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Abstract
In this paper the novel hybrid manipulator, named as CaHyMan (Cassino Hybrid Manipulator), is

analyzed in term of stiffness characteristics. A formulation is presented to deduce the stiffness matrix
as a function of the most important stiffness parameters of the mechanical design. The specific design
of CaHyMan, which has been designed and built at the Laboratory of Robotics in Cassino, Italy, helps
to obtain closed-form expressions. A formulation for a stiffness performance index is proposed by
using the obtained stiffness matrix. A numerical investigation has been carried out on the effects of
design parameters and results are discussed in the paper.

1. Introduction
In the last decade hybrid manipulators addressed great attention as a combination of serial and

parallel chain architectures. Some significant examples are: ARTISAN from Stanford University
(USA), [1; 2]; HRM from Korea Institute of Machinery and Materials (Korea), [3]; GEORGV from
Institute of Production Engineering and Machine Tools (Germany), [4]; UPSarm from University of
California at Davis (USA), [5].

A novel hybrid manipulator, named as CaHyMan (Cassino Hybrid Manipulator) has been designed
and built at the Laboratory of Robotics and Mechatronics in Cassino, Italy. This prototype, Figs.1 and
2, is based on the mechanical design of a built prototype of CaPaMan (Cassino Parallel Manipulator),
[6; 7], by adding to it a telescopic arm.

2. The design of CaHyMan
The proposed hybrid manipulator CaHyMan is shown in the kinematic sketch of Fig.2 as a
combination of the parallel chain of CaPaMan with a telescopic arm architecture. In particular, the
telescopic arm is installed on the mobile plate MP of CaPaMan. The aim of this assembly is that the
parallel architecture will work as an intelligent compliant base for the telescopic arm, which will
operate in static or quasi- static state for a-priori determined task.

The CaHyMan prototype has five dofs: three dofs are given by CaPaMan, and two more are given
by the serial chain. It is composed of a movable plate MP which is connected to a fixed plate FP by
means of three leg mechanisms. Each leg mechanism is composed of an articulated parallelogram AP
whose coupler carries a prismatic joint SJ, a connecting bar CB which transmits the motion from AP to
MP through SJ, and a spherical joint BJ which is installed on MP. The size of MP and FP are given by



Fig.1 The built prototype of CaHyMan (Cassino Hybrid Manipulator) at Laboratory of Robotics and Mechatronics
in Cassino.

     
Fig.2 Kinematic chain and parameters for the parallel�serial hybrid manipulator named CaHyMan.
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The design parameters for the parallel-serial manipulator CaHyMan are (k=1,2,3): ak=ck, bk=dk,
links of the k-th leg mechanism; hk, the length of the connecting bar; ακ, the input crank angle; sk, the
stroke of the prismatic joint; HM, the length of the telescopic arm; sk the stroke of the prismatic joint of
the telescopic arm; αk the revolute joint angle; and λ, the angle, that locates the telescopic arm frame
with respect to the mobile frame Xp Yp Zp.
The manipulative capability of the parallel-serial chain can be described by the position of the
extremity point M, and the orientation of the telescopic link through the orientation angles which take
into account the angles ϕ, ϑ, ψ, λ and α4. Similarly, the static behavior of the CaHyMan can be
described by the actions exerted by the extremity link at M for given actions of the actuators, or vice
versa.

3. CaHyMan Stiffness Properties
The manipulating performances of a robot are strictly related to stiffness properties. If the stiffness

of links and joints are inadequate, external forces and moments may cause large deflections in the links
bodies, which are undesirable from the viewpoint of both accuracy and payload performances.

The stiffness properties of the hybrid manipulator can be deduced using a quality index such as the
determinant of the stiffness matrix. The stiffness matrix can be obtained in a closed-form expression as
a function of the most important stiffness parameters of the links of the serial and parallel chain.

The displacement ∆∆∆∆XCaHyMan of the hybrid manipulator CaHyMan is the sum of parallel and serial
structure displacements ∆∆∆∆XPAR and ∆∆∆∆XSER, respectively, which are due to the action FM=(Fe, Ne) of
external force Fe and torque Ne. This can be expressed as

SERPARCaHyMan ∆∆∆ XXX +=  (1)

where

M
1
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in which KPAR and KSER are the 6x6 stiffness matrix for the parallel and serial chain. described with
respect to XPYPZP frame.

Thus, the stiffness matrix of CaHyMan can be written as
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3.1. The stiffness matrix of the serial chain
The stiffness behavior of the serial chain depends on the following parameters, Fig.3: K4, the

stiffness of the QM2 link; KS, the stiffness of the linear motor and MM2 link; KT4, the stiffness of motor
located in Q.

The scheme of Fig.3 can be considered to give
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whose elements can be computed by considering



- RSP, which is the 6x6 matrix given by
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with I as identity 3x3 matrix and RPAR, which describes the orientation of the mobile frame XpYpZp
with respect to the fixed frame XYZ in term of the Euler angles ϕ, θ and ψ for the parallel chain, given
by
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in which cθ=cosθ, sθ=sinθ and so on.
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- As, which is the matrix converting ∆L, ∆s4, ∆α4, in the links to displacements coordinates, in the
form
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Fig.3 A scheme for the evaluation of statics equilibrium and stiffness matrix in the serial sub-chain of CaHyMan.



3.2. The stiffness matrix of the parallel chain
As regards the parallel chain the stiffness matrix KPAR can be deduced as proposed in [8], for the

CaPaMan prototype. Nevertheless, it is necessary to point out that for CaHyMan the application point
of external force Fe and torque Te is in the point M, Fig.2. Therefore, the reactions at the frame joint of
the serial chain F and N are considered such as external force and torque for the parallel chain.

The stiffness behavior of the parallel chain depends on the following parameters, Fig.4: Kbk, Kck,
Kdk, Khk, which are the stiffness of the links bk, ck, dk, hk, respectively; KTk, which is the stiffness of the
motors. These stiffness parameters have been defined, by using mathematical models as in [9] and
[10].

By using a suitable analysis of the static equilibrium of the deformed architecture through the
model of Fig.4 the stiffness matrix KPAR of CaPaMan module of CaHyMan can be formulated as

 1
d
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in which

- MFT is the matrix giving FH=(F,N) as function of FM=(Fe,Te) in the form
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where the terms C1j, C2j, and C3j (j=x,y,z) are introduced to consider the weights of links, mHQ, mQM,
mMM2, and motors, mM4 and mM5, respectively. The above-mentioned parameters can be evaluated as
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- MFN is the matrix giving the forces acting on the legs FR=[Rx1, Rx2, Rx3, Rz1, Rz2, Rz3]t as a function
of FH in the form
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- KP is the overall stiffness matrix for the CaPaMan legs in the form



Fig.4 A scheme for the stiffness evaluation of the CaPaMan leg.
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where each Kpk (k=1,2,3) can be computed by using the first 2x2 submatrix of Kpkk given by
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- CP is the matrix giving the coordinate variations as a function of deformed link parameters for the
CaPaMan legs in the form 
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where each Cpk (k=1,2,3) can be computed by using the first 2x2 submatrix of Cpkk given by
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- Ad is the matrix converting the displacements ∆∆∆∆v = [∆y1, ∆z1, ∆y2, ∆z2, ∆y3, ∆z3]t of the
articulation points to the displacement coordinates ∆∆∆∆XPAR = [∆xH, ∆yH, ∆zH, ∆ϕ, ∆θ, ∆ψ]t of the
movable plate in the form
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in which Cx, Cy, Cz, Cϕ, Cψ and Cθ can be evaluated, in a recursive way, as

( ) ( )∆θ-∆ψ cos ∆sin 1)2∆∆r(C 1px ϕ−−=
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The matrix Ad can be also computed by using a linearized solution of the equations converting the
coordinates ∆∆∆∆XPAR = [∆xH, ∆yH, ∆zH, ∆ϕ, ∆θ, ∆ψ]t to the coordinates ∆∆∆∆v = [∆y1, ∆z1, ∆y2, ∆z2, ∆y3,
∆z3]t.

The details of the derivation and formulation are described in, [8], and [10] which the reader may
refer to.

4. Effect of design parameters
By using the proposed formulation the stiffness matrix of CaHyMan can be numerically

computed. In addition, the determinant of KCaHyMan, which is easy computable and particularly
significant for stiffness singularity properties, can be used as a performance index to investigate
synthetically the effect of the design parameters on the stiffness behavior of CaHyMan. In fact, no-null
determinant of KCaHyMan is needed to perform the computation of Eqs.(2), but even to ensure stiff
behavior for given force applied to the extremity. Additionally, a numerical evaluation of eigenvalues
of KCaHyMan can be of interest for stability considerations, as pointed out in [11], but insight of matrix
characteristics can be even obtained only by a numerical evaluation of the matrix determinant.

The built prototype of CaHyMan in Fig.1 has been analyzed and it is described by the stiffness
parameters Kbk=Kdk=2.625x106 N/m, KTk=4.672x103 Nm/rad, K4=2.625x106 N/m, Ks=0.697 N/m,
KT1=0.876x103 Nm/rad, [12]. Figure 5 shows diagrams of the computed determinant of KCaHyMan as a
function of design parameters αk, α4, s4, bk, dk, skMAX and L, (k=1,2,3).

By using the proposed formulation the displacement of CaHyMan given by Eq.(1), which are due
to the external force Fe and torque Ne, have been numerically computed through Eqs.(2) to (19). Tables
1, 2 and 3 show the computed values of the components the displacement of CaHyMan in three
different configurations. The components of the displacement have been also computed as a function
of the external force Fe and torque Ne, in the Figs.6 and 7. The proposed formulation can be also used
to compute the extreme values of the stiffness over the workspace of the manipulator.
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Fig.5 Diagrams of the determinant of KCaHyMan: a) versus α1=α2=α3 with α4=60 deg. and s4=25 mm; b) versus bk=dk

(k=1,2,3) with α1=α2=α3=α4=60 deg. and s4=50 mm;  c) versus α4 with α1=α2=α3=60 deg. and s4=50 mm; d)
versus L+s4 with α1=α2=α3=α4=60 deg.

Tab.1 Displacements of CaHyMan when α1=α2=α3=α4=90 deg. and s4=50mm.

∆∆∆∆XCaHyMan

Fe=(1.0;1.0;1.0)t

Ne=(0.0;0.0;0.0)t

[N; Nm]

Fe=(0.0;0.0;0.0)t

Ne=(1.0;1.0;1.0)t

[N; Nm]

Fe=(1.0;1.0;1.0)t

Ne=(1.0;1.0;1.0)t

[N; Nm]

∆x [mm]  0.10 -0.50 -0.50
∆y [mm]  0.01  0.01  0.01
∆z [mm]  0.37 -3.07 -2.70
∆ϕ [deg] -0.92 -0.85 -0.74
∆ψ [deg]  0.84  1.52  1.33
∆θ [deg] -0.57  0.99  0.66



Tab.2 Displacements of CaHyMan when α1=α2=α3=α4=30 deg. and s4=0mm.

∆∆∆∆XCaHyMan

Fe=(1.0;1.0;1.0)t

Ne=(0.0;0.0;0.0)t

[N; Nm]

Fe=(0.0;0.0;0.0)t

Ne=(1.0;1.0;1.0)t

[N; Nm]

Fe=(1.0;1.0;1.0)t

Ne=(1.0;1.0;1.0)t

[N; Nm]

∆x [mm] -0.50  7.60  7.10
∆y [mm] -0.40  6.30  5.90
∆z [mm] -0.40  5.70  5.30
∆ϕ [deg] -1.01  3.04  2.87
∆ψ [deg] 0.97 -2.49 -2.35
∆θ [deg] -0.08  0.21  0.65

Tab.3 Displacements of CaHyMan when α1=45deg., α2=60deg., α3=75deg., α4=45deg. and s4=0mm.

∆∆∆∆XCaHyMan

Fe=(1.0;1.0;1.0)t

Ne=(0.0;0.0;0.0)t

[N; Nm]

Fe=(0.0;0.0;0.0)t

Ne=(1.0;1.0;1.0)t

[N; Nm]

Fe=(1.0;1.0;1.0)t

Ne=(1.0;1.0;1.0)t

[N; Nm]

∆x [mm]  0.01 -0.30 -0.20
∆y [mm]  0.01 -0.10 -0.10
∆z [mm]  0.01 -0.20 -0.20
∆ϕ [deg] -0.79  0.22  0.34
∆ψ [deg]  0.78 -0.21 -0.33
∆θ [deg]  9.34  0.43 -2.54

      
 a)                                 b) c)

         
 d)     e) f)

Fig.6 Displacements of CaHyMan as a function of Fex=Fey=Fez when Nex=Ney=Nez=0 for α1=α2=α3=α4=60deg.
and s4=50mm: a) ∆x; b) ∆y; c) ∆z; d) ∆ϕ; e) ∆ψ; f) ∆θ.



        
 a)     b) c)

          
 d)     e) f)

Fig.7 Displacements of CaHyMan as a function of Nex=Ney=Nez when Fex=Fey=Fez=0 for α1=α2=α3=α4=60deg.
and s4=50mm: a) ∆x; b) ∆y; c) ∆z; d) ∆ϕ; e) ∆ψ; f) ∆θ.

5. Conclusions
The stiffness behaviour of the hybrid parallel-serial manipulator CaHyMan has been investigated by
using proper schemes in order to obtain a closed-form formulation. By using this formulation the
stiffness matrix and displacement of CaHyMan has been numerically computed in different
configurations of the manipulator. The satisfactory results confirm that CaHyMan is able to operate
with high performances in static or quasi-static operations such as surgery applications.

References
[1] Waldron K. J., Raghavan M., Roth B., �Kinematics of a Hybrid Series-Parallel Manipulation System�, ASME

Journal of Dynamic Systems, Measurement, and Control, Vol.111, pp. 211-221, 1989.
[2] Khatib O., Roth B., Waldron K.J., �The Design of a High-Performance Force-Controlled Manipulator�, 8th

World Congress on the Theory of Machines and Mechanisms, Prague, Vol.2, pp.475-478, 1991.
[3] Choi B. O., Lee M. K., Park K. W., �Kinematic and Dynamic Models of Hybrid Robot Manipulator for

Propeller Grinding�, Journal of Robotic Systems, Vol.16, No.3, pp. 137-150, 1999.
[4] Tonchoff H. K., Gunther G., Grendel H., �Vergleichende Betrachtung paralleler und hybrider Strukturen�,

Proc. of Corference on New Machine Concepts for Handling and Manufacturing Devices on the Basis of
Parallel Structures, VDI N. 1427, Braunschweig, pp. 249-270, 1998.

[5] Cheng H. H., �Real-Time Manipulation of a Hybrid Serial-and-Parallel-Driven Redundant Industrial
Manipulator�, ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 116, pp. 687-701, 1994.

[6] Ceccarelli M., �A New 3 dof Spatial Parallel Mechanism�, Mechanism and Machine Theory, Vol. 32 n.8, pp.
895-902, 1997.

[7] Ceccarelli M., Figliolini G., �Mechanical Characteristics of CaPaMan (Cassino Parallel Manipulator)�, Proc.
of 3rd Asian Conference on Robotics and its Application, Tokyo, pp.301-308, 1997.

[8] Ceccarelli M., �A Stiffness Analysis for CaPaMan�, Proc. of Corference on New Machine Concepts for
Handling and Manufacturing Devices on the Basis of Parallel Structures, VDI 1427, Braunschweig, pp.67-80,
1998.

[9] Rivin E.I., �Mechanical Design of Robots�, McGraw-Hill, New York, pp.120-204, 1988.
[10] Ceccarelli M., Ottaviano E., Carbone G., �A Study of Feasibility for a Novel Parallel-Serial Manipulator�,

IEEE Transaction on Robotics and Automation, 2001 (submitted).
[11] Tsai L.W., �Robot Analysis. The Mechanics of Serial and Parallel Manipulators�, John Wiley & Sons, New

York, pp.260-297, 1999.
[12] Duffy J., �Statics and Kinematics with Applications to Robotics�, Cambridge University Press, Cambridge,

pp.153-169, 1996.


