
A formal-numerical approach to determine the presence of

singularity within the workspace of a parallel robot

J-P. Merlet

INRIA Sophia-Antipolis

France

Abstract: Determining if there is a singularity within a given workspace of a parallel robot is an
important step during the design process of this type of robot. As this singular con�guration must
be avoided the designer may be interested only in a straight yes/no answer.

We consider in this paper a Gough-type parallel robot and we present algorithms which enable to
determine if there is any singularity within a 6D workspace expressed either in term of generalized
coordinates (position/orientation of the platform) or articular coordinates (lengths of the legs).

1 Introduction

Parallel robots have been extensively studied this recent years and are now starting to appear as
commercial products for various applications, hence the interest for their optimal design. Among
other criterion checking singularity is an important part of the design process. In this paper we
consider a Gough-type 6 d.o.f. parallel manipulator (�gure 1) constituted of a �xed base plate and
a mobile plate connected by 6 articulated and extensible links. The pose of the platform may be

A1

A2

A3

A4

A5

A6

B1

B2

B3

B4

B5

B6

C

O

x

y

z

yr

zr

xr

Figure 1: Gough platform

adjusted by changing the length of the six legs. A reference frame (O; x; y; z) is attached to the base
and a mobile frame (C; xr ; yr; zr) is attached to the moving platform. The leg i is attached to the
base with a ball-and-socket joint whose center is Ai, while it is attached to the moving platform with
an universal joint whose center is Bi. For a given robot the coordinates of the points are assumed

1

to be known. Let �i be the leg lengths (the distance between Ai and Bi), X a 6-dimensional vector
de�ning the pose of the end-e�ector: the three �rst components of X are the coordinates xc; yc; zc
of C in the reference frame, while the three last components are three parameters describing the
orientation of the end-e�ector. In this paper we will use the Euler angles ; �; � but any other
representation may be used.

2 Singular con�gurations

2.1 Inverse jacobian matrix

For a Gough platform it is easy to establish the inverse kinematics as:

� = F (X) (1)

where � is the vector of the leg lengths and X the generalized coordinates of the platform. By
an appropriate derivation we may obtain the relation between the articular velocities _� and the
platform velocities _X as:

_� = J�1 _X (2)

where J�1 is the inverse jacobian matrix of the robot. A row of this matrix may be written as:

J�1i =
AiBi

�i
CBi �

AiBi

�i
(3)

A parallel singular con�guration is de�ned as the con�guration where the determinant of J�1 van-
ishes. The importance of determining if there is any singular con�guration in the workspace of the
robot may be illustrated by considering that at a singular con�guration the articular forces may go
to in�nity, causing a breakdown of the robot.

Note that if we de�ne the semi inverse jacobian matrix as:

Mi = AiBi CBi �AiBi (4)

we may see that:

jJ�1j =
jM j
Qi=6

i=1 �i
(5)

Therefore the singular con�guration may also be de�ned as the con�guration for which jM j = 0.
Finding all the singular con�gurations of a given robot is a di�cult task: indeed, although the

inverse jacobian matrix is known, expansion of its determinant leads to an huge expression [2] which
is di�cult to use. Another approach is based on Grassmann line geometry and has been successful
to determine all the possible relations on the pose parameters leading to a singularity [4].

But from the design view point we are more interested in the following question: is there a
singularity(s) in a given workspace of a given robot?. The designer may be interested by a binary
answer (yes or no) and our algorithms will provide this answer. To the best of our knowledge this
problem has not yet been addressed in the literature for 6 d.o.f. robot. Related works deal with
conditioning index (like the condition number of the inverse jacobian matrix estimated over the
whole workspace [1]). But this index is usually estimated by a discrete method over the whole
workspace and henceforth may fail to locate singularities.

2

3 Existence of a singular con�guration

We consider here a workspace W de�ned as a closed region in the 6-dimensional generalized coor-
dinates space. We consider a point X1 taken at random in W. We compute jM j at point X1 and
we will assume, without loss of generality that jM(X1)j is greater than zero. Let us assume that we
are able to �nd a point X2 (or a set of points), in the same component of the workspace than X1,
such that jM(X2)j < 0. As jM j is a real valued continuous and di�erentiable function, then any
path from X1 to X2 will have a point Xs for which jM(Xs)j = 0, which means that Xs is a singular
con�guration of the robot. Hence as soon as a point X2 has been determined we know that there is
a singular con�guration in the workspace of the robot.

The purpose of the following sections is to present algorithms which are able to determine a pair
of points X1; X2, if any exist. If such pair is found, then we have proven the existence of at least a
singular con�guration within the workspace and if no such pair has been found, then we will have
proven that the workspace is singularity-free.

4 Workspace and extended box

4.1 Extended box

We de�ne an extended box (or EB for short) as a pair of element: a cartesian box, which represent
the possible locations of the end-e�ector, and a set of three ranges, one for each of the rotation
angles. An EB is therefore composed of a location part (the box) and an orientation part and de�nes
a 6D workspace for the robot.

4.2 Bisection of an extended box

In the sequel we will use an operator for an EB called bisection. This operator takes as input an EB
and outputs up to 64 new EBs whose union is the initial EB. They are obtained by �rst splitting in
half some of the 6 ranges I1; : : : ; I6 which de�ne the input EB. Thus if Ii = [ai; bi] we get two new
ranges Ii1; Ii2, namely

Ii1 = [ai; (ai + bi)=2] Ii2 = [(ai + bi)=2; bi]

The new EBs are then obtained by considering all the possible combinations of the bisected ranges
and non bisected ranges For example if the input EB is de�ned by the following ranges:

[�1; 1]; [�1; 1]; [40; 50]; [�1; 1]; [�1; 1]; [�1; 1]

and if we bisect only the two �rst ranges, then the output of the bisection will be the 4 EBs de�ned
by:

f[�1; 0]; [�1; 0]; [40; 50]; [�1; 1]; [�1; 1]; [�1; 1]g f[�1; 0]; [0; 1]; [40; 50]; [�1; 1]; [�1; 1]; [�1; 1]g

f[0; 1]; [�1; 0]; [40; 50]; [�1; 1]; [�1; 1]; [�1; 1]g f[0; 1]; [0; 1]; [40; 50]; [�1; 1]; [�1; 1]; [�1; 1]g

4.3 Singularity detection in a workspace

Consider an EB B and let assume that we have an algorithm A(B) which is able to determine �rst a
lower and an upper bound of jM j for any pose within B and will then return: 1, if the lower bound
is positive, -1, if the upper bound is negative and 0, if the lower bound is negative and the upper

3

bound is positive. The bounds provided by the A algorithm may be overestimated but should be
exact if the EB is reduced to one pose. The purpose of this section is to show that then we are able
to determine if a singularity occurs within any type of workspace.

4.3.1 Singularity in a generalized coordinates workspace

Let assume that we want to check the presence of singularity in a workspace W de�ned by a 3D
volume V describing the possible location of the center of the end-e�ector and three ranges I ; I�; I�
which describe the possible values of the orientation angles. Clearly V may be approximated by a
set of EB.

Let us assume now that we are able to design a test algorithm T(B) which enable to determine
if for the EB B:

1. the location part of B is fully inside V

2. the location part of B is fully outside V

3. the location part of B is partially inside V

The algorithm T will return an integer which may 1, 2 or 3 according to the status of the location
part with respect to V.

Using the algorithms A and T we are able to design an algorithm which enable to determine if a
singularity occur within W. The algorithm start by computing a list S=fB0;B1; : : :Bn�1g of n EBs
such that the union of the location part of the EBs in the list is an approximation of the volume V,
strictly including V, while the orientation part of each EB is simply de�ned as the range I ; I�; I�.
We will then use two �ags f

�

; f+ which will be initialized to 0 and will be set to 1 as soon as an EB
for which the upper (lower) bound of jM j is negative (positive) is encountered during the algorithm.
We may now describe the di�erent steps followed by the algorithm at iteration k, the algorithm
starting at iteration 0:

1. if k > n� 1 return NO SINGULARITY

2. if T(Bk) = 2 then k = k + 1 and reiterate

3. if A(Bk) = 1 and T(Bk) = 1 then set f+ to 1

� if f
�

= 1 then return SINGULARITY

� otherwise k = k + 1 and reiterate

4. if A(Bk) = �1 and T(Bk) = 1 then set f
�

to 1

� if f+ = 1 then return SINGULARITY

� otherwise k = k + 1 and reiterate

5. if T(Bk) = 3 or A(Bk) = 0 bisect Bk and put the new EBs at the end of the list S whose
number of elements is updated, k = k + 1 and reiterate

Basically this algorithm just consider each EB of the list sequentially. Flags are set as soon as
an EB included in W is such that jM j has a constant sign. As soon we have encountered an EB
with positive jM j and an EB with negative jM j we may state that a singularity occurs within W.
During the iteration we will encounter EBs which are only partially inside W, or fully inside W but

4

with bounds on jM j which have opposite sign. In that case we just bisect the EB and the resulting
EBs are added to the list.

The algorithm stop either if a singularity has been detected or when all the elements of S have
been considered, in which case there is no singularity in W.

4.3.2 Singularity in an articular workspace

Let us assume now that the workspace is not de�ned in term of generalized coordinates but in term
of articular coordinates i.e. as all the poses X for which the leg lengths satisfy:

�imin � �i(X) � �imax

in which �i(X) denote the length of leg i at pose X and �imin; �
i
max the minimal and maximal lengths

of leg i. In other words we want to detect if a singularity occur within the reachable workspace of
the robot.

Basically we will use exactly the same algorithm than in the previous section, with only a few
modi�cations.

The �rst modi�cation will be related to the algorithm T: we will use here an algorithm which
enable to determine �rst what will be the extremal values of the leg lengths for any pose within an
EB [3].

Then the design of T is quite straightforward. Indeed, let �im(B); �iM (B) denote the minimal and
maximal value of the length of leg i for the EB B, as computed by the algorithm. Then algorithm
T will be

� if for all legs �imin � �im(B); �iM (B) � �imax then return 1

� if for at least one leg we have �im(B) > �imax or �iM (B) < �imin then return 2

� otherwise return 3

Note that it is not necessary to compute the exact values of �im(B); �iM (B), except in the case
where B is reduced to a pose. Only lower and upper bounds on the minimal and maximal values
are necessary. Indeed, the only consequence of an error on the estimation of these extremal values
is that the algorithm T may return a status 3 for an EB whose real status is 1. In the algorithm an
EB with status 3 will be bisected until the status of the new EBs is either 1 or 2. If the real status
of the EB is 1, then after a few bisection all the EBs will have status 1.

The second modi�cation of the previous algorithm is to determine the initial EBs of the list S.
This problem may be solved by �nding an EB whose location part is a bounding box of the reachable
workspace. Indeed for the orientation part as we deal with angle we have natural bounds on the
range with the interval [0; 2�]. But C is at �xed distance from the Bi which are in turn constrained
to be within a maximum distance from the Ai: consequently �nding such bounding box is an easy
task.

With such initialization of S and by using the new T algorithm we may now use the previously
described singularity detection algorithm to �nd if a singularity occur within an articular workspace.

More precisely if the previous algorithm does not detect a singularity then we may state that
there is no singularity in the articular workspace. On the contrary let us assume that we have
detected 2 EB in the articular workspace for which jM j > 0 and jM j < 0. A singularity will occur
in the articular workspace only if these two regions belong to the same connected component of the
articular workspace. Currently, to the best of my knowledge, there is no known method that may
ensure that the 2 EBs belong to the same connected component.

5

5 Interval analysis

5.1 Principle

As we have seen in the previous section detecting singular con�gurations amounts to be able to �nd
two EBs such that jM j for any pose in the EBs has a constant sign, this sign being opposite for
the EBs. To ensure that jM j has a constant sign over an EB we may compute the minimal and
maximal value of jM j for all the poses included in the EB. It must be noted that it is not necessary
to compute exactly these extremal values: lower bound for the minimal value and upper bound for
the maximal value will be su�cient.

Interval analysis [5] is a method that is able to deal with the problem of determining bounds
on a function. Interval analysis is similar to real analysis except that real variables are replaced by
intervals and that speci�c rules are used for each basic arithmetic operations.

More generally if Xi = [xi; xi], with xi � xi, denotes an interval it is possible to de�ne all the
arithmetic operators (and more complex functions) for intervals. For example the "+" operator for
intervals will be de�ned as:

X1 +X2 = [x1 + x2; x1 + x2]

Consider now a very simple example of interval analysis: let the function x2 + x for which we
want to �nd the extremal values when x lie in the range [-1,0]. We consider each monomial of this
function and compute its extremum, which lead to x2 2 [0; 1], x 2 [�1; 0]. Then the upper bound of
the sum is computed as the sum of the upper bound of each interval while the minimum is obtained
as the sum of the lower bound.

x2 + x = [0; 1] + [�1; 0] = [�1; 1]

An important point is that an analytical formula may be written in various forms and the corre-
sponding interval evaluation will depend upon the form (in term of interval analysis we say that
there are di�erent evaluation functions). For example we may have used the Horner (or "nested")
form of the previous function and get the following result:

x2 + x = x(x + 1) = [�1; 0]� [0; 1] = [�1; 0]

We notice here that the Horner form leads to a better estimation of the maximum (the real extremum
being [-1/4,0]).

A good point of interval analysis is that it can take into account round-o� errors: result obtained
through interval analysis may be guaranteed: the interval which is the result of operations on a set
of interval is guaranteed to include the exact extremum values as computed using exact arithmetics.

Numerous packages of interval analysis are available. In our implementation we are using the
BIAS/PROFIL package1.

6 Detecting singularity in an extended box

6.1 Finding bounds on the determinant for an extended box

6.1.1 A formal-numerical approach

As all the unknowns in jM j are ranges we may apply interval analysis to obtain a lower bound of
the minimal value of jM j and an upper bound on the maximal value of jM j, as soon as an analytical

1http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html

6

formulation of jM j is known. The problem is now to �nd this analytical formulation, under the
constraint that we want to implement a general-purpose program that is able to deal with any
robot geometry, being understood that computer algebra program like MAPLE have di�culties to
compute a generic form of jM j, although this is possible if the coordinates of the Ai; Bi points have
numerical values.

We propose a �rst approach which mix formal and numerical computation. When running our
algorithm we will �rst start a MAPLE program that will �rst read in a �le the coordinates of Ai; Bi
points and then compute the semi-inverse jacobian and its determinant (which is at this step only
a function of x; y; z; ; �; �). The MAPLE program will then decompose this determinant as a sum
of terms of the form

Fj(x; y; z; ; �; �) = Cjx
iyJzk cosl() sinm() cosn(�) sino(�) cosp(�) sinq(�)

where Cj is a numerical constant. The MAPLE program will then write in a result �le the number of
terms Fj and a description of each term, namely the i; J; k; l;m; n; o; p; q; Cj coe�cients. The main
program will then read the result �le and �ll an appropriate data structure which enable to store
each Fj . Using this structure the program is then able to compute an interval evaluation of jM j for
any range of the pose parameters. Note that this computation has to be done only once for a given
robot and afterwards any workspace can be tested.

Note that in this method the computation of the coe�cients has to be done quite carefully.
Indeed they result from a large number of calculation using the coordinates of the attachment points.
Numerical errors in these calculations may lead to a bad estimation of the determinant of M . To
avoid this problem we transform the coordinates of the attachment points into their exact rational
form (as only a limited number of digits are signi�cant for the coordinates) and then compute the
determinant which will be then exact (and the coe�cients Cj will be integers).

Still this process may lead to numerical problems as for some robot geometries the coe�cients
Cj may be larger than the maximal integer that has a representation in a computer. To solve
this problem we use in our implementation two possible representations for the coe�cients Cj . If
the computed coe�cient is lower than the largest available integers, then Cj is represented by this
integer, otherwise Cj is represented by an interval which is guaranteed to include the real value of
the coe�cient. This later representation has the major drawback that for very large coe�cients Cj ,
the width of the interval used to represent a coe�cient may be also large. As a consequence we may
end up in a situation in which, even for a �xed pose, the evaluation interval of jM j may be a large
interval which will include 0, in which case all of the algorithms presented in section 4.3 will fail.

Clearly the algorithm which determine the presence of singularity in an EB is a key point of all
the algorithms which deal with the di�erent types of workspace. A crucial point is the determination
of the lower and upper bounds of jM j. Clearly the closer these bounds are to the real minimum and
maximum values, the faster will be the algorithm. We have therefore to deal with a major problem
of interval analysis which is that this method may lead to largely over-estimated bounds.

There are numerous methods to improve the interval evaluation of jM j. Let us mention two of
them:

� use the monotonicity: using MAPLE we are able to compute the derivatives of jM j. Interval
evaluation of these derivatives may lead to one or more derivative intervals having bounds with
the same sign. Hence jM j will be monotonous with respect to these variables. Consequently
the evaluation of jM j will be done using �xed value for this variable, thereby improving the
evaluation. Note that this is a recursive process: having a variable being a number instead
of an interval may change the interval evaluation of the derivatives with respect to the other
variables.

7

� use the 3B method: let assume than during the process it has been found that for one EB jM j
is always positive (hence we are looking for an EB for which jM j will be negative). Consider
now one of the pose parameters, say xc, which has currently for range [x1; x2] and a small
positive number �. We substitute the range for xc by the range [x1; x1 + �] and compute the
interval evaluation of jM j: if this evaluation lead to an always positive value for jM j, then a
negative value for jM j may be obtained only for xc in the range [x1 + �; x2]. We repeat �rst
the process with this new interval, until the evaluation of jM j is no more strictly positive, then
for the right side of the interval for xc and, �nally, for all the other variables. This enable to
reduce the width of the ranges for the unknowns, thereby improving the interval evaluation.

6.1.2 A numerical approach

Another approach is to consider that we have to deal with a speci�c type of constrained optimization
problem: we want to determine the minimum and maximum values of jM j being given bounds on
the unknowns (and for the articular workspace with the additional constraints that the leg lengths
should be within some limits) and exit from the optimization process as soon as it is shown that
the values will have opposite sign. At the same time we are looking for an optimization algorithm
that guarantee to provide global extremum as this is a necessary to ensure the completeness of the
singularity detection. For this purpose we have used the interval-based C++ package ALIAS2 that
provide such type of optimization procedure (the extremum are computed up to a given accuracy).
There are �ve main advantages in using ALIAS for our problem:

� it is able to deal with almost any mathematical functions

� the function to be optimized may include terms de�ned as determinant of matrices without
having to give an analytical formulation of the determinant (only the component of the matrices
have to be de�ned)

� it is fully interfaced with MAPLE: in our case we have just to de�ne the M matrix and call a
speci�c MAPLE procedure that will automatically generate the C++ code for the optimization
problem at hand

� it enable parallel computation on a set of computers based on the pvm package3. Clearly the
singularity detection algorithm has a structure that is highly favorable for parallel computation
as every EB in the list S can be processed independently

� if there is no singularity within the workspace we will get the extremum of jM j which may be
considered as a measure of the conditioning of the robot

The algorithm for optimization procedure is basically identical to the algorithm described in sec-
tion 4.3 except that the evaluation of the determinant of M will be obtained by a minor expansion
taking into account that these coe�cients are ranges. Furthermore a local optimizer will try to
determine the local optimum within the current EB using a steepest descent method.

Using an interval evaluation of the components of the matrix for computing jM j has the advantage
compared to the previous method that we have no more any numerical problem, while having the
drawback that the interval evaluation of jM j will be largely more overestimated than before as we
are no more taking into account the simpli�cation that may occur formally during the computation
of the determinant. Our experiments has shown that indeed this method was largely slower but very
robust.

2www.inria.fr/saga/logiciels/ALIAS/ALIAS.html
3http://www.netlib.org/pvm3/book/pvm-book.html

8

7 Dealing with uncertainties in the location of the joints

Up to now we have assumed that the geometry of the robot was perfectly known. In practice however
manufacturing tolerances lead to uncertainties in the locations of the joints. We may assume that
the coordinates of the joints may be represented by small ranges instead of �oating point numbers,
the purpose being to determine if there is a singularity in the workspace for any real robot whose
joint coordinates belong to the ranges. We may still theoretically proceed with the calculation
of the determinant of the semi inverse jacobian matrix, the coe�cients Cj being now ranges and
consequently we may apply the singularity detection algorithm. But a problem may arise: if the
width of the ranges Cj are too large we may be not able to determine the sign of jM j even at a �xed
pose, in which case the algorithm will fail.

8 Examples and computation time

The above algorithms have been implemented in C++ on a SUN Ultra 10 workstation under Unix-
Solaris and on a PC laptop Dell Latitude CP 300 (300 Mhz) under linux. The computation time
provided for the example have been obtained on these computers. They do not include the compu-
tation time of the MAPLE session. All the angle values are given in degree.

8.1 The considered robots

The coordinates of A and B of robot 1 and 3 are presented in the table 1. For robot 1 the minimal

xA yA zA xB yB zB

1 -9 9 0 -3 7 0
2 9 9 0 3 7 0
3 12 -3 0 7 -1 0
4 3 -13 0 4 -6 0
5 -3 -13 0 -4 -6 0
6 -12 -3 0 -7 -1 0

xA yA zA xB yB zB

1 -2539 1778 0 -657 -239 -100
2 2539 1778 500 657 -239 100
3 2809 1310 0 121 689 -100
4 270 -3088 500 -536 -449 100
5 -270 -3088 0 536 -449 -100
6 -2809 1310 500 -121 689 100

Table 1: Coordinates of the A;B points for robot 1 and 3

and maximal lengths of the legs are 55 and 60, while for robot 3 the minimal and maximal length
for legs 1, 3, 5 are 3760, 4390, while for legs 2, 4, 6 they are 3545,4175.

8.2 Singularity in an extended box

The considered EB is de�ned by the following range:

x y z � �

[-15,15] [-15,15], [45,50] [-15,15] [-15,15] [-15,15]

For this extended box the absence of singularity is veri�ed in 51.41s on the SUN workstation and in
24.61s on the PC.

Singularity in an extended box have been also studied for robot 3. In the EB de�ned by [-
200,200], [-200,200], [2800,3200], [-20,20], [-20,20], [-20,20] no singularity are detected in 19m5s on
the SUN and 29mn11s on the PC.

9

8.3 Singularity in an articular workspace

For robot 1 we have considered the articular workspace obtained when the angles and � are equal
to 0 while the range for the angle � is [-40,40]. The absence of singularity is veri�ed in 6.54s on the
SUN workstation and 3.71s on the PC.

For robot 3 we have investigated the presence of singularity in the articular workspace for which
we have restricted the z coordinates of the end-e�ector to be greater than 2000, and the Euler's angles
to be in the range [-20,20]. The initial EB in S has the following ranges for the x; y; z coordinates:

x 2 [�1878:85; 1644:15] y 2 [�2674:69; 1364:79] z 2 [2000; 5096:24]

After examining 9147 EBs no singularity is detected in this articular workspace: the computation
time on the SUN workstation is 1h43mn and 2h19mn on a PC.

9 Conclusion

The algorithms proposed in this paper enable to solve a very important problem in the design
process of a parallel robot. As may be seen in the benches the computation time is in general quite
acceptable although we believe that large gain may still be obtained.

Both methods are interfaced through MAPLE: a direct consequence is that although the sin-
gularity detection algorithm has been presented for the Gough platform it may be used for any
mechanical architecture just by providing a MAPLE procedure that compute the inverse jacobian
matrix.

References

[1] Gosselin C. and Angeles J. The optimum kinematic design of a spherical three-degree-of-freedom
parallel manipulator. J. of Mechanisms, Transmissions and Automation in Design, 111(2):202�
207, 1989.

[2] Mayer St-Onge B. and Gosselin C. Singularity analysis and representation of spatial six-dof
parallel manipulators. In J. Lenar�ci�c V. Parenti-Castelli, editor, Recent Advances in Robot Kine-

matics, pages 389�398. Kluwer, 1996.

[3] Merlet J-P. Finding the extrema of the leg lengths of a Gough-type parallel robot when the
platform is moving in a given 6D workspace. In 10th World Congress on the Theory of Machines

and Mechanisms, pages 86�91, Oulu, June, 20-24, 1999.

[4] Merlet J-P. Singular con�gurations of parallel manipulators and Grassmann geometry. Int. J.

of Robotics Research, 8(5):45�56, October 1989.

[5] Moore R.E. Methods and Applications of Interval Analysis. SIAM Studies in Applied Mathe-
matics, 1979.

10

