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Abstract

In this paper we develop a numerical solution to optimal control problems for underactuated ma-
nipulators. Our approach finds a local solution to the nonlinear optimal control problem using an
SQP approach with exact gradients of the cost function. We show that a dramatic improvement in
computation times can be obtained if one computes the required gradient using the adjoint equations
and a backward integration standard in optimal control theory. We demonstrate the the algorithm
on a 19 dof model high-diver for various initial conditions and performance criteria.

1 Introduction

The goal of this work is to create an efficient and numerically stable algorithm for solving opti-
mal control problems for underactuated serial kinematic chains. Examples of such chains include
free-floating bodies in space and some robot manipulators that use passive joints. Many of these
dynamic systems could benefit from a reliable algorithm for producing motions that are optimal for
performance measures like effort, power, or time.

This work builds upon approaches developed for fully actuated systems by Chen [1], Deluca [2],
Field and Stepanenko, [3], Gilbert and Johnson [4], Martin and Bobrow [5], and others. However,
the solution is more difficult because the dynamics algorithm must handle active and passive joints,
and the gradients needed require integration of sensitivity equations in the nonlinear differential
equations of motion.

2 Problem Statement

In this paper we distinguish between joints whose motion can be controlled directly with actuators,
called active joints, and joints without actuators whose motion depends on coupling in the dynamics
equations called passive joints. Let the active joints be denoted as qa(P, t) ∈ �na , where P ∈ �k is a
set of k spline parameters that define the geometric path, and t is time. We assume that qa(P, t) is at
least twice differentiable. Let the passive joints be denoted as qp(t) ∈ �np and let q = (qa, qp) ∈ �n,
where n = na+np is the total number of joints. Similarly, let the torques/forces on the active joints
be denoted τa(t), the torques/forces on the passive joints be denoted as τp(t), and τ = (τa, τp). Note
that typically τp(t) = 0 for freely moving bodies, and that τa(t) can be found from the dynamics of
the system given qa(P, t) and its time-derivatives.



At any instant, assume that the current state is (q, q̇). Given the active joint accelerations q̈a and
the passive joint torques τp, we assume that a dynamics algorithm is available that can compute as
output the active joint torques, τa, and passive joint accelerations q̈p. Let this algorithm be referred
to as g with

[τa, q̈p] = g(q, q̇, q̈a, τp), (1)

where we have used Matlab’s style of input/output format.
Given an input trajectory for the active joints q̈a(t), the forces/torques on the passive joints

τp(t), and initial conditions q(0), q̇(0), we can use (1) to solve the differential equation

d

dt

{
qp

q̇p

}
=

{
q̇p

q̈p(q, q̇, q̈a, τp)

}
(2)

for the motion of the passive joints qp(t).
The form of the optimal control problem of interest is

Minimize
τa(·) J(τa) = Φ(q(tf ), q̇, (tf )) +

∫ tf

0

L(q, q̇, τ, t) dt, (3)

subject to (1) with a given initial state (q(0), q̇(0)). For our example problems, Φ penalizes deviations
from the desired final condition and L =

∫ t

0
1
2 ||τa||2dt, captures the desire to minimize the active

joint torques. Because τa(t) is uniquely determined by the specified q̈a(P, t), the optimal control
problem can be transformed to a static parameter optimization. The minimization over the function
τa(t) becomes a minimization over the path parameters P .

3 Approaches to nonlinear parameter optimization

As mentioned above, through the introduction of a parameterized trajectory for the active joints
qa(P, t), the optimal control problem (3), becomes a nonlinear parameter optimization for J(P ). The
optimization is unconstrained if, given P, the integrand L(q, q̇, τ, t) can computed from the solution
to (2) and there are no other constraints on the motion such as joint limits, torque limits or obstacles
in the workspace.

In order to minimize J(P ), gradient-based algorithms have been used with success for fully
actuated systems by several researchers [5, 3, 2]. Finding optimal motions for underactuated systems
is more difficult than fully actuated systems since for any choice of P, the equations (2) must be
integrated in order to determine the position of the passive joints and the final cost J(P ). Fully
actuated systems have no passive joints and therefore no differential equations must be integrated
in order to evaluate the cost function.

During the optimization, at certain points P, the gradient of J(P ) must be computed. In the
following, we compare three methods to compute this gradient ∂J(P )

∂p for p ∈ P.

3.1 Use finite-difference derivatives.

The most direct approach to computing the required gradient is to fix P and perturb all p ∈ P

by some step size h. For instance the forward difference is ∂J(P )
∂p

∼= J(p+h)−J(p)
h . To the best of the

author’s knowledge this is the only approach that has been used for finding motions for underactuated
systems. Note that each numerical derivative requires the solution of (2) which is of order 2np. There
are k (the dimension of P ) such numerical derivatives that must be computed for each gradient
evaluation in the nonlinear optimization.



In our attempts to minimize J(P ) using this technique, much ad-hoc tweaking of h and the
numerical integration tolerance were needed. In fact, often little progress was made in the SQP
optimization due to the numerical innacuracy of the gradient. The ill-conditioned nature of similar
types of problems was reported in Martin and Bobrow [5]. In order to obtain useful solutions, we
were forced to compute the exact gradient of our cost function.

3.2 Integrate the sensitivity equations.

In order to eliminate the errors involved with finite difference gradients, one can analytically differ-
entiate the cost function, which, for fixed final-time has the form

∂J(P )
∂p

=
∂Φ(q(tf ), q̇, (tf ))

∂p
+

∫ tf

0

∂L(q, q̇, τ, t)
∂p

dt. (4)

Since the trajectory of the active joints qa(P, t), is a specified function of P, it is easy to compute
the derivatives of qa, and q̇a in (4). However, the derivatives of the passive joints qp, and q̇p with
respect to p ∈ P are not easy to compute. In order to obtain these derivatives one can integrate the
following set of differential equations

d

dt




qp

q̇p

∂qp

∂p
∂q̇p

∂p




=




q̇p

q̈p(q, q̇, q̈a, τp)
∂q̇p

∂p
∂q̈p

∂p (q, q̇, q̈
a, τp, ∂qp

∂p , ∂q̇p

∂p )




(5)

starting from a given qp(0), q̇p(0), and ∂qp(0)
∂p = 0, ∂q̇p(0)

∂p = 0.
Note that the lower right-hand term in this equation requires that we differentiate the dynamics

algorithm (1) with respect to p. This in itself is a nontrivial task and has been reported in [7].
In addition, the order of (5) has grown from 2np in (2) to 2np(1 + k), which could be very large
depending on how the motion of the active joints is parameterized. Hence the k + 1 numerical
integrations of (2) needed to obtain the approximate finite difference gradient of J is replaced be
one numerical integration of (5) in order to obtain the exact gradient of J.

The examples presented later in this paper used integration of (5) to obtain the gradient of J
during the nonlinear SQP parameter optimization. Although our solutions reliably converged to
locally optimal solutions, they were relatively time-consuming to compute for the high degree of
freedom system in this paper. This was mainly because the order of (5) was high. The following
alternative approach dramatically decreases the computational cost.

3.3 Integrate the adjoint equations.

The following approach to obtaining the gradient J uses a linear systems theory perspective similar

to that given in [8]. Define x ≡
(

q
q̇

)
, and recall that q ≡

(
qa

qp

)
contains the active and the

passive joints. Define the controls as u(t) ≡ q̈a(t). Then using (1), the dynamics can be written as

ẋ = f(x(t), u(t)). (6)

That is, the entire motion for the underactuated system is determined by specification of the motion
of the active joints qa(t). Now linearize (6) about the input joint trajectory uo(t) = q̈a(t), and the



solution xo(t), with ẋo = f(xo(t), uo(t)). Let δx = x − xo and δu = u − uo. For small changes from
the nominal trajectory, the equations of motion have the linear form

δẋ = A(t)δx +B(t)δu(t), (7)

where A(t) = ∂f
∂x(xo(t), uo(t)), and B(t) = ∂f

∂u (xo(t), uo(t)).
The optimal control problem to be solved has the general form

J(u(t)) = φ(x(tf )) +
∫ tf

0

L(x, u, t)dt. (8)

In order to construct the gradient of J(u), first rewrite (8) as follows. Introduce an additional state
z(t) ≡ ∫ t

0
L(x, u, τ)dτ, so that ż(t) = L(x, u, t). Then (8) becomes

J(u(t)) = φ̃(x̃(tf )), (9)

where x̃ ≡
(

x
z

)
. For small perturbations from any nominal trajectory xo(t), (9) can be written

as

J(u(t)) = J(uo) + δJ ∼= φ̃(x̃o(tf )) +
∂φ̃

∂x̃
(x̃o(tf )) δx̃(tf ) (10)

Our control variables are parameterized by a finite set of basis functions B(t). Each basis function
B(t) has an associated amplitude p ∈ P. Noting that only δx̃(tf ) will be effected by changing p from
its nominal value, the required derivative ∂J

∂p is

∂J(u(t))
∂p

=
∂φ̃

∂x̃
(x̃o(tf ))

∂δx̃(tf )
∂p

(11)

In order to solve for ∂δx̃(tf )
∂p in (11), let Φ(t, τ) be the state-transition matrix for (7) so that

Φ̇(t, τ) = A(t)Φ(t, τ), with Φ(τ, τ) = I. Then

δx̃(tf ) = Φ(tf , 0)δx̃(0) +
∫ tf

0

Φ(tf , τ)B(τ)δu(τ)dτ, (12)

and differentiating (12) with respect to p and premultiplying by ∂φ̃
∂x̃ , we have

∂J(u(t))
∂p

=
∫ tf

0

∂φ̃(tf )
∂x̃

Φ(tf , τ)B(τ)
∂δu(τ)

∂p
dτ. (13)

Define the costate or adjoint vector λ as

λT (t) ≡ ∂φ̃(tf )
∂x̃

Φ(tf , t). (14)

Differentiating (14) with respect to time and using the properties of the state-transition matrix, it
is seen that λ(t) is the solution to the differential equation

λ̇ = −A(t)T λ with λT (tf ) =
∂φ̃(tf )

∂x̃
, (15)



which can be solved backwards in time. The solution for λ(t) needs to be stored numerically.
Substituting (14) into (13) gives

∂J(u(t))
∂pi

=
∫ tf

0

λT (τ)B(τ)
∂δu(τ)

∂p
dτ. (16)

The importance of (16) is that it reduces the problem of computing the gradient of the cost
function from that of integrating an ode of order 2np(k + 1) in (2) into the problem of integrating
an ode of order 2np for λ(t) and then a quadrature in (16). Note that this quadrature can be done
numerically efficiently since, for splines of limited support, ∂δu(τ)

∂pi
is zero during most of the time

interval.

4 Example: Branched High Diver: Twisting One-and-one

Half Dive

We have developed a Matlab package [7] to evaluate (1) and its derivatives for general dynamic
systems. The algorithm is an efficient, recursive O(n), solution. Matlab’s standard toolboxes can
then be used in conjunction with our software to solve optimal control problems for general serial
mechanisms. For a non-trivial example, we solved a three dimensional high dive. The diver model
has 13 active degrees of freedom and is connected to the ground with 6 passive degrees of freedom.
The active degrees of freedom include knees, hips, pelvis (2 dof), shoulders (2 dof), elbows and neck.
The 6 passive degrees of freedom determine the location of the center of mass of the the diver’s torso
and allow for a full range of three dimensional motions. A total of 104 parameters are used to define
the motion – 8 parameters for each of the 13 active joints. A cost function of the form

J = c1 (q4(tf )− 3π)2 + c2 (q5)
2 + c3 (q6 − π)2 + c4

∫ tf

0

||τ ||2 dt (17)

was used in an attempt to make the diver perform a forward one-and-one-half dive with a half twist.
The terms inside the integral reflect our desire to minimize the effort used during the dive.

For the initial guess of the motion shown on the left in Figure 1, we chose the spline parameters
to bend the knees a small amount. Other than that, we made no other guesses about the joint
motions required to perform the dive. The resulting dive had a cost function value of J = 470.5 and
does not look at all close to the desired dive. The optimization produced the final dive shown on
the right of Figure 1 with a cost of J = 4.6. It is interesting that, for the optimized dive, the legs
bend backwards during the motion.

We obtained different dives from different initial guesses. Figure 2 shows one such dive in which
the diver kept one leg fairly straight during most of the rotation motion. Figure 3 shows a dive
starting from the same initial guess shown in Figure 2 but with a constrained leg motion. We
constrained the legs to remain in a tucked position throughout the dive. This forced the diver to
use arm and pelvis motion to produce the desired one-half twist as shown in Figure 3.

5 Conclusion

In this paper we have presented an approach to computing optimal motions for underactuated
manipulators. We have demonstrated that our algorithm can reliably handle complex systems such
as humanoids, and that interesting bio-mimetic like motions can be found with it. Our example



Figure 1: Initial guess and final dive

Figure 2: Initial guess and final dive

high-diver also demonstrates that humans perform tasks they could be minimizing cost functions
similar to those discussed in this paper. We have shown that the computation of the gradient using
the adjoint equation from optimal control provides a significant decrease in the required computation



Figure 3: Final dive with constrained leg motion

time.
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