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Abstract

In this paper, real-time fine motion control of a nonholonomic mobile robot is investigated, where
the robot dynamics is completely unknown and is subject to significant uncertainties. A novel neural
network based real-time controller is developed. The neural network assumes a single layer structure,
by taking advantage of the robot regressor dynamics that express the highly nonlinear robot dynamics
in a linear form in terms of the known and unknown robot dynamic parameters. The learning
algorithm is computationally efficient. The system stability and the converge of tracking errors to
zero are rigorously proved using a Lyapunov theory. The real-time fine control of mobile robot is
achieved through the on-line learning of the neural network without any off-line learning procedures.
In addition, the developed controller is capable of compensating sudden changes of robot dynamics or
disturbance. The effectiveness and efficiency of the proposed controller is demonstrated by simulation
studies.

1 Introduction

A mobile robot that can move intelligently without human intervention, has a broad range of ap-
plications. How to efficiently control a mobile robot with unknown robot dynamics and subject
significantly uncertainties and/or unmodelled disturbances is an open question in robotics. Many
control methods (e.g., [1]-[11]) have been proposed for motion control of a mobile robot. The com-
puted torque control approach is capable to achieving fine control of mobile robot, but it requires
the exact dynamics model which is almost impossible in practice. Adaptive controllers [1]-[3] can
achieve fine control with partially unknown mobile robot dynamics, however, complicated on-line
estimation of these unknown dynamics is needed. There are many neural network based controllers
that are quite successful in some areas where the model-based approaches failed. Fierro and Lewis
[4] developed a neural network based model by combining the backstepping tracking technique and
a torque controller, using a multi-layer feedforward neural network, where the neural network can
learn the dynamics of the mobile robot by its on-line learning. But the control algorithm and the
neural network learning algorithm are very complicated and it is computationally expensive.
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Yang and Meng [5] proposed a single-layer neural network based controller for robot manipulator.
This approach does not include any nonholonomic kinematics therefor it can not be used for robot
manipulators with kinematic constraints. In addition, its stability is proved under the assumption
of no unmodeled disturbance.

In this paper, a novel single-layer neural network based controller is proposed for real-time fine
control of a nonholonomic mobile robot. First, a specific velocity control input is selected from the
robot kinematics to guarantee the position error asymptotically stable. Then the neural network is
used to generate the control torque that drives the mobile robot, such that the linear and angular
velocities of the mobile robot converge to the desired velocities. No knowledge of the robot dynamics
is required. In addition, no off-line learning procedures are needed for the neural network. The fine
motion control of mobile robot is achieved by the on-line learning ability of the neural network. The
stability and convergence of the robot control system is rigorously proved using a Lyapunov theory,
subject to unmodeled disturbance and bounded unstructured dynamics. By taking advantage of the
robot regressor dynamics formulation that can express the nonlinear robot dynamics into a linear
form in terms of the robot dynamics parameters, the neural network assumes a single-layer structure.
The learning algorithm is derived from stability analysis of a Lyapunov function candidate, which
is much simpler than the most commonly used neural network learning algorithm. Therefor the
proposed controller is computationally efficient.

2 The Model Algorithm

In this section, the model of a nonholonomic mobile robot will be introduced, including the geometry,
kinematics, the nonholonomic constraint, error dynamics, robot dynamics, and regress dynamics.
Then the proposed controller will be introduced. The stability and convergence of the robot system
are rigorously proved, and the learning algorithm of the neural network is derived from the stability
analysis.

2.1 A Nonholonomic Mobile Robot

Consider a mobile robot system with n generalized coordinates q, subject to m constraints, its
dynamic equation can be described by

M(q)q̈ + C(q, q̇)q̇ + F (q̇) + G(q) + τd = E(q)τ −AT (q)λ, (1)

where M(q) is an n× n symmetric, positive definite matrix; C(q, q̇) is the n× n centripetal coriolis
matrix; F (q̇) is the n × 1 friction vector; G(q) is an n × 1 gravitational vector; τd is an n × 1
bounded unknown disturbance including unstructured unmodeled dynamics; E(q) is an n× r input
transformation matrix; τ is an r × 1 input vector; A(q) is an m × n Jacobian matrix associated
with the constraints and λ is an m× 1 constraints forces vector. Assume that the m constraints are
independent of time and can be expressed as

A(q)q̇ = 0. (2)

Let S(q) be a full rank matrix n × (n −m) made up by a set of smooth and linearly independent
vector spanning the null space of A(q), i.e.,

A(q)S(q) = 0. (3)



Since the constrained velocity is always in the null space of A(q), from Eq.s (2) and (3), it is possible
to find (n−m) velocities v(t) such that

q̇ = S(q)v(t). (4)

Assume the trajectory of the mobile robot is constrained on the horizontal plane and there is no
friction, then G(q) = 0 and F (q̇) = 0. Now system Eq. (1) is transformed into a more appropriated
representation for control purpose. Left multiply Eq. (1) by ST , differentiate Eq. (4) and substitute
into Eq. (1), the dynamic equation of the nonholonomic mobile robot are

q̇ = Sv, (5)

and
ST MSv̇ + ST (MṠ + CS)v + ST τd = ST Bτ. (6)

Define M̄ = ST MS, C̄ = ST (MṠ + CS), τ̄d = ST τd, τ̄ = ST τ , Eq. (6) can be rewritten as

M̄ v̇ + C̄v + τ̄d = τ̄ . (7)

Eq.s (5) and (7) present the nonholonomic mobile robot system in a local coordinates, actually S(q)
is a Jacobian matrix that transform independent velocities v in local coordinates attached to the
robot to the constrained velocities q̇ in global coordinates. Therefore, the properties of the original
dynamics hold for the new set of coordinates. One important property about Eq. (7) should be
indicated here is that ( ˙̄M − 2C̄) is skew symmetric. In fact,

˙̄M − 2C̄ = ṠT MS − (ṠT MS)T + ST (Ṁ − 2C)S. (8)

Since (Ṁ − 2C) is skew symmetric, it is obvious that ( ˙̄M − 2C̄) is also skew symmetric.
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Figure 1: The typical model of a nonholonomic mobile robot.

A typical model of a nonholonomic mobile robot is shown in Fig. 1. The robot has two driving
wheels mounted on the same axis and a free front wheel. The two driving wheel are independently
driven by two actuators to achieve the motion and orientation. The position of the mobile robot in
the global frame {X, O, Y } cab be described by position C which is the mass center of the mobile
robot system, and the orientation θ between robot local frame {XM , C, YM} and the global frame.



On the condition of pure rolling and non-slipping, the mobile robot can only move in the direction
normal to the driving wheels axis. Therefor the nonholonomic constraint of the mobile robot can
be expressed as,

ẏc cos θ − ẋc sin θ − dθ̇ = 0. (9)
From Eq. (2), obviously A(q) can be chosen as,

A(q) = [− sin θ cos θ − d]. (10)

It is easy to verify that the following S(q) satisfies all the conditions mentioned above

S(q) =

 cos θ −d sin θ
sin θ d cos θ

0 1

 . (11)

Selecting the robot longitudinal velocity v1 and the orientation angler velocity ω as the independent
local velocities v = [v1, ω]T , the kinematic equation in Eq. (4) can be described as

q̇ =

 ẋ
ẏ

θ̇

=

 cos θc −d sin θc

sin θc d cos θc

0 1

[
v1

ω

]
. (12)

Now the constraints associated with AT λ in Eq. (1) is eliminated, the nonlinear mobile robot
dynamics in Eq. (7) can be rewritten into a linear form similar to the regressor dynamics formulation
of robot manipulators,

Y (v, v̇)φ + τ̄d = τ̄ , (13)
where φ is an r × 1 vector consisting of the known and unknown robot dynamics, such as mass,
moment of inertia, etc; Y (v, v̇) is an (n−m)× r coefficient matrix consisting of the known functions
of the robot velocity v and acceleration v̇; r is the number of the known and unknown robot dynamics
parameters. Let m be the mass of the mobile robot, I be the moment of inertia about the mass
center C, the dynamic equation of the mobile robot in Fig. 1 can be expressed as Eq. (1), where

M(q) =

 m 0 md sin θ
0 m −md cos θ

md sin θ −md cos θ I

 ,

C(q, q̇) =

 0 0 mdθ̇ cos θ

0 0 mdθ̇ sin θ
0 0 0

 ,

B(q) =
1
r

 cos θ cos θ
− sin θ sin θ

R −R

 ,

λ = −m(ẋc cos θ + ẏc sin θ)θ̇,

τ =
[

τr

τl

]
. (14)

Plug Eq. (14) into the definitions of M̄ and C̄ in the robot dynamics equation in Eq. (7), the
following simple, interesting results can be obtained,

M̄ =
[

m 0
0 I −md2

]
,

C̄ =
[

0 0
0 0

]
. (15)



Now it is easy to rewrite the nonlinear robot dynamics in Eq. (7) in a linear form as

M̄v̇ + C̄v = Y φ, (16)

where φ is a vector consisting of the known and unknown robot dynamic parameters, such as
geometric size, mass, moments of inertias, etc.; Y is a coefficient matrix consisting of the known
functions of robot position, velocity and acceleration, which is referred as the robot regressor. For a
typical nonholonomic mobile robot shown in Fig. 1, the robot regressor Y and the coefficient vector
φ are given as

Y =
[

v̇1 0 0
0 ω̇ −ω̇

]
,

φ =
[

m I −md2
]T

. (17)

2.2 Control Algorithm

The function of a controller is to implement a mapping between the known information (e.g. reference
position, velocity and sensory information) and the actuator commands designed to achieve the
robot’s task. For mobile robot, the controller design problem cab be described as: given the reference
position qr(t) and velocity q̇r(t), design a control law for the actuator torques, which drive the mobile
robot to move, so the mobile robot velocity tracking a smooth velocity control input and the reference
position. Let the velocity and position of a reference robot be

qr = [xr yr θr]
T
,

ẋr = vr cos θr,

ẏr = vr sin θr,

θ̇r = ωr, (18)

where vr > 0 for all t is the reference linear velocity, ωr is the reference angular velocity. Then the
tracking position error between the reference robot and the actual robot can be expressed in the
robot local frame as

eM =

 e1

e2

e3

=
 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 xr − x
yr − y
θr − θ

 . (19)

The position error dynamics can be obtained from the time derivative of above equation as

ėM =

 ė1

ė2

ė3

 =

 ωe2 − v1 + vr cos e3

−ωe1 + vr sin e3

ωr − ω

 . (20)

There are many ways in the literature to select the smooth velocity input vc, Here, very simple
backstepping model from [10] is selected.

vc =
[

vr cos e3 + k1e1

ωr + k2vre2 + k3vr sin e3

]
, (21)

where k1, k2, k3 are positive parameters. Now define the velocity tracking error as

ec =
[

e4

e5

]
= vc − v, (22)



where v is the actual velocities of the mobile robot. Differentiate Eq. (22) and replace the result
into Eq. (7), the mobile robot dynamics using the velocity tracking error can be rewritten as

M̄ ėc = −C̄ec − τ̄ + Y φ + τ̄d, (23)

where
Y φ = M̄v̇c + C̄vc, (24)

which is the regressor dynamics introduced in Eq. (16). Assign the torque controller for Eq. (7) as

τ̄ = τNN + k4ec − γ, (25)

where k4 is a diagonal positive define design matrix and γ is a robustifying term to compensate the
unmodeled unstructured disturbances, τNN is the output torque of the single-layer neural network,
which is given by

τNN = Y (vc, v̇c)W, (26)

where W is a 3 × 1 vector represents the connection weights of the neural network, and is also the
approximation of φ in Eq. (24). The input of the neural network is the regressor Y . The variables for
computing Y are the vector

[
vT

c , v̇T
c

]T , which can be gotten from Eq. (21) or measured. Substitute
Eq. (25) into Eq. (23), the closed-loop error dynamics can be expressed as

M̄ ėc = −(k4 + C̄)ec + Y φ̃ + τ̄d + γ, (27)

where
φ̃ = φ−W, (28)

which is the estimation error of φ. Assume the unmodeled unstructured disturbances are bounded,
such that ‖τ̄d‖ ≤ bd, the robustifying term is

γ(t) = −kd − [e4,
k1e5

k3k3vr
]T = −kd − e′c (29)

where kd is a diagonal positive define matrix, and

min(diag(kd)) > bd. (30)

2.3 Learning Algorithm and Stability Analysis

For the controller in Eq. (25), a learning algorithm for the neural network should be developed,
such that it guarantees that the control system is stable, and both the position and velocity tracking
errors converge to zeros. Consider the Lyapunov function candidate

L = k1(e2
1 + e2

2) +
2k1

k2
(1− cos e3) +

1
2
(eT

c M̄ec + φ̃T Γ−1φ̃), (31)

where Γ is an r × r positive constant design matrix. Obviously, L ≥ 0, and L = 0 if and only if
ep = 0, ec = 0 and φ̃ = 0. Differentiate L, and substitute the error dynamics Eq. (27) into Eq. (31),
L̇ is given as

L̇ = 2k1e1ė1 + 2k1e2ė2 +
2k1

k2
sin e3 − eT

c k4ec

+
1
2
eT
c (M̄ − 2C̄)ec + φ̃T (Y T ec + Γ−1 ˙̃

φ) + eT
c τ̄d + eT

c γ. (32)



Note (M̄ − 2C̄) is skew symmetric, and choose

Y T ec + Γ−1 ˙̃
φ = 0. (33)

Then Eq. (32) can be simplified as,

L̇ = 2k1e1ė1 + 2k1e2ė2 +
2k1

k2
sin e3 − eT

c k4ec + eT
c τ̄d + eT

c γ. (34)

Substitute the robustifying term in Eq. (29), then

L̇ = 2k1e1ė1 + 2k1e2ė2 +
2k1

k2
sin e3 − eT

c e′c − eT
c k4ec − ec(kd − τ̄d)

≤ 2k1e1ė1 + 2k1e2ė2 +
2k1

k2
sin e3 − eT

c k4ec − k4 min‖ec‖2 − ‖ec‖(kd min − bd). (35)

where k4 min and kd min are the minimum singular values of k4 and kd, respectively. By substituting
the position error dynamics from Eq. (20), the time derivative of L is given as,

L̇ ≤ 2k1e1(ωe2 − v1 + vr cos e3)− eT
c e′c + 2k1e2(vr sin e3 − ωe1)

+2k3vr(ωr − ω) sin e3 − k4 min‖ec‖2 − ‖ec‖2(kd min − bd). (36)

Replace e′c from robust term Eq. (29), L̇ becomes

L̇ ≤ −k2
1e

2
1 −

k1k3

k2
vr sin e3

2 − (k1e1 + e4)2

− k1

k2k3vr
(k3vr sin e3 + e5)2 − ‖ec‖2k4 min − ‖ec‖(kd − bd) (37)

Since kd > bd (Eq. (30)), L̇ is guaranteed negative. According to a standard Lyapunov theory and
LaSalle extension, all ‖ep‖, ‖ec‖ and φ̃ are uniformly ultimately bounded.

Since φ̃ = φ−W , then ˙̃
φ = −Ẇ . Therefor, the learning law for the neural network is obtained as

Ẇ = −ΓY T ec. (38)

Obviously, this learning law is much simpler than mostly used learning law like the famous multi-
layer back-propagation learning rule.

In summary, Eq.s (25), (26), (29) and (38) define the proposed control algorithm.
The proposed controller structure is shown in Fig. 2. In the proposed, a specific velocity control

input vc(t) is used to derive the suitable torque τ(t), therefor it does not need to assume ”perfect
velocity tracking”, which is unrealistic in practice. By taking advantage of robot regressor dynamics
formulation which transform the highly nonlinear robot dynamics into a linear form in term of the
robot dynamics regressor, the neural network in this paper is a single layer structure. There is no
off-line training procedures needed, the neural network reconstruct the robot dynamics by learning
it on-line. The learning algorithm of the neural network, which is very simple and computationally
efficient, is derived from the Lyapunov stability analysis. Unlike robot manipulators, where tedious
analysis is needed to derive the regressor because of the complexity and variety of manipulator,
mobile robots are comparatively simpler in computing the regressor and there are only a few models
needed to simulate the realistic mobile robot for control purpose.
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Figure 2: Structure of the proposed controller.

3 Simulation Results

The single layer neural network based control algorithm developed in this paper is defined by Eq.s
(26) and (37). In this section, the proposed controller is applied to a typical mobile robot shown in
Fig. 1. The mobile robot parameters are m = 10kg, I = 5kgm2, R = 0.5m, and r = 0.05m. Three
cases are investigated. First, the robot is to track a straight line with the disturbance of coulumb
friction that subject to sudden changes. Then, the robot is to track a circular path. Finally, the
robot is to track an ellipse, where there is a sudden change of robot dynamics. The simulation
results demonstrate the effectiveness of the proposed controller. Since the neural network assumes
a simple single layer structure, it is computationally efficient.

3.1 Tracking a Straight Line

The reference trajectory is a straight line with initial coordinates (1, 2) and slop of 25.56◦ respectively.
The initial position of the robot is [x0, y0, θ0] = [2, 1, 0]. The design parameters of the controller are
chosen as: k1 = 1, k2 = 3, k3 = 2, k4 = 18I2, and Γ = I2, where Ik is a k × k identity matrix. A
coulumb friction term,

F = [(f1 + f(t))sign(v1), (f2 + f(t))sign(ω)]T (39)

is added to the robot system as unmodeled disturbance, where f1 = 0.3, f2 = 0.5. Function f(t) is
nonlinear function, defined as: f(t) = 0 if t < 8; f(t) = 0.2, if t ≥ 8. Thus the disturbance is subject
to a sudden change at time goes to 8 sec. The real-time tracking performance is shown in Fig. 3A,
where the desired path is shown by solid line, while the actual robot traveling route is shown by
dashdot line. The tracking errors in the X- and Y -directions and in the orientation are shown in
Fig. 3B by solid line, dashed line and dashdot line, respectively. The actual linear and angular
velocities of the mobile robot are shown Fig. 3C by solid and dashed lines, respectively. Fig. 4D
show the total control torques. It shows that the tracking errors sharply drops to zero. The robot
velocities and the control torques quickly converge to its steady state. Note that there is no prior
knowledge of the robot system dynamics, the controller learns the system dynamics on-line without
any off-line training. In addition, when the time goes to 8 sec, there is a sudden change of friction
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Figure 3: Control performance to track a straight line. A: The real-time control performance; B:
The tracking errors in X- and Y-directions and in orientation; C: The linear and angular velocities;
D: The total control torques.

due to the change of road conditions. It shows the position error and orientation error also have
an increase when the sudden disturbance occur. However, the tracking errors converge back to zero
very quickly because the proposed controller is capable of compensating the sudden change of the
robot dynamics through the fast on-learning of the neural network.

In comparison to Fierro and Lewis’s model, this case study chooses the same mobile robot model
and the tracking conditions in their case study in Fig. 7 [4]. Unlike the result in their Fig. 7
where the robot has a sharp change of direction at the initial phase, the robot controlled by the
proposed model has a much smoother navigation. This is probably due to the complicated multilayer
neural network that requires a much longer time for the neural network to learn the unknown robot
dynamics, and for their controller to achieve a satisfactory performance. In addition, no sudden
disturbance is considered in [4].
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Figure 4: Control performance to track a circular path. A: The real-time control performance; B:
The tracking errors in X- and Y-directions and in orientation; C: The linear and angular velocities;
D: The total control torques.

3.2 Tracking a Circular Path

Then, the proposed controller is applied to track a circular path, which is defined by (x− 2)2 +(y−
2)2 = 1 and the reference robot moves on the path with a constant velocity. The mobile robot starts
at [x0, y0, θ0] = [2, .8, 0] and initial velocity v(0) = 0.8vd, i.e., there are large initial errors in both
position and velocity. The parameters of the proposed controller are chosen as same in previous
case with a straight line. In the simulation, the robot takes 628 steps to track the whole circle. The
simulation results are shown in Fig. 4. It shows that the mobile robot naturally describes a smooth
path tracking the circle. The tracking error quickly drops to near zero from the initial error. The
tracking velocity increases at the beginning then converge to the the desired velocity.

3.3 Tracking an Elliptic Path

The proposed controller is capable of compensating any sudden change of the the robot dynamics
because its on-line learning ability. The proposed controller is applied to a complicated case, where
the robot is to track an elliptic path, i.e., unlike the previous cases with a straight line and the circular
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Figure 5: Control performance to track an elliptic path with sudden dynamics change. A: The real-
time control performance; B: The tracking errors in X- and Y-directions and in orientation; C: The
linear and angular velocities errors; D: The total control torques.

path, the reference velocity and acceleration are not constants. Thus the controller has to generate
changing control torques in order to track the reference path even at the steady state. Therefore,
the capacity to learn the robot dynamics of the proposed controller cannot be demonstrated by
using a straight line or a circular path. The reference elliptic path is defined as (x/1.5)2 + y2 = 1.
The reference robot moves on the path with a constant angular velocity about the path origin. The
initial position of the path is set as q0 = [0,−1.5, 0]. The mobile starts at q = 0.8q0. When the
mobile robot passes about a quarter of the whole ellipse path at the second round, the mobile robot
suddenly dropped off an object of 2.5 kg, i.e., a quarter of its original mass, The simulation results
are shown in Fig. 5. It shows that there is a sudden change in torque output of the controller and a
sudden increase of the tracking errors after the sudden change of the robot dynamics. Such a change
is result from the sudden change of robot dynamics. Due to the fast learning ability of the neural
network, the proposed controller can quick compensate the dynamics changes. Thus the tracking
errors drop back to near zero very quickly, and the mobile robot performs very well in tracking the
desired trajectory.



4 Conclusion

In this paper, a novel control algorithm is proposed for a nonholonomic mobile robot with completely
unknown robot dynamics, and subject to bounded unknown disturbance including unstructured,
unmodeled dynamics. By taking advantage of the robot regressor dynamics, the neural network has
a single layer structure with only three neurons. The learning algorithm derived from Lyapunov
stability analysis is much simpler than the most commonly used neural network learning rules.
The control algorithm is computationally efficient resulting from the very simply neural network
structure and its very simple learning rule. The proposed controller is capable of achieving precise
motion control of robot with kinematics constraint, such as a nonholonomic mobile robot, through
the on-line learning ability of the neural network without any off-line training procedures. The
stability of the proposed controller and the convergence of tracking errors to zero are rigorously
proved by Lyapunov stability analysis in the presence of bounded unknown disturbance.
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