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Abstract

In this paper, a method for computing the generalized inertial tensor of manipulator robots is
described as based on the Gibbs-Appell equations. The method presents the formulation of
the coefficients of the mentioned tensor by means of the Hessian of the Gibbs function. An
efficient recursive algorithm is proposed, with a complexity of O(n2) order, which is used to
produce a program in FORTRAN. A numerical example simulates the movement of a PUMA
robot. The results obtained from the simulation are compared with those obtained by using
other known methods.

1. - Introduction

The direct dynamic problem or simulation problem of robots is a process that involves the
computing of accelerations, velocities and orientations or joint positions for a manipulator,
when the forces exerted by the actuators are given.
The simulation problem for mechanical systems consists of two parts: the first one requires
the calculation of joint accelerations from the movement equations; and the second one
involves the integration of those equations. The joint accelerations can be obtained by two
different approaches. In the first one a system of differential equations is proposed, obtained,
and solved. In the second approach, the accelerations are calculated recursively by
propagating the movement and constraint forces throughout the mechanism.
The algorithms derived from the first approach have usually a computational complexity of
O(n3) order, mainly due to the fact that a linear system must be solved. Papers [1] and [2] are
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examples of this approach. On the other hand, the algorithms derived using the second
approach have a computational complexity of O(n) order, although the coefficients that
appears are large (for example, [3-6]). These algorithms are superior than the first ones but
only for systems with more than 9 link, as shown in [7]. The best known approach is the
articulated body (ABM) [4].
The algorithms based on the first approach follow the procedure that has been developed by
Walker y Orin [1], which requires the generalized inertial tensor and the so-called bias vector.
In Walker and Orin´s work, they obtain the bias vector by means of an algorithm that solves
the inverse dynamic problem, in which the joint accelerations became null. The claculation of
the generalized inertial tensor is then the main problem for the application of this approach.
Walker and Orin use the composed rigid body method (CRBM), which is based on the
Newton-Euler equations and has a complexity of O(n2). An alternative method has been
developed by Angeles and Ma [2], who use the natural orthogonal complement to obtain an
efficient algorithm, but, of O(n3) order.
These methods have been studied and improved over time (see for example [7], [8]), even by
using the spatial algebra as in [9]. It has been demonstrated that the methods ABM y CRBM,
are different forms of solving the same linear system. This fact is shown in several papers,
such as [10] and [11].
In this paper a new algorithm is proposed as based on the Gibbs-Appell equations in
agreement with [12], in order to compute the generalized inertial tensor. The use of the
Gibbs-Appell equations in the dynamics of multibody systems has been limited, in the last
twenty five years, to few examples that followed mainly a closed form formulation (see [13]),
so that a great number of arithmetic operations were required. The first recursive
development of O(n2) order was proposed to solve the inverse dynamic problem by Desoyer
and Lugner [14], who used the Jacobian matrix of the manipulator in order to avoid the
explicit development of partial derivatives. Later Rudas and Toth [15], presented a recursive
algorithm of O(n) order, likewise, to solve the inverse problem. This algorithm is based on
the minimisation of the Gibbs function by means of Lagrange´s multipliers. Recently Mata et
al. [16] have solved the inverse dynamic problem for robotic manipulator and introduced an
O(n) efficient recursive algorithm, which takes advantage of the possibilities that the
Gibbs-Appell equations offer to compute the generalized forces on robotic manipulators.
In the next section, we will start from the rigid body´s Gibbs function to arrive to an
expression that permits to develop of efficient recursive relations which are useful to compute
the terms of the generalized inertial tensor.
In the third section, a Gibbs-Appell Hessian (GAH) algorithm is proposed as based on that
expression. In the forth section an example is shown, in which the results obtained from
simulating the movement of a PUMA robot are compared with those obtained from ABM,
CRBM and the GAH methods.

2.- Generalized inertial tensor by using the Hessian of the Gibbs function

The Gibbs function, Gi, for a rigid body i that is part of a mechanical system, can be
expressed as [12]
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where mi is the mass of i-th link, 
iG

i r&&
r

 the acceleration of the centre of mass of i-th link,

expressed in the local reference system, i
iωr  and i

iω&r  the angular velocity and acceleration of

i-th link, both expressed in the local reference system and 
iG

i I the inertia tensor of link i-th,
expressed in its own reference system.
On the other hand, the whole Gibbs function for a mechanical system with n bodies is given
by

∑
=

=
n

i
iGG

1

(2)

Considering the expressions (1) and (2) the terms of D, which is the generalized inertial
tensor, will be given by the Hessian matrix of the Gibbs function in the form
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where jq&&  is the generalized acceleration of j-th joint.

From the previous expression, a simple algorithm of O(n3) order can be obtained for to the
computation of D, although is possible to reduce it to a recursive algorithm of O(n2) order. A
procedure can be used to find the expression that permits to calculate the terms of the
generalized inertial tensor through successive partial derivatives of the Gibbs function. It can
be further simplified if the following expressions are taken into account, when the application
of the Denavit-Hartenberg´s modified notation is used [2]
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of mass of the i-th link. The superscript denotes the reference system on which the vectors are
expressed.
Thus, the expression for the terms of the generalized inertial tensor looks like
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The utilisation of this last expression can elaborate a computationally efficient algorithm
applicable to manipulators, but it needs the study of the recurrent relations that among its
elements, since the direct application of the expression would produce an algorithm with a
high number of operations. The following expressions are useful for a recursive calculation of
the expression (4):
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In addition, replacing the vectorial product by the product of an antisymetric tensor and a
vector. The following expression can be obtained
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Applying the properties of the vectorial product, the equation Errore. L'argomento
parametro è sconosciuto. can be written as
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By using the antisymetric tensor as previously defined, the expression takes the form
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3.- GAH Algorithm

A recursive algorithm of O(n2) order can be formularted as, based on the expression (5) in
order to compute the generalized inertia tensor for a robotic manipulator. In particular, the
computation can be provided by means of a step by step procedure as in the following.

Step 1

The compound mass, the compound inertial tensor and other quantities that do not vary with
the time, can be calculated off-line by means of the following items, once Mn = mn is given

For i = 1 to n − 1, do
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Mi = mi + Mi+1 0M, 0A (6)
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Step 4
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Step 6

The elements of principal diagonal of the generalized inertial tensor can be computed by

For i = 1 to n, do
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Step 7

Computation of the rest of  elements of the generalized inertial tensor

For j = n to 2,
For k = j − 1 to 1, do
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Table 1.- Comparison of complexities

Authors Method Products M (n = 6) Additions A(n =6)

Walker and Orin CRBM 12n2 +56n−27 (741) 7n2 +67n−53 (601)

Angeles and Ma Nat. Ortog. Comp. n3+17n2 −21n+8 (710) n3+14n2 −16n+5 (629)

This work GAH 11.5n2 +19.5n−49 (482) 8.5n2 +31.5n−69 (426)

Once the generalized inertia tensor is determined, a numerical simulation of dynamic
behaviour of a multibody system can be straightforward obtained.

4.- Example
In order to execute an example useful for  comparison and validation, a simulation program
has been written in FORTRAN as based on the methodology proposed by Walker and Orin
[1], in which for the generalized inertial tensor that is calculated by using the proposed
algorithm . In addition, the bias vector is calculated by using a modified version of the
algorithm that solves the inverse dynamic problem by using the Gibbs-Appell equations,
proposed in [16].
The program has been written in double precision and is executed on a computer PC Pentium
II 400 MHz. The Gauss-Jordan elimination method has been used to solve the linear system, ,
and the system of differential equations is integrate by the Runge-Kutta´s five order
technique. In the integration process, the tolerance is 1×10-6 and the time interval of 0.1 s. In
this example we simulate the movement of the PUMA robot, whose terminal element
describes a straight trajectory, with constant orientation and the velocity of 0.1 m/s. The

simulation starts from the position [ ]T
stTCPOr 250.0175.060.00,

0

0
==

r
, the orientation (Z, Y,

Z) of the local system fixed on the link 6 is [ ]906045  deg. After 5 seconds the movement
lasts, the terminal element reaches the position given by

[ ]T
stTCPOr 250.0527.0244.05,

0

0
==

r
. Figure 1 shows the robot in the initial position and the

planned trajectory. The inverse dynamic problem has been solved for each instant by using as
input data the results of the resolution of the inverse kinematic problem, through the
procedure that is outlined in the flowchartof Figure 2. The superscript "*" denotes the
generalized coordinates, velocities and accelerations, obtained from the numerical integration
of the proposed formulation.
In order to validate and compare the results, simulation codes are written in FORTRAN as
based on the composed rigid body methods (CRBM) and of articulated body (ABM). Those
codes have been executed under identical conditions also use for the code that is based on the
algorithm GAH. The differences among the obtained results from the three compared
methods are subtle, so that is possible to observe differences in generalized coordinates,
velocities and accelerations, from the tenth decimal. In the other hand, if the results are
expressed regarding to position, velocity and acceleration of the end-effector, the differences
can be observed more clear , due to the accumulation errors produced in the different joints
that compose the studied system. In the Table 2, the maximum errors with respect to the
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prescribed trajectory and the difference average are depicted which take place in the modules
of the vector position, velocity and acceleration of the element terminal, obtained from the
simulation with each one of the methods.

 
Figure 1.- Initial position of the robot and

trajectory planned.
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sst 0.5...0=τr

Direct Dynamic Prob.
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Figure 2.- Flow chart of the procedure for the
numerical simulation

Table 2.- Maximum Errors and processing time in the simulation for each method.

CRBM ABM GAH

Max. 2.24416×10-3 2.24506×10-3 2.24446×10-3

TCPOr ,
0

0

r∆
Prom. 1.98474×10-4 1.98552×10-4 1.98500×10-4

Max. 1.48353×10-3 1.48402×10-3 1.48370×10-3

TCPr&
r0∆

Prom. 1.01924×10-4 1.01960×10-4 1.01937×10-4

Max. 1.96068×10-2 1.96293×10-2 1.96184×10-2

TCPr&&
r0∆

Prom. 1.73333×10-3 1.73432×10-3 1.73377×10-3

Processing time (s.) 0.57 0.65 0.56
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5.- Conclusion

In this paper, the Gibbs-Appell equations have been used for the formulation of a new
recursive algorithm for the computation of the generalized inertial tensor. The algorithm is of
O(n2) order and because of the arithmetic number of involved operations, it is
computationally efficient, as shown in the Table 1. In the algorithm, the terms of the
generalized inertial tensor are obtained by means of the Hessian matrix of the Gibbs function.
This approach takes the advantage of the Gibbs equations for a novel suitable formulation of
the generalized inertia tensor of multi-body systems, particularly robotic manipulators. A
numerical example has been carried out in a PUMA robot using the proposed algorithm
(GAH) and the algorithms better known of the literature (CRBM and ABM). The results of
these simulations are shown in the Table 2, where it can be observed that the method GAH
produces errors smaller than the CRBM method, but a little bit greater than the ABM, which
is, according to several authors ( see for example [11] and [7]), the method that has better
numerical response. In addition from Table 2, the processing time of the GAH method is the
smallest one, since the proposed algorithm has smaller computational complexity with
respect to traditional the algorithms derived from the CRBM and ABM methods.
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