ x2

1
+ x2

2
+ x2

3
= 1. This singularity surface shows an obvious void around the

origin of the coordinate system. This void means that the platform has a certain

1A complete maple note book with this algorithm can be found on the �rst author's web page
http://techmat.uibk.ac.at/geometrie/husty/husty.html. In this note book the computation of all
polynomials and one complete solution for a set of leg parameters with back substitution and veri-
�cation is shown.



Figure 3: Singularity surface for

given position

Figure 4: Singularity surface for

given orientation

orientability about the origin without hitting a singularity. For a closer inspection of
this fact we prove the following:

Lemma:Whenever the platform and the base do not coincide, then for every po-

sition there exists a ball in the Euler parameter space with center (1 : 0 : 0 : 0) and
radius r > 0 which does not intersect the orientation singularity surface in real points.

Proof: To proof the lemma we simply substitute x0 = 1; x1 = 0; x2 = 0; x3 = 0
into the equation of the singularity surface detJ = 0 and this yields the result:

y3
3
= 0 (11)

The interpretation of this equation is as follows: By substituting x0 = 1; x1 = 0; x2 =
0; x3 = 0 into the singularity equation we look for all singular positions of the platform
when platform and base have the same orientation. After substitution of x0 = 1; x1 =
0; x2 = 0; x3 = 0 and y3 = 0 into Eq. 6 it turns out that the third order singularity
surface for this case is degenerated into the plane n = 0. So whenever the platform
and base coordinate system have the same orientation ("the home orientation") and
the origin of the platform coordinate system is not in the plane of the base, then there
exists a ball with center (1 : 0 : 0 : 0) and radius r > 0 which does not intersect the
singularity surface in real points.22

2This lemma can be proven even more generally: it is valid for any SGP whose anchor points are
in planes [7].



Practical considerations show that the above mentioned case is impossible for the
real HPT, because platform and base can never coincide. For any position of the origin
of the platform coordinate system outside of the plane z = 0 we have the fact that the
singularity surface has a void around the origin of the x1; x2; x3-coordinate system.
The size of this void gives an important design information. We can try to blow up
the ball until it touches the singularity surface. We shall denote the touching ball
with Bt. All points inside Bt represent singularity free orientations of the platform
for a given position. The radius r =

p
x2
1
+ x2

2
+ x3

2
of Bt gives the maximum angle

of rotation ' = 2 arccos
p
1� r2 about which the platform can rotate singularity free

for a given position.
With this method we investigated the following box of the positional workspace

of the HPT, measured in [mm]:

x = �500 : : : 500; y = �500 : : : 500 z = 1500 : : :2200;

and at every node for a grid of 10 cm we tested for the orientation capability of the
manipulator. To do this we blew up a ball until it touched the singularity surface.
As result we can report, that the absolute of the radius of Bt was between 0:4023
and 0:5884. Therefore we can conclude that in the given positional workspace box
rotations (starting from the home orientation) without singularities are possible with
an angle of at least �47 degree about any axis and in the best case up to �72 degree
about any axis. In Table 2 the results of orientation capacity at positions on di�erent
z-constant levels of the workspace are listed. Additionally we observed that the larger

level: z [mm] rmin anglemin rmax anglemax

1500 0:4023581068 �47:45o 0:5396207416 �65:31o
1600 0:4166886075 �49:25o 0:5488342830 �66:57o
1700 0:4299324505 �50:92o 0:5571138682 �67:71o
1800 0:4421872357 �52:48o 0:5645915371 �68:74o
1900 0:4535425184 �53:94o 0:5713760913 �69:69o
2000 0:4640799095 �55:30o 0:5775578769 �70:55o
2100 0:4738734229 �56:57o 0:5832124657 �71:35o
2200 0:4829899558 �57:76o 0:5884034885 �72:08o

Table 2: Possible rotation angles about arbitrary axes in the given workspace box

rotation angle values were at positions close to the z-axis, whereas the smaller rotation
capabilities occur in the positions at the lateral boundaries of the given workspace
box.



4 Conclusions

In this paper we have presented a specially adapted algorithm to solve the direct kine-
matics of the Hexapod Telescope. This algorithm enables keeping the leg parameters
general almost to the end of the computation and allows a very fast computation of
the univariate polynomial which governs the direct kinematics. Furthermore a singu-
larity analysis of the platform was performed. This analysis yielded the remarkable
result that within a certain positional workspace box the platform can be rotated
singularity free from the home orientation about any axis with at least �47Æ.
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