April 17, 19101

TWO-SYSTEMS IN THE SET OF FINITE DISPLACEMENT SCREWS PRODUCED BY A REVOLUTE-DYAD

I.A. PARKIN

Basser Department of Computer Science, The University of Sydney, NSW 2006, Australia

ABSTRACT

When a *coupler* is joined to *frame* by a *revolute-dyad*, *i.e.* by a link with revolute joints to coupler and frame, the displacements available to the coupler, if expressed as *finite displacement screws*, occupy a *3-system of screws*. The complexities of that 3-system can be conveniently analysed in terms of its component 2-systems which, in their own right, are known to be significant in the analysis of certain mechanisms, notably the Bennett and its relations. From the 3-system which sets the larger context, this paper derives new expressions which describe any contained 2-system in the localised terms of a basis of two contained screws.

1. Introduction

Rodrigues's equations [1], when expressed in their dualised form, viz.

$$\begin{bmatrix} \cos\hat{\theta} \\ \hat{\mathbf{S}} \end{bmatrix} = \begin{bmatrix} \cos\hat{\theta}_1 \cos\hat{\theta}_2 - \hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2 \\ \cos\hat{\theta}_2 \hat{\mathbf{S}}_1 + \cos\hat{\theta}_1 \hat{\mathbf{S}}_2 - \hat{\mathbf{S}}_1 \times \hat{\mathbf{S}}_2 \end{bmatrix}.$$
(1.1)

specify the sine-form *finite displacement screw* $\hat{\mathbf{S}} = \sin\hat{\theta}\,\hat{\mathbf{s}}$ - representing displacement through dual angle $2\,\hat{\theta}$ about a *unit screw axis* $\hat{\mathbf{s}}$ - which results from applying two successive finite displacements of a body, similarly specified: first $\hat{\mathbf{S}}_1 = \sin\hat{\theta}_1\,\hat{\mathbf{s}}_1$, and then $\hat{\mathbf{S}}_2 = \sin\hat{\theta}_2\,\hat{\mathbf{s}}_2$. Dividing $\hat{\mathbf{S}}$ by $\cos\hat{\theta}$ yields the tan-form screw $\hat{\mathbf{T}} = \tan\hat{\theta}\,\hat{\mathbf{s}}$ [2] which results from applying two such screws, first $\hat{\mathbf{T}}_1$ and then $\hat{\mathbf{T}}_2$, *viz*.

$$\hat{\mathbf{T}} = \frac{\hat{\mathbf{T}}_{1} + \hat{\mathbf{T}}_{2} - \hat{\mathbf{T}}_{1} \times \hat{\mathbf{T}}_{2}}{1 - \hat{\mathbf{T}}_{1} \cdot \hat{\mathbf{T}}_{2}} .$$
(1.2)

When, in a mechanism, a link Lnk_{12} has screw joints \hat{s}_1 and \hat{s}_2 to *coupler* and *frame* respectively, these formulations describe the set of displacements – specified as screws \hat{S} or \hat{T} and parameterised by $\hat{\theta}_1$, $\hat{\theta}_2$ –

which are available to the coupler as measured relative to frame.

Generally, these are *dual-linear* sets consisting of linear combinations of screws which, as eqns. (1.1,2) typify, are constructed with dual coefficients [3]. However, under certain kinematic specialisations these sets are found to consist of real-linear combinations of a small number of basis screws [4, 5, 6, 7] and so are very easily interpreted. Notably, Huang [8] has observed that when the axes \hat{s}_1 , \hat{s}_2 are sites of *revolute* joints, so that the angles θ_1 , θ_2 are purely real, the screws of eqns. (1.1,2) are real-linear combinations of \hat{s}_1 , \hat{s}_2 , and $\hat{s}_1 \times \hat{s}_2$ and so conform to the well-understood geometry of the 3-system [9, 10].

Huang [11] has gone on to show that in certain mechanisms such as the Bennett, a sub-set of the screws of that 3-system, in the form of the familiar 2-system [12, 9], is central to understanding of the mechanism. However, to this point in time it has not been possible to write down an expression which, though incorporating parameters of the containing 3-system, represents just the screws of such a 2-system and no others.

This difficulty is solved in the present paper: a parameterisation is discovered (in Section 7) which quite generally allows the 2–system to be expressed as a linear combination of two screws whose real coefficients take simple functional forms.

2. Notation and Basic Geometry

Throughout this paper a screw will typically be written as a 3-vector of dual numbers

$$\hat{\mathbf{G}} = |\hat{\mathbf{G}}| (1+\varepsilon p) \hat{\mathbf{g}}, \quad \hat{\mathbf{g}} = \mathbf{l}+\varepsilon \mathbf{M}, \quad \hat{\mathbf{g}}^2 = \mathbf{l}^2 + \varepsilon 2 \mathbf{l} \cdot \mathbf{M} = 1+\varepsilon 0, \quad \mathbf{l} \times \mathbf{M} = \mathbf{R}.$$
 (2.1)

in which ε is a quasi-sacalar satisfying $\varepsilon^2 = 0$ and such that for all real a, b, c, and $d, (a+\varepsilon b = c+\varepsilon d) \Leftrightarrow (a = c) \land (b = d)$. Bold letters represent 3-vectors, lower case bold letters indicate *unit* vectors, and the overwritten 'hat' symbol indicates dual quantities. $|\hat{\mathbf{G}}|$ is the *real magnitude* and p is the *pitch* of the screw $\hat{\mathbf{G}}$ which is located spatially by its *normalised line* $\hat{\mathbf{g}}$, of unit magnitude and zero pitch, with direction vector $\mathbf{l} = (l, m, n)$ and moment vector $\mathbf{M} = (P, Q, R)$ which together determine its *origin-radius* vector \mathbf{R} . The values l, m, n, P, Q, R are Plücker coordinates of that line.

For any screws $\hat{\mathbf{G}}_1 = \mathbf{G}_1 + \varepsilon \mathbf{G}_{p_1}$ and $\hat{\mathbf{G}}_2 = \mathbf{G}_2 + \varepsilon \mathbf{G}_{p_2}$, their scalar product is

$$\hat{\mathbf{G}}_1 \cdot \hat{\mathbf{G}}_2 = \mathbf{G}_1 \cdot \mathbf{G}_2 + \varepsilon \hat{\mathbf{G}}_1 @ \hat{\mathbf{G}}_2 \quad where \quad \hat{\mathbf{G}}_1 @ \hat{\mathbf{G}}_2 = \mathbf{G}_1 \cdot \mathbf{G}_{p_2} + \mathbf{G}_2 \cdot \mathbf{G}_{p_1},$$

in which $\hat{\mathbf{G}}_1 @ \hat{\mathbf{G}}_2$ is the *mutual moment* of the screws $\hat{\mathbf{G}}_1$ and $\hat{\mathbf{G}}_2$. Two screws $\hat{\mathbf{G}}_1$ and $\hat{\mathbf{G}}_2$ are said to be *perpendicular* if $\mathbf{G}_1 \cdot \mathbf{G}_2 = 0$, to be *reciprocal* if $\hat{\mathbf{G}}_1 @ \hat{\mathbf{G}}_2 = 0$. We shall call them *orthogonal* if both of these are true, *i.e.* if $\hat{\mathbf{G}}_1 \cdot \hat{\mathbf{G}}_2 = 0$, which implies that each intersects the other at right angles. Their *cross product* screw $\hat{\mathbf{G}}_1 \times \hat{\mathbf{G}}_2$ is sited in the *common perpendicular line* of $\hat{\mathbf{G}}_1$ and $\hat{\mathbf{G}}_2$.

3. Provenance of the Dual-Linear 3-System

Let the successive displacements referred to at eqn. (1.1) take place about unit screw-axes $\hat{\mathbf{s}}_1$ and $\hat{\mathbf{s}}_2$ which are spatially separated by the dual angle $2\hat{\phi}_{12} \equiv 2\phi_{12} + \epsilon 2d_{12}$ as measured from $\hat{\mathbf{s}}_1$ to $\hat{\mathbf{s}}_2$. For brevity we write

$$c \equiv \cos\phi_{12}$$
, $\hat{c} \equiv \cos\hat{\phi}_{12}$ and $s \equiv \sin\phi_{12}$, $\hat{s} \equiv \sin\hat{\phi}_{12}$, (3.1)

so that $\hat{\mathbf{s}}_1 \cdot \hat{\mathbf{s}}_2 = \cos 2\hat{\phi}_{12} = \hat{c}^2 - \hat{s}^2$. In analysing their resultant displacements, it is convenient to identify reference frame axes $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$, $\hat{\mathbf{z}}$ which lie on the mid–lines and common perpendicular of $\hat{\mathbf{s}}_1$ and $\hat{\mathbf{s}}_2$, *viz*.

$$\hat{\mathbf{X}} = \hat{c}\,\hat{\mathbf{x}} = c\,(1+\epsilon P_X)\,\hat{\mathbf{x}} = \frac{\hat{\mathbf{s}}_2 + \hat{\mathbf{s}}_1}{2} , P_X = -d_{12}\,\mathrm{tan}\phi_{12} ,$$

$$\hat{\mathbf{Y}} = \hat{s}\,\hat{\mathbf{y}} = s\,(1+\epsilon P_Y)\,\hat{\mathbf{y}} = \frac{\hat{\mathbf{s}}_2 - \hat{\mathbf{s}}_1}{2} , P_Y = d_{12}\,\mathrm{cot}\phi_{12} ,$$

$$\hat{\mathbf{Z}} = \hat{\mathbf{X}} \times \hat{\mathbf{Y}} = c\,s\,(1+\epsilon [P_X+P_Y])\,\hat{\mathbf{z}} = \frac{\hat{\mathbf{s}}_1 \times \hat{\mathbf{s}}_2}{2} , P_Z = 2\,d_{12}\,\mathrm{cot}2\,\phi_{12} ,$$
(3.2)

1

]

The axial lines $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$, $\hat{\mathbf{z}}$ are of zero pitch and unit magnitude and intersect at right angles in an origin at the mid-point between the axes $\hat{\mathbf{s}}_1$ and $\hat{\mathbf{s}}_2$ on their common perpendicular line $\hat{\mathbf{z}}$, satisfying

$$\hat{\mathbf{x}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{x}} = 0, \quad \hat{\mathbf{x}}^2 = \hat{\mathbf{y}}^2 = \hat{\mathbf{z}}^2 = 1 \quad ortho-normality \\ \hat{\mathbf{x}} \times \hat{\mathbf{y}} = \hat{\mathbf{z}}, \quad \hat{\mathbf{y}} \times \hat{\mathbf{z}} = \hat{\mathbf{x}}, \quad \hat{\mathbf{z}} \times \hat{\mathbf{x}} = \hat{\mathbf{y}} \quad right-handedness$$
 (3.3)

If we write

$$\hat{\xi} = \frac{\cot\hat{\theta}_2 + \cot\hat{\theta}_1}{2} , \quad \hat{\eta} = \frac{\cot\hat{\theta}_2 - \cot\hat{\theta}_1}{2} , \quad i.e. \quad \cot\hat{\theta}_1 = \hat{\xi} - \hat{\eta} , \quad \cot\hat{\theta}_2 = \hat{\xi} + \hat{\eta} , \quad (3.4)$$

we find that the cosine formulation of eqn. (1.1) yields

$$\cos\hat{\theta} = \cos\hat{\theta}_1 \cos\hat{\theta}_2 - \sin\hat{\theta}_1 \sin\hat{\theta}_2 \cos 2\hat{\phi}_{12} = \sin\hat{\theta}_1 \sin\hat{\theta}_2 [(\hat{\xi}^2 - \hat{\eta}^2) - (\hat{c}^2 - \hat{s}^2)], \quad (3.5)$$

and, with $\hat{\mathbf{G}}$ defined to be the screw given by

$$\hat{\mathbf{G}} = \hat{\boldsymbol{\xi}}\hat{\mathbf{X}} - \hat{\boldsymbol{\eta}}\hat{\mathbf{Y}} - \hat{\mathbf{Z}} = \hat{\boldsymbol{\xi}}\hat{\boldsymbol{c}}\hat{\mathbf{x}} - \hat{\boldsymbol{\eta}}\hat{\boldsymbol{s}}\hat{\mathbf{y}} - \hat{\boldsymbol{c}}\hat{\boldsymbol{s}}\hat{\mathbf{z}}, \qquad (3.6)$$

the sin-screw resultant of eqn. (1.1) may be written

$$\hat{\mathbf{S}} = \sin\hat{\theta}_1 \sin\hat{\theta}_2 \left\{ \cot\hat{\theta}_2 \,\hat{\mathbf{s}}_1 \,+\, \cot\hat{\theta}_1 \,\hat{\mathbf{s}}_2 \,-\, \hat{\mathbf{s}}_1 \times \hat{\mathbf{s}}_2 \right\} = 2\sin\hat{\theta}_1 \sin\hat{\theta}_2 \,\hat{\mathbf{G}} ; \qquad (3.7)$$

and, on division of this by eqn. (3.5), the tan-screw resultant may be written

$$\hat{\mathbf{T}} = \frac{2}{\cot\hat{\theta}_1 \cot\hat{\theta}_2 - \cos 2\hat{\phi}_{12}} \,\hat{\mathbf{G}} = \frac{2}{(\hat{\xi}^2 - \hat{\eta}^2) - (\hat{c}^2 - \hat{s}^2)} \,\hat{\mathbf{G}} \,.$$
(3.8)

In all of these expressions the independent coefficients $\hat{\xi}$ and $\hat{\eta}$ take on all possible dual values under permitted variation of the parameters $\hat{\theta}_1$ and $\hat{\theta}_2$.

We observe that the tan–screw $\hat{\mathbf{T}}$ becomes infinite under the condition

$$(\hat{\xi}^2 - \hat{\eta}^2) - (\hat{c}^2 - \hat{s}^2) = 0$$
, *i.e.* $\hat{\xi}^2 - \hat{\eta}^2 = \hat{c}^2 - \hat{s}^2$. (3.9a,b)

Equation (3.5) shows this to occur when $\cos\hat{\theta} = 0 + \varepsilon 0$ which implies that the resultant screw, $\hat{\mathbf{S}}$ or $\hat{\mathbf{T}}$, then represents a *pure half-turn*; *i.e.* a displacement in which the translation distance is zero, $2\sigma = 0$, and the rotation is a half-turn, $2\theta = \pi$. Since these are of special significance, we shall label a screw with the suffix π , thus $\hat{\mathbf{G}}_{\pi}$, if its coefficients $\hat{\xi}$, $\hat{\eta}$ satisfy eqn. (3.9), thereby indicating that its site is occupied by a *pure half-turn* screw.

Although much following analysis relates to the identification of such pure half-turn screws, we

must observe that the situation of interest in this paper – where the parameters $\hat{\theta}_1$ and $\hat{\theta}_2$ and, consequently, the parameters $\hat{\xi}$ and $\hat{\eta}$ are real, not dual – does not permit pure half-turn screws to exist; eqn. (3.9b), whose right-hand side is generally dual, cannot be satisfied by purely real values of $\hat{\xi}$ and $\hat{\eta}$ on the left-hand side. It follows, therefore, that when (in Section 7) we seek solutions for pure half-turn screws, it will be *purely imaginary* screws that are sought.

When working with subsets of the screws $\hat{\mathbf{T}}$ provided by eqn. (3.8), it difficult at the outset to interpret the leading coefficient of that expression in a way which is specific to the subset of choice. We therefore proceed by the roundabout route of firstly considering dual 2–systems parameterised by $\hat{\boldsymbol{\xi}}$ and $\hat{\boldsymbol{\eta}}$ in the screw $\hat{\mathbf{G}}$ of eqn. (3.5), although this is not a finite displacement screw of recognised definition. Treatment of the complicating magnitude factor which appears with $\hat{\mathbf{T}}$ in eqn. (3.8) is deferred to Section 6.

4. Nodal Line Identification of a Dual–Linear 2–System

Let us define a nodal line to be the common perpendicular line of any two given generators

$$\hat{\mathbf{G}}_A = \hat{\xi}_A \,\hat{c}\,\hat{\mathbf{x}} - \hat{\eta}_A \,\hat{s}\,\hat{\mathbf{y}} - \hat{c}\,\hat{s}\,\hat{\mathbf{z}} \quad and \quad \hat{\mathbf{G}}_B = \hat{\xi}_B \,\hat{c}\,\hat{\mathbf{x}} - \hat{\eta}_B \,\hat{s}\,\hat{\mathbf{y}} - \hat{c}\,\hat{s}\,\hat{\mathbf{z}} , \qquad (4.1)$$

specified as in eqn. (3.6). We now identify a general form for *all* generators $\hat{\mathbf{G}}$ which, like $\hat{\mathbf{G}}_A$ and $\hat{\mathbf{G}}_B$, are *orthogonal* to such a nodal line, intersecting it at right angles. The common perpendicular of $\hat{\mathbf{G}}_A$ and $\hat{\mathbf{G}}_B$ is sited in their cross product screw, *viz*.

$$\hat{\mathbf{N}} \equiv \hat{\mathbf{G}}_A \times \hat{\mathbf{G}}_B = (\hat{\eta}_A - \hat{\eta}_B) \hat{c} \hat{s}^2 \hat{\mathbf{x}} + (\hat{\xi}_A - \hat{\xi}_B) \hat{c}^2 \hat{s} \hat{\mathbf{y}} + (\hat{\xi}_B \hat{\eta}_A - \hat{\xi}_A \hat{\eta}_B) \hat{c} \hat{s} \hat{\mathbf{z}}$$

$$= \hat{c}^2 \hat{s}^2 \{ (\hat{\eta}_A - \hat{\eta}_B) \frac{\hat{\mathbf{x}}}{\hat{c}} + (\hat{\xi}_A - \hat{\xi}_B) \frac{\hat{\mathbf{y}}}{\hat{s}} + (\hat{\xi}_B \hat{\eta}_A - \hat{\xi}_A \hat{\eta}_B) \frac{\hat{\mathbf{z}}}{\hat{c}\hat{s}} \}, \qquad (4.2)$$

which expresses $\hat{\mathbf{N}}$ as a dual-linear combination of screws $\hat{\mathbf{x}}/\hat{c}$, $\hat{\mathbf{y}}/\hat{s}$, and $\hat{\mathbf{z}}/\hat{c}\hat{s}$ which are respectively *reciprocal* to the axial screws $\hat{\mathbf{X}} = \hat{c}\hat{\mathbf{x}}$, $\hat{\mathbf{Y}} = \hat{s}\hat{\mathbf{y}}$, and $\hat{\mathbf{Z}} = \hat{c}\hat{s}\hat{\mathbf{z}}$ (*e.g.* $\hat{\mathbf{X}}\cdot\hat{\mathbf{x}}/\hat{c} = 1$, *etc.*). It is convenient to separate the *z*-coefficient into terms containing the *x*- and *y*-coefficients as factors. With sufficient generality we write

$$\hat{\xi}_B \hat{\eta}_A - \hat{\xi}_A \hat{\eta}_B = (\hat{\eta}_A - \hat{\eta}_B) \frac{\hat{\tau}\hat{\xi}_A + \hat{\xi}_B}{\hat{\tau} + 1} - (\hat{\xi}_A - \hat{\xi}_B) \frac{\hat{\tau}\hat{\eta}_A + \hat{\eta}_B}{\hat{\tau} + 1}$$

for all dual values $\hat{\tau}$ such that the real part of $\hat{\tau}+1$ does not vanish, *i.e.* $\Re(\hat{\tau}) \neq -1$. Then

$$\hat{\mathbf{G}}_A \times \hat{\mathbf{G}}_B = \hat{c}^2 \hat{s}^2 \left\{ (\hat{\eta}_A - \hat{\eta}_B) \left[\frac{\hat{\mathbf{x}}}{\hat{c}} + \frac{\hat{\tau} \hat{\xi}_A + \hat{\xi}_B}{\hat{\tau} + 1} \frac{\hat{\mathbf{z}}}{\hat{c} \hat{s}} \right] + (\hat{\xi}_A - \hat{\xi}_B) \left[\frac{\hat{\mathbf{y}}}{\hat{s}} - \frac{\hat{\tau} \hat{\eta}_A + \hat{\eta}_B}{\hat{\tau} + 1} \frac{\hat{\mathbf{z}}}{\hat{c} \hat{s}} \right] \right\}.$$

Now the requirement that, in place of $\hat{\mathbf{G}}_B$, a general generator $\hat{\mathbf{G}} = \hat{\boldsymbol{\xi}} \hat{\mathbf{X}} - \hat{\boldsymbol{\eta}} \hat{\mathbf{Y}} - \hat{\mathbf{Z}}$ should, with $\hat{\mathbf{G}}_A$, form a cross product $\hat{\mathbf{G}}_A \times \hat{\mathbf{G}}$ lying on the same line as $\hat{\mathbf{N}}$, implies two conditions to be met. Firstly, that both of the square-braced vectors in this expression – specifically, their $\hat{\mathbf{z}}$ -components – should be invariant under replacement of $\hat{\boldsymbol{\xi}}_B$ and $\hat{\boldsymbol{\eta}}_B$ with $\hat{\boldsymbol{\xi}}$ and $\hat{\boldsymbol{\eta}}$ respectively: that is, for all $\hat{\boldsymbol{\tau}}$ and $\hat{\boldsymbol{\tau}}'$,

$$\frac{\hat{\tau}\hat{\xi}_A + \hat{\xi}}{\hat{\tau} + 1} = \frac{\hat{\tau}'\hat{\xi}_A + \hat{\xi}_B}{\hat{\tau}' + 1} \quad and \quad \frac{\hat{\tau}\hat{\eta}_A + \hat{\eta}}{\hat{\tau} + 1} = \frac{\hat{\tau}'\hat{\eta}_A + \hat{\eta}_B}{\hat{\tau}' + 1}$$

from which it follows that

$$\hat{\xi} = (\hat{\tau}+1) \frac{\hat{\tau}'\hat{\xi}_A + \hat{\xi}_B}{\hat{\tau}'+1} - \hat{\tau}\hat{\xi}_A = \frac{\{(\hat{\tau}'+1) - (\hat{\tau}+1)\}\hat{\xi}_A + (\hat{\tau}+1)\hat{\xi}_B}{\hat{\tau}'+1}$$

and correspondingly for $\hat{\eta}$. Equivalently, on introducing an alternative parameter $\hat{\gamma} = (\hat{\tau}+1)/(\hat{\tau}'+1)$,

$$\hat{\xi} = (1-\hat{\gamma})\hat{\xi}_A + \hat{\gamma}\hat{\xi}_B = \hat{\xi}_A + \hat{\gamma}(\hat{\xi}_B - \hat{\xi}_A) \quad and \quad \hat{\eta} = (1-\hat{\gamma})\hat{\eta}_A + \hat{\gamma}\hat{\eta}_B = \hat{\eta}_A + \hat{\gamma}(\hat{\eta}_B - \hat{\eta}_A)(4.3)$$

Secondly, we require that the screws $\hat{\mathbf{G}}_A \times \hat{\mathbf{G}}_B$ and $\hat{\mathbf{G}}_A \times \hat{\mathbf{G}}$, while possibly differing in magnitude and pitch, should not differ in direction or location. That is, the ratio of the leading coefficients

$$\hat{\xi}_A - \hat{\xi} = (1 - 1 + \hat{\gamma})\hat{\xi}_A - \hat{\gamma}\hat{\xi}_B = \hat{\gamma}(\hat{\xi}_A - \hat{\xi}_B) \quad and \quad \hat{\eta}_A - \hat{\eta} = (1 - 1 + \hat{\gamma})\hat{\eta}_A - \hat{\gamma}\hat{\eta}_B = \hat{\gamma}(\hat{\eta}_A - \hat{\eta}_B) ,$$

must be invariant under respective interchange of $\hat{\xi}_B$ and $\hat{\eta}_B$ with $\hat{\xi}$ and $\hat{\eta}$. But, observably, this condition is already satisfied.

So, for *basis screws* $\hat{\mathbf{G}}_A$ and $\hat{\mathbf{G}}_B$ of eqn. (4.1), the typical generator which is orthogonal to their common perpendicular nodal line is shown by eqns. (4.3) to have, for all $\hat{\gamma}$, the dual–linear form

$$\hat{\mathbf{G}} = (1-\hat{\gamma})\,\hat{\mathbf{G}}_A + \hat{\gamma}\,\hat{\mathbf{G}}_B = \{(1-\hat{\gamma})\,\hat{\xi}_A + \hat{\gamma}\,\hat{\xi}_B\}\,\hat{\mathbf{X}} - \{(1-\hat{\gamma})\,\hat{\eta}_A + \hat{\gamma}\,\hat{\eta}_B\}\,\hat{\mathbf{Y}} - \hat{\mathbf{Z}} \,. \tag{4.4}$$

This result extends the familiar notion of a linear 2-system in real coefficients [9] to that of a *dual-linear* 2-system in dual coefficients.

It is convenient to introduce the parameter form $\hat{\mu} = 1 - \hat{\gamma}$ so that the linear screw combination of eqn. (4.4) may be written more compactly as $\hat{\mathbf{G}} = \hat{\mu}\hat{\mathbf{G}}_A + \hat{\gamma}\hat{\mathbf{G}}_B$. The following identities then apply:

$$\hat{\mu} + \hat{\gamma} = 1$$
, $\hat{\mu}^2 + \hat{\gamma}^2 = 1 - 2\hat{\mu}\hat{\gamma}$, $\hat{\mu}^2 - \hat{\gamma}^2 = \hat{\mu} - \hat{\gamma}$. (4.5)

On an original basis $\hat{\mathbf{G}}_A$, $\hat{\mathbf{G}}_B$, to which parameter $\hat{\gamma}$ applies, we may select new basis screws $\hat{\mathbf{G}}_X$, $\hat{\mathbf{G}}_Y$, *viz*.

$$\begin{bmatrix} \hat{\mathbf{G}}_{X} \\ \hat{\mathbf{G}}_{Y} \end{bmatrix} = \begin{bmatrix} \hat{\mu}_{X} & \hat{\gamma}_{X} \\ \hat{\mu}_{Y} & \hat{\gamma}_{Y} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{G}}_{A} \\ \hat{\mathbf{G}}_{B} \end{bmatrix}, \quad i.e. \quad \begin{bmatrix} \hat{\mathbf{G}}_{A} \\ \hat{\mathbf{G}}_{B} \end{bmatrix} = \frac{1}{\hat{\gamma}_{Y} - \hat{\gamma}_{X}} \begin{bmatrix} \hat{\gamma}_{Y} & -\hat{\gamma}_{X} \\ -\hat{\mu}_{Y} & \hat{\mu}_{X} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{G}}_{X} \\ \hat{\mathbf{G}}_{Y} \end{bmatrix}, \quad (4.6)$$

for which the determinant $\hat{\mu}_X \hat{\gamma}_Y - \hat{\mu}_Y \hat{\gamma}_X = \hat{\gamma}_Y - \hat{\gamma}_X$ does not vanish. By use of a new parameter $\hat{\gamma}'$, we may then generate the general linear combination screw from the new basis, as

$$\hat{\mathbf{G}} = \hat{\mu}\,\hat{\mathbf{G}}_A + \hat{\gamma}\,\hat{\mathbf{G}}_B = \hat{\mu}\,\frac{\hat{\gamma}_Y\,\hat{\mathbf{G}}_X - \hat{\gamma}_X\,\hat{\mathbf{G}}_Y}{\hat{\gamma}_Y - \hat{\gamma}_X} - \hat{\gamma}\,\frac{\hat{\mu}_Y\,\hat{\mathbf{G}}_X - \hat{\mu}_X\,\hat{\mathbf{G}}_Y}{\hat{\gamma}_Y - \hat{\gamma}_X} = \hat{\mu}'\,\hat{\mathbf{G}}_X + \hat{\gamma}'\,\hat{\mathbf{G}}_Y , \qquad (4.7)$$

where the parameter $\hat{\gamma}$ applicable to the original basis is related to the parameter $\hat{\gamma}'$ of the new basis by

$$\hat{\gamma} = \hat{\mu}'\hat{\gamma}_X + \hat{\gamma}'\hat{\gamma}_Y , \quad \hat{\mu} = \hat{\mu}'\hat{\mu}_X + \hat{\gamma}'\hat{\mu}_Y \quad and \quad \hat{\gamma}' = \frac{\hat{\gamma} - \hat{\gamma}_X}{\hat{\gamma}_Y - \hat{\gamma}_X} , \quad \hat{\mu}' = \frac{\hat{\mu} - \hat{\mu}_Y}{\hat{\gamma}_Y - \hat{\gamma}_X} .$$
(4.8)

5. Solving for Half–Turn Screws

To discover structure among the ∞^2 screws parameterised by $\hat{\gamma}$ in the dual-linear system of eqn. (4.4), let us identify such *pure half-turn* screws as it contains. For typical basis screws $\hat{\mathbf{G}}_A$ and $\hat{\mathbf{G}}_B$ as previously assumed given, we determine those particular values $\hat{\gamma}_{\pi}$ of parameter $\hat{\gamma}$ for which the quantities $\hat{\xi}$ and $\hat{\mathbf{\eta}}$ of eqns. (4.3) satisfy eqn. (3.9), *viz*.

$$0 = \{\hat{\xi}_{A} + \hat{\gamma}_{\pi}(\hat{\xi}_{B} - \hat{\xi}_{A})\}^{2} - \{\hat{\eta}_{A} + \hat{\gamma}_{\pi}(\hat{\eta}_{B} - \hat{\eta}_{A})\}^{2} - (\hat{c}^{2} - \hat{s}^{2}) \\ = \hat{\mathcal{A}}\hat{\gamma}_{\pi}^{2} + 2\hat{\mathcal{B}}\hat{\gamma}_{\pi} + \hat{\mathcal{C}}, \qquad (5.1)$$

in which it is convenient to define:

$$\hat{\mathcal{A}} = (\hat{\xi}_{B} - \hat{\xi}_{A})^{2} - (\hat{\eta}_{B} - \hat{\eta}_{A})^{2} ,
\hat{\mathcal{B}} = \hat{\xi}_{A} (\hat{\xi}_{B} - \hat{\xi}_{A}) - \hat{\eta}_{A} (\hat{\eta}_{B} - \hat{\eta}_{A}) = \hat{\xi}_{A} \hat{\xi}_{B} - \hat{\eta}_{A} \hat{\eta}_{B} - (\hat{\xi}_{A}^{2} - \hat{\eta}_{A}^{2}) ,
\hat{\mathcal{C}} = (\hat{\xi}_{A}^{2} - \hat{\eta}_{A}^{2}) - (\hat{c}^{2} - \hat{s}^{2}) .$$
(5.2)

1

The quadratic eqn. (5.1) has solutions

$$\hat{\gamma}_{\pi} = \frac{-\hat{\mathcal{B}}_{\pm}\sqrt{\hat{\Delta}}}{\hat{\mathcal{A}}}, \quad i.e. \quad \hat{\gamma}_{\pi_{A}} = \frac{-\hat{\mathcal{B}}_{-}\sqrt{\hat{\Delta}}}{\hat{\mathcal{A}}} \quad and \quad \hat{\gamma}_{\pi_{B}} = \frac{-\hat{\mathcal{B}}_{+}\sqrt{\hat{\Delta}}}{\hat{\mathcal{A}}}, \quad (5.3)$$

in which the discriminant of the quadratic – $4\hat{\Delta}$ by standard definition – is specified by

$$\hat{\Delta} = \hat{\mathcal{B}}^2 - \hat{\mathcal{A}}\hat{\mathcal{C}} = (\hat{\xi}_B \hat{\eta}_A - \hat{\eta}_B \hat{\xi}_A)^2 + \{(\hat{\xi}_B - \hat{\xi}_A)^2 - (\hat{\eta}_B - \hat{\eta}_A)^2\}(\hat{c}^2 - \hat{s}^2).$$
(5.4)

Thus, when real basis screws $\hat{\mathbf{G}}_A$ and $\hat{\mathbf{G}}_B$ are given, the quadratic eqn. (5.1) determines values $\hat{\gamma}_{\pi_A}$ and $\hat{\gamma}_{\pi_B}$ which, according as the discriminant $\hat{\Delta}$ is *positive*, *zero*, or *negative*, are respectively *real and distinct*, *real and coincident*, or mutual *complex conjugates*. Correspondingly, the *pure half-turn* site screws

$$\hat{\mathbf{G}}_{\pi_{A}} = (1 - \hat{\gamma}_{\pi_{A}}) \,\hat{\mathbf{G}}_{A} + \hat{\gamma}_{\pi_{A}} \,\hat{\mathbf{G}}_{B} \quad and \quad \hat{\mathbf{G}}_{\pi_{B}} = (1 - \hat{\gamma}_{\pi_{B}}) \,\hat{\mathbf{G}}_{A} + \hat{\gamma}_{\pi_{B}} \,\hat{\mathbf{G}}_{B} \,, \tag{5.5}$$

obtained by substituting those values into eqn. (4.4), are respectively *real and distinct, real and coincident*, or *complex*. In the last of these cases, where they are *complex*, the screws continue to be well defined in mathematical terms although they cannot be realised in a practical kinematic context.

Further to the definitions of eqns. (5.1) it is convenient to define a quantity analogous to $\hat{\mathcal{B}}$, viz.

$$\hat{\mathcal{E}} = \hat{\mathcal{A}} + \hat{\mathcal{B}} = -\hat{\xi}_A \hat{\xi}_B + \hat{\eta}_A \hat{\eta}_B + (\hat{\xi}_B^2 - \hat{\eta}_B^2) = \hat{\xi}_B (\hat{\xi}_B - \hat{\xi}_A) - \hat{\eta}_B (\hat{\eta}_B - \hat{\eta}_A) .$$
(5.6)

6. Conversion to the Finite Displacement Tan-Screw

We now identify the tan-screw $\hat{\mathbf{T}}$ which is sited in the typical generator $\hat{\mathbf{G}}$. For simplicity we assume that two *pure half-turn* screws, identified as in the previous section, are present. We adopt these as basis, writing them in the form of eqn. (3.6), *viz*.

$$\hat{\mathbf{G}}_{\pi_{A}} = \hat{\boldsymbol{\xi}}_{\pi_{A}} \, \hat{\mathbf{X}} - \hat{\boldsymbol{\eta}}_{\pi_{A}} \, \hat{\mathbf{Y}} - \hat{\mathbf{Z}} \quad and \quad \hat{\mathbf{G}}_{\pi_{B}} = \hat{\boldsymbol{\xi}}_{\pi_{B}} \, \hat{\mathbf{X}} - \hat{\boldsymbol{\eta}}_{\pi_{B}} \, \hat{\mathbf{Y}} - \hat{\mathbf{Z}}$$

The typical generator $\hat{\mathbf{G}}$ of the dual-linear 2-system defined by those screws is specified, for all dual values of the parameter $\hat{\gamma}$, by

$$\hat{\mathbf{G}} = \hat{\boldsymbol{\mu}} \, \hat{\mathbf{G}}_{\pi_{\scriptscriptstyle A}} + \hat{\boldsymbol{\gamma}} \, \hat{\mathbf{G}}_{\pi_{\scriptscriptstyle B}} \quad where \quad \hat{\boldsymbol{\mu}} = (1 - \hat{\boldsymbol{\gamma}}) \; ,$$

so we learn that the general specification of $\hat{\mathbf{G}}$ is

$$\hat{\mathbf{G}} = \hat{\xi} \, \hat{\mathbf{X}} - \hat{\eta} \, \hat{\mathbf{Y}} - \hat{\mathbf{Z}} \quad for \quad \hat{\xi} = \hat{\mu} \hat{\xi}_{\pi_{A}} + \hat{\gamma} \hat{\xi}_{\pi_{B}} , \quad \hat{\eta} = \hat{\mu} \hat{\eta}_{\pi_{A}} + \hat{\gamma} \hat{\eta}_{\pi_{B}} .$$

From these expressions for $\hat{\xi}$ and $\hat{\eta}$ we determine that

$$\hat{\xi}^{2} - \hat{\eta}^{2} = \hat{\mu}^{2} (\hat{\xi}_{\pi_{A}}^{2} - \hat{\eta}_{\pi_{A}}^{2}) + \hat{\gamma}^{2} (\hat{\xi}_{\pi_{B}}^{2} - \hat{\eta}_{\pi_{B}}^{2}) + 2\hat{\mu}\hat{\gamma}(\hat{\xi}_{\pi_{A}}\hat{\xi}_{\pi_{B}} - \hat{\eta}_{\pi_{A}}\hat{\eta}_{\pi_{B}}) .$$

Now, since the screws $\hat{\mathbf{G}}_{\pi_A}$ and $\hat{\mathbf{G}}_{\pi_B}$ are sites of *pure half-turn* screws, by eqn. (3.10) we have

$$\hat{\xi}_{\pi_{A}}^{2} - \hat{\eta}_{\pi_{A}}^{2} = \hat{\xi}_{\pi_{B}}^{2} - \hat{\eta}_{\pi_{B}}^{2} = \hat{c}^{2} - \hat{s}^{2},$$

so it follows, on making the replacement $\hat{\mu}^2 + \hat{\gamma}^2 = 1 - 2\hat{\mu}\hat{\gamma}$, that

$$(\hat{\xi}^{2} - \hat{\eta}^{2}) - (\hat{c}^{2} - \hat{s}^{2}) = -\hat{\mu}\hat{\gamma}[\hat{\xi}_{\pi_{A}}^{2} - \hat{\eta}_{\pi_{A}}^{2} + \hat{\xi}_{\pi_{B}}^{2} - \hat{\eta}_{\pi_{B}}^{2} - 2(\hat{\xi}_{\pi_{A}}\hat{\xi}_{\pi_{B}} - \hat{\eta}_{\pi_{A}}\hat{\eta}_{\pi_{B}})]$$
$$= -\hat{\mu}\hat{\gamma}\hat{\mathcal{A}}_{\pi_{A}\pi_{B}}$$

where, on analogy with the definition of \hat{A} applying to \hat{G}_A and \hat{G}_B at eqns. (5.2), we have written

$$\hat{\mathcal{A}}_{\pi_{A}\pi_{B}} = (\hat{\xi}_{\pi_{A}} - \hat{\xi}_{\pi_{B}})^{2} - (\hat{\eta}_{\pi_{A}} - \hat{\eta}_{\pi_{B}})^{2} , \qquad (6.1)$$

for the quantity which applies correspondingly to the *half-turn screws* $\hat{\mathbf{G}}_{\pi_{A}}$ and $\hat{\mathbf{G}}_{\pi_{B}}$. This quantity is a constant of the chosen nodal line. So, using eqn. (3.8), we can convert the typical generator $\hat{\mathbf{G}}$ into the tan-screw $\hat{\mathbf{T}}$ at the same site, *viz*.

$$\hat{\mathbf{T}} = -\frac{2}{\hat{\mathcal{A}}_{\pi_{A}\pi_{B}}} \frac{\hat{\mu} \mathbf{G}_{\pi_{A}} + \hat{\gamma} \mathbf{G}_{\pi_{B}}}{\hat{\mu} \hat{\gamma}} = -\frac{2}{\hat{\mathcal{A}}_{\pi_{A}\pi_{B}}} \left(\frac{1}{\hat{\gamma}} \hat{\mathbf{G}}_{\pi_{A}} + \frac{1}{\hat{\mu}} \hat{\mathbf{G}}_{\pi_{B}}\right) .$$
(6.2a,b)

Alternatively, with $\hat{\kappa} = \kappa + \epsilon \kappa_0$, $-\infty < \kappa < \infty$, $-\infty < \kappa_0 < \infty$, defined by

$$\hat{\gamma} = \frac{1}{2}(1+\hat{\kappa})$$
 so $\hat{\mu} = 1-\hat{\gamma} = \frac{1}{2}(1-\hat{\kappa})$ and $\hat{\mu}\hat{\gamma} = \frac{1}{4}(1-\hat{\kappa}^2)$,

we have

$$\hat{\mathbf{T}} = -\frac{4}{\hat{\mathcal{A}}_{\pi_{A}\pi_{B}}} \frac{(1-\hat{\kappa})\hat{\mathbf{G}}_{\pi_{A}} + (1+\hat{\kappa})\hat{\mathbf{G}}_{\pi_{B}}}{1-\hat{\kappa}^{2}} = -\frac{4}{\hat{\mathcal{A}}_{\pi_{A}\pi_{B}}} \frac{(\hat{\mathbf{G}}_{\pi_{B}} + \hat{\mathbf{G}}_{\pi_{A}}) + \hat{\kappa}(\hat{\mathbf{G}}_{\pi_{B}} - \hat{\mathbf{G}}_{\pi_{A}})}{1-\hat{\kappa}^{2}} . \quad (6.3a,b)$$

If we re-express $\hat{\kappa} = \tan \hat{\psi}$, in terms of a dual angle parameter $\hat{\psi} = \psi + \varepsilon d$, $-\pi \le \psi \le \pi$, $-\infty \le d \le \infty$, we obtain

$$\hat{\mathbf{T}} = -\frac{4\cos\hat{\psi}}{\hat{\mathcal{A}}_{\pi_{A}\pi_{B}}} \frac{\cos\hat{\psi}(\hat{\mathbf{G}}_{\pi_{B}} + \hat{\mathbf{G}}_{\pi_{A}}) + \sin\hat{\psi}(\hat{\mathbf{G}}_{\pi_{B}} - \hat{\mathbf{G}}_{\pi_{A}})}{\cos^{2}\hat{\psi} - \sin^{2}\hat{\psi}} .$$
(6.4a,b)

We observe that the sum and difference screws $\hat{\mathbf{G}}_{\pi_s} + \hat{\mathbf{G}}_{\pi_a}$ and $\hat{\mathbf{G}}_{\pi_s} - \hat{\mathbf{G}}_{\pi_a}$ are not mutually orthogonal since $\hat{\mathbf{G}}_{\pi_a}$ and $\hat{\mathbf{G}}_{\pi_s}$ have different magnitudes in general. In fact we learn from eqn. (3.11) that

$$(\hat{\mathbf{G}}_{\pi_{B}} + \hat{\mathbf{G}}_{\pi_{A}}) \cdot (\hat{\mathbf{G}}_{\pi_{B}} - \hat{\mathbf{G}}_{\pi_{A}}) = \hat{\mathbf{G}}_{\pi_{B}}^{2} - \hat{\mathbf{G}}_{\pi_{A}}^{2} = \frac{1}{2} (\hat{\xi}_{\pi_{B}}^{2} + \hat{\eta}_{\pi_{B}}^{2} - \hat{\xi}_{\pi_{A}}^{2} - \hat{\eta}_{\pi_{A}}^{2}) , \qquad (6.5)$$

which is non-zero in general.

7. Re-Expression of the Finite Displacement Tan-Screw

Motivated by the simplicity of these results, we proceed to re–express them in terms of the general screws $\hat{\mathbf{G}}_A$, $\hat{\mathbf{G}}_B$ which define the nodal line. We consider, particularly, the case when the half–turn screws sited in $\hat{\mathbf{G}}_{\pi_a}$ and $\hat{\mathbf{G}}_{\pi_b}$ are not real, *i.e.* when their constructing coefficients $\hat{\gamma}_{\pi_a}$ and $\hat{\gamma}_{\pi_b}$ are not real. Firstly, we observe of the ξ values (with corresponding remarks applying to the η values), that since

$$\hat{\xi}_{\pi_{A}} = (1 - \hat{\gamma}_{\pi_{A}})\hat{\xi}_{A} + \hat{\gamma}_{\pi_{A}}\hat{\xi}_{B} , \quad \hat{\xi}_{\pi_{B}} = (1 - \hat{\gamma}_{\pi_{B}})\hat{\xi}_{A} + \hat{\gamma}_{\pi_{B}}\hat{\xi}_{B} ,$$

so the differences appearing in the factor at eqn. (6.1) have the form

$$\hat{\xi}_{\pi_A} - \hat{\xi}_{\pi_B} = (\hat{\gamma}_{\pi_B} - \hat{\gamma}_{\pi_A}) (\hat{\xi}_A - \hat{\xi}_B) ,$$

It follows for the denominator of the leading coefficient in eqns. (6.2,3,4) that

$$(\hat{\xi}_{\pi_{A}} - \hat{\xi}_{\pi_{B}})^{2} - (\hat{\eta}_{\pi_{A}} - \hat{\eta}_{\pi_{B}})^{2} = (\hat{\gamma}_{\pi_{B}} - \hat{\gamma}_{\pi_{A}})^{2} [(\hat{\xi}_{A} - \hat{\xi}_{B})^{2} - (\hat{\eta}_{A} - \hat{\eta}_{B})^{2}] = (\hat{\gamma}_{\pi_{B}} - \hat{\gamma}_{\pi_{A}})^{2} \hat{\mathcal{A}},$$

in which \hat{A} , defined by eqn. (5.2), is a constant of the chosen nodal line. Then, since

$$\hat{\mathbf{G}}_{\pi_{A}} = (1 - \hat{\gamma}_{\pi_{A}}) \hat{\mathbf{G}}_{A} + \hat{\gamma}_{\pi_{A}} \hat{\mathbf{G}}_{B} \quad and \quad \hat{\mathbf{G}}_{\pi_{B}} = (1 - \hat{\gamma}_{\pi_{B}}) \hat{\mathbf{G}}_{A} + \hat{\gamma}_{\pi_{B}} \hat{\mathbf{G}}_{B} , \qquad (7.1)$$

we obtain

$$\hat{\mathbf{G}}_{\pi_{B}} + \hat{\mathbf{G}}_{\pi_{A}} = 2\,\hat{\mathbf{G}}_{A} + (\hat{\gamma}_{\pi_{B}} + \hat{\gamma}_{\pi_{A}})(\hat{\mathbf{G}}_{B} - \hat{\mathbf{G}}_{A}) \quad and \quad \hat{\mathbf{G}}_{\pi_{B}} - \hat{\mathbf{G}}_{\pi_{A}} = (\hat{\gamma}_{\pi_{B}} - \hat{\gamma}_{\pi_{A}})(\hat{\mathbf{G}}_{B} - \hat{\mathbf{G}}_{A}), \quad (7.2)$$

in which, from eqns. (5.3),

$$\hat{\gamma}_{\pi_s} + \hat{\gamma}_{\pi_s} = -2 \frac{\hat{\mathscr{B}}}{\hat{\mathscr{A}}} \quad and \quad \hat{\gamma}_{\pi_s} - \hat{\gamma}_{\pi_s} = 2 \frac{\sqrt{\hat{\Delta}}}{\hat{\mathscr{A}}}.$$
 (7.3a,b)

So, on substituting for these expressions in eqn. (6.3),

$$\hat{\mathbf{T}} = -\frac{2}{\hat{\Delta}} \frac{\hat{\mathcal{E}}\hat{\mathbf{G}}_A - \hat{\mathcal{B}}\hat{\mathbf{G}}_B + \hat{\kappa}\sqrt{\hat{\Delta}}(\hat{\mathbf{G}}_B - \hat{\mathbf{G}}_A)}{1 - \hat{\kappa}^2} , \qquad (7.4)$$

in which the root of the discriminant, $\sqrt{\hat{\Delta}}$, is uniquely associated with the first power of parameter $\hat{\kappa}$.

To discover those values of $\hat{\kappa}$ for which $\hat{\mathbf{T}}$ is a purely real screw, consider $\hat{\kappa}$ to be complex, of form $\hat{\kappa} = \hat{\rho} + i\hat{\tau}$ where $i^2 = 1$ and where $\hat{\rho}$ and $\hat{\tau}$ are real duals. Then $1 - \hat{\kappa}^2 = (1 - \hat{\rho}^2 + \hat{\tau}^2) - i2\hat{\rho}\hat{\tau}$, and

$$\hat{\mathbf{T}} = -\frac{2}{\hat{\Delta}} \left\{ \hat{\mathcal{E}} \hat{\mathbf{G}}_A - \hat{\mathcal{B}} \hat{\mathbf{G}}_B + (\hat{\rho} + i\hat{\tau}) \sqrt{\hat{\Delta} (\hat{\mathbf{G}}_B - \hat{\mathbf{G}}_A)} \right\} \frac{(1 - \hat{\rho}^2 + \hat{\tau}^2) + i2\hat{\rho}\hat{\tau}}{(1 - \hat{\rho}^2 + \hat{\tau}^2)^2 + 4\hat{\rho}^2 \hat{\tau}^2} .$$
(7.5)

Thus, for *negative* discriminant, $\hat{\Delta} < 0$, the screw $\hat{\mathbf{T}}$ contains an imaginary part proportional to

$$2\hat{\rho}\hat{\tau}[\hat{\mathscr{L}}\hat{\mathbf{G}}_{A}-\hat{\mathscr{B}}\hat{\mathbf{G}}_{B}-\hat{\tau}\sqrt{|\widehat{\Delta}|(\widehat{\mathbf{G}}_{B}-\hat{\mathbf{G}}_{A})]}+(1-\hat{\rho}^{2}+\hat{\tau}^{2})\hat{\rho}\sqrt{|\widehat{\Delta}|(\widehat{\mathbf{G}}_{B}-\hat{\mathbf{G}}_{A})}$$
$$=2\hat{\rho}\hat{\tau}[\hat{\mathscr{L}}\hat{\mathbf{G}}_{A}-\hat{\mathscr{B}}\hat{\mathbf{G}}_{B}]+(1-\hat{\rho}^{2}-\hat{\tau}^{2})\hat{\rho}\sqrt{|\widehat{\Delta}|(\widehat{\mathbf{G}}_{B}-\hat{\mathbf{G}}_{A})},$$

which for $\hat{\mathbf{G}}_A$, $\hat{\mathbf{G}}_B$ being linearly independent, vanishes only for $\hat{\rho} = 0$, and shows that real $\hat{\mathbf{T}}$ are specified by purely imaginary $\hat{\kappa}$. Thus, on re-expressing that imaginary component in terms of the real parameter $\hat{\tau} = \tau + \varepsilon \tau_0$, $-\infty < \tau < \infty$, $-\infty < \tau_0 < \infty$, we have

$$\hat{\mathbf{T}} = -\frac{2}{\hat{\Delta}} \frac{\hat{\mathcal{E}}\hat{\mathbf{G}}_A - \hat{\mathcal{B}}\hat{\mathbf{G}}_B - \hat{\boldsymbol{\tau}}\sqrt{|\hat{\Delta}|} (\hat{\mathbf{G}}_B - \hat{\mathbf{G}}_A)}{1 + \hat{\boldsymbol{\tau}}^2} , \quad \hat{\Delta} < 0 .$$
(7.6)

If, in terms of a dual angle parameter $\hat{\psi} = \psi + \varepsilon d$, $-\pi \le \psi \le \pi$, $-\infty \le d \le \infty$, we write $\hat{\tau} = \tan \hat{\psi}$ with $1 + \hat{\tau}^2 = 1/\cos^2 \hat{\psi}$, we obtain

$$\hat{\mathbf{T}} = \frac{2}{|\hat{\Delta}|} \cos \hat{\psi} \{ \cos \hat{\psi} (\hat{\mathcal{E}} \hat{\mathbf{G}}_A - \hat{\mathcal{B}} \hat{\mathbf{G}}_B) - \sin \hat{\psi} \sqrt{|\hat{\Delta}| (\hat{\mathbf{G}}_B - \hat{\mathbf{G}}_A) } \}, \quad \hat{\Delta} < 0.$$
(7.7)

We can, if we choose, re–write this expression in terms of tan–screws alone. For, by suitable choice of angle, we may eliminate each of the basis screws, thus:

$$-\cos\hat{\psi}\,\hat{\mathcal{B}}\,\hat{\mathbf{G}}_{B} - \sin\hat{\psi}\,\sqrt{|\,\hat{\Delta}\,|\,\hat{\mathbf{G}}_{B}} = 0 \quad for \quad \tan\hat{\psi} = -\frac{\hat{\mathcal{B}}}{\sqrt{|\,\hat{\Delta}\,|}},$$

$$\cos\hat{\psi}\,\hat{\mathcal{E}}\,\hat{\mathbf{G}}_{A} + \sin\hat{\psi}\,\sqrt{|\,\hat{\Delta}\,|\,\hat{\mathbf{G}}_{A}} = 0 \quad for \quad \tan\hat{\psi} = -\frac{\hat{\mathcal{E}}}{\sqrt{|\,\hat{\Delta}\,|}},$$

$$(7.8)$$

from which

$$\hat{\mathbf{T}}_{A} = \frac{2}{|\hat{\Delta}|} \frac{|\hat{\Delta}|}{\hat{\mathcal{B}}^{2} + |\hat{\Delta}|} (\hat{\mathcal{E}} - \hat{\mathcal{B}}) \hat{\mathbf{G}}_{A} = \frac{2\hat{\mathcal{A}}}{\hat{\mathcal{B}}^{2} + |\hat{\Delta}|} \hat{\mathbf{G}}_{A} ,$$

$$\hat{\mathbf{T}}_{B} = \frac{2}{|\hat{\Delta}|} \frac{|\hat{\Delta}|}{\hat{\mathcal{E}}^{2} + |\hat{\Delta}|} (\hat{\mathcal{E}} - \hat{\mathcal{B}}) \hat{\mathbf{G}}_{B} = \frac{2\hat{\mathcal{A}}}{\hat{\mathcal{E}}^{2} + |\hat{\Delta}|} \hat{\mathbf{G}}_{B} .$$
(7.9)

8. Conclusion

A compact representation has been derived for the typical screw of any real 2–system which exists as a subset of the 3–system of finite displacement screws associated with a revolute dyad. It is expected that this representation will allow such studies as that of Huang [11] – of the Bennett mechanism – to be carried further in elucidating detailed properties.

9. Acknowledgements

The author acknowledges the assistance of the Basser Department of Computer Science, University of Sydney, in providing computing facilities used in preparation of this paper.

References

1. Bottema, O., Roth, B., 1990, Theoretical Kinematics. Dover, New York.

2. Yang, A.T., 1974, Calculus of screws. *Basic Questions of Design Theory* (ed. W.R. Spillers), Elsevier, New York, pp. 265–281.

3. Parkin, I.A., 1997, Dual systems of finite displacement screws in the screw triangle. *Mechanism and Machine Theory* **32** (8), pp. 993–1003.

4. Parkin, I.A., 1992, A third conformation with the screw systems: finite twist displacements of a directed line and point. *Mechanism and Machine Theory* **27** (2), pp. 177–188.

5. Huang, C., Roth, B., 1994, Analytic expressions for the finite screw systems. *Mechanism and Machine Theory* **29**, pp. 207–222.

6. Hunt, K.H., Parkin, I.A., 1995, Finite displacements of points, planes and lines *via* screw theory. *Mechanism and Machine Theory* **30**, pp. 177–192.

7. Parkin, I.A., 1998, Linear systems of tan-screws for finite displacement of a rigid body with symmetries. *Proc. Sixth International Workshop on Advances in Robot Kinematics*, Strobl, Austria, June–July, (eds. M. Husty and J. Lenarcic), Kluwer Academic Publishers, pp. 317–326.

8. Huang, C., 1993, On the finite screw system of the third order associated with a revolute–revolute chain. *Advances in Design Automation, Proc 1993 ASME Design Technical Conf.*, Albuquerque, New Mexico, Sept. 19–22, **2**, pp. 81–89.

9. Hunt, K.H., 1990, Kinematic Geometry of Mechanisms. Clarendon Press, Oxford.

10. Phillips, J., 1990, Freedom in machinery., 1 and 2, Cambridge University Press.

11. Huang, C., 1997, The cylindroid associated with finite motions of the Bennett mechanism. *Journal of Mechanical Design, Trans. ASME*, **119**, pp. 521–524.

12. Phillips, J.R., Hunt, K.H., 1964, On the theorem of three axes in the spatial motion of three bodies. *Australian Journal of Applied Science* **15**, pp. 267–287.