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Abstract: This paper describes a novel parallel kinematic chain with 4 DoF. Three of the free-
doms of the platform are rotational and only one is translational. The position and velocity
kinematics of the mechanism are analyzed with different choices of the actuated joints. Methods
for singularity analysis of the proposed mechanisms are also presented.

1 Introduction

Most of the work on parallel manipulators, both theoretical and applied, has been directed to platforms with
six degrees of freedom as well as 3-DoF planar or spherical mechanisms. However, in recent years there has
been increasing interest in mechanisms with fewer than six freedoms that are neither planar nor spherical. It is
hoped that such mechanisms can perform successfully many tasks that have so far required 6-DoF platforms
and achieve lower device and operation costs, due to simplified designs involving fewer links and actuators.

Many of the existing parallel devices with reduced platform freedoms achieve this reduction by adding
one extra serial subchain (i.e., an additional leg) between the base and platform of a Gough-Stewart type
parallel manipulator. Then, the mobility of the platform is equal to the degree of freedom of the new subchain.
Such a mechanisms can be described as a serial manipulator with non-actuated joints and separate in-parallel
actuation.

A major drawback of this approach is that a new mechanism is obtained by a complication (rather than
the desired simplification) of the original architecture. Furthermore, the single serial subchain with fewer
than six DoF has to bare all the load due to constraining the undesired freedoms of the platform. In practice,
this leads to a bulky and expensive design of the extra chain and increased rather than lowered costs of the
machine.

A more attractive approach would try to achieve the reduction in the platform freedoms using all serial
chains, analogously to planar or spherical architectures. In the classical case of planar/spherical mechanisms
a parallel manipulator has three legs and each leg is a 3-DoF serial planar/spherical subchain. Thus, removing
all legs but one will leave the freedoms of the platform unchanged since each serial subchain is restricting the
platform to the same three DoFs. In a more general parallel mechanism, different legs may block different
freedoms, and only the combined effect of several subchains results in the desired space of feasible displace-
ments of the platform. A number of such mechanisms have been proposed, the more successful among them
being positioning mechanisms where the platform has three translational DoFs [1, 2, 3, 4].
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Figure 1. (a) A 5R serial subchain (b) a variant of the proposed architecture with three 5R legs and one RRC leg.

There exist a number of applications where the rotational freedoms of the platform are more important
than the translational ones, e.g., flight simulation and device orientation [5]. For pure orientation, spherical
parallel devices, such as the Agile Eye [6] or parallel wrists such as Argos [7] can be used. However, for
tasks that require one translational motion of the platform in addition to the three rotations, there are no
known parallel kinematic chains. The present paper fills this gap.

One major area of application of parallel manipulators is flight and motion simulation. For this type of
application, rotational freedoms play a major role, while translations are of lesser importance. However, one
translational freedom, the heave, is of great significance in flight simulation. (Unfortunately, even the 6-DoF
Gough-Stewart platforms most commonly used as flight simulators cannot provide good heave simulation.)
Hence, if one were to choose a subset of the platform freedoms for the purposes of flight simulation, a natural
choice would be to keep the three rotational freedoms and only one translation. It can be expected, therefore,
that the architectures proposed herein can be used in the design of new flight and motion simulators.

The organization of this paper is as follows. In the next section, we describe the new architecture with
three different actuation schemes and analyze the global mobility of the mechanisms. Section 3 discusses the
position kinematics, while Section 4 examines the velocity kinematics of the family of architectures. Section
5 presents our conclusions.

2 Description and Mobility of the Mechanism

The base and the mobile platform are connected by m ≥ 2 serial subchains, each with five revolute joints.
One such subchain, together with the base and the mobile platform, is shown in Figure 1(a). The first three
joints (counting from the base) in each serial subchain form a 3R spherical chain, i.e., their axes intersect in
one fixed point,O, the rotation centre common to all serial subchains. The remaining fourth and fifth revolute
joints in each serial subchain form a planar 2R chain, i.e., the two revolute axes are parallel. Moreover, these
last two joint axes in each serial subchain are also parallel to a chosen plane in the moving platform (the
platform plane). It is also required that the m axes of the fifth joints (the joints on the mobile platform) are
not all parallel, i.e., at least two of the m planar 2R subchains have different planes of motion (Figure 1(b),
Figure 3).
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Figure 2. The inverted mechanism.

It may be easier to visualize the four degrees of freedom if we consider the inverted mechanism, i.e., if
the mobile platform is assumed fixed and we consider the relative movement of the base of the mechanism.
It is clear that the spherical part of the mechanism and, in particular, the common centre of intersection of
the spherical revolutes, O, is attached to the mobile platform by m planar 2R chains. Each 2R chain restricts
the rotation centre, O, to a plane perpendicular to the mobile platform. Since we have postulated that these
m heave planes are not all identical and since their intersection is not empty (the mechanism has at least one
configuration), they must all intersect in one straight line (the platform axis) perpendicular to the platform
plane and, therefore, the rotation centre is restricted to move along this line. Hence, the possible motion of
the base with respect to the mobile platform is composed of a translation perpendicular to the platform plane
followed in series by a spherical wrist at O (Figure 2).
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Figure 3. The parallel architecture with four 5R legs.

Returning to the original kinematic chain, it is now clear that the mobile platform can rotate arbitrarily
about a point fixed in the base (the rotation centre O) and translate along a direction fixed in the platform
(always perpendicular to the platform plane).
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Figure 4. An equivalent mechanism in the heave plane of leg P .

From a purely geometric point of view the mechanism may have any number of legs not smaller than two.
Since it is desirable to have the actuators at the base it is natural to have four serial subchains (Figure 3). To
avoid excessive link interference and increase the rotational workspace, one of the four serial subchains can
be designed with only 4 DoF, namely the three rotational and one translational freedoms of the platform, and
placed in the middle between the other three legs. Such an architecture can be seen in Figure 1(b). The variant
shown has a universal joint at the rotation centre,O, and a cylindrical joint along the platform axis. The fourth
chain can, alternatively, have a spherical joint at the rotations centre O, and a prismatic actuator controlling
the distance between O and the platform plane. This chain can also have the standard design of a 6-DoF (or
7-DoF) leg of a Gough-Stewart platform, the two extra revolutes at the platform remaining inactive since the
leg will always be perpendicular to the platform plane. The mechanism can also be made with only three 5R
legs as long as, in addition to the three base joints, any one other joint is actuated. We emphasize that the
degree of freedom of the mechanism is determined only by (any) two 5R legs (with different heave planes),
the addition of extra 5R chains or 4-DoF chains like the one in Figure 1(b) does not affect the mobility. Thus,
the mechanism in Figure 1(b) will have the same 4-DoF with or without the RRC chain, with or without
the third or an extra fourth 5R chain. With only two 5R legs we have a single-loop chain with 10 joints
and 4 DoF and the Grübler-Kutzbach mobility criterion is satisfied. With additional legs the mechanism is
overconstrained and the formula is violated.

We assume that the base reference frame has its origin at the rotation centreO. The reference frame of the
mobile platform is positioned at the intersection, Q, of the platform plane and the platform axis. The mobile
Qz axis is along the platform axis (and perpendicular to the platform plane) and the mobile coordinate unit
vectors are i, j, k. We denote each of the 5R legs with one of the letters A,B,C,D and we label all notations
associated with the serial subchain with the corresponding letter. At each joint, we define a reference frame
(the link frame of the adjacent link closer to the platform) in a way consistent with the Denavit-Hartenberg
formalism. If the frame’s origin is not O we denote it by Pi, the coordinate unit vectors by iPi , jPi , kP

i and
the joint angles by θP

i , where P = A, . . . , D, i = 1, . . . , 5. We remind that the kP
i vectors (the z axes of the

link frames) are all along the axes of the joints. We choose the positive directions on the z axes from pointO
to the physical joints, for the first three frames, and counterclockwise in the platform plane (as seen from the
end of k), for the fourth and fifth frames.



3 Position Kinematics

3.1 Inverse kinematics

For the inverse kinematics problem, we assume that the pose (R, t) of the mobile platform is given, where R

is the orthogonal rotation matrix with columns i, j,k and t is the vector
−→

OQ. Since theQz axis always passes
through O, t = hk and the pose of the platform is defined by (R, h). We need to find the configuration of
the mechanism and, in particular, the joint angles of the actuated joints, θP

1
, P = A, . . . , D.

The distance, h, between O and Q determines the location with respect to the platform of the last three
axes of each serial subchain. This relationship can be derived by analyzing the planar mechanism in Figure
4. This is an equivalent mechanism which describes the motion of the planar part of each subchain, P . The
planar chain in the figure is a 1-DoF closed loop with four joints: the revolutes at P4 and P5, a prismatic
along OQ and a spherical joint at O. The prismatic joint, the spherical joint and the links drawn with dashed
lines are not a physical part of the spatial mechanism but represent the restrictions imposed by the other legs
on the serial subchain P .

We note that in Figure 3 (as well as all other figures) and in the discussion of position kinematics we
assume that all four points P5 are in the platform plane. This is not a necessary requirement, and if the fifth
joint axes are in different parallel planes, we will have different points QP and parameters hP each differing
from h by a constant.

For each value of h there are, in general, two possible positions of point P4 in the platform, each described
by the value of the angle ψP

4
= 6 QOP4:

ψP
4

= arccos
h

√

h2 + r2P
± arccos

R2

P + h2 + r2P − `2
45

2RP

√

h2 + r2P
, P = A, . . . , D , (1)

where RP = |OP4|, `45 = |P4P5| and rP is the distance between P5 and the Qz axis, |QP5| in Figure 3
(although, in general, the points P5 need not be co-planar). There are two corresponding possible solutions
for the vector kP

3
in the platform frame. Each is determined by the angle ψP

3
= 6 QOP , which can be

obtained from ψP
4

by the addition of the constant angle αP
43

between
−→

OP4 and kP
3

.
Now, the vector along the third joint axis can be obtained in the fixed frame by

kP
3 = Rz(θ

P )Ry(ψP
3 ) , P = A, . . . , D , (2)

where θP is the angle at which we need to rotate the platform about its k axis in order for i to coincide with
−→

QP5. Since we need the sine and cosine functions of ψP
3 rather than the angle itself we can use the following

equation instead of Equation 1.

2λ(h) cosψP
3

+ 2µ(h) sinψP
3

= ν(h) , P = A, . . . , D , (3)

where
λ(h) = h cosαP

43
− rP sinαP

43
,

µ(h) = h sinαP
43 + rP cosαP

43, (4)

ν(h) = h2 +R2

P + r2P − lP
45
.

Once the vectors kP
3 , P = A, . . . , D, are known, the problem reduces to the inverse kinematics of a general

spherical parallel manipulator. The vector, kP
2

, along the second joint axis of the subchain P can be obtained
from the condition that it forms constant angles with kP

1 and kP
3 . Geometrically, kP

2 lies along the intersection
of two cones with axes along kP

1
and kP

3
. Algebraically, finding θP

1
amounts to solving a quadratic equation

and, in general, there are two solutions for kP
2

for each given kP
3

[6]. Therefore, the inverse kinematics for
each 5R subchain has a maximum of four solutions and the inverse kinematics of the mechanism as a whole
has 64 solutions at most. The number is reduced to only 8 if the 2R planar parts allow only one solution for
kP

3
.



3.2 Direct kinematics

The direct kinematics problem consists in finding the pose (R, h) of the platform when the values of the joint
variables of the actuated joints are given. The direct kinematics of the mechanism is dependent on the method
of actuation, i.e., on which of the versions of the mechanism (discussed in Section 2) is chosen.

3.2.1 One prismatic actuator

This is the easiest case. The joint variable of the prismatic actuator provides the value of h. This in turn
determines the configuration of the equivalent mechanism in Figure 4, up to a sign. Hence the location of the
third joint axes, kP

3
, P = A,B,C, are known in the frame of the platform. Then, the problem reduces to the

direct kinematics problem of a spherical parallel manipulator. As shown in [6], this problem has a maximum
of 8 solutions. Therefore the direct kinematics of the 4-DoF mechanism has at most 64 solutions, just as the
inverse kinematics.

3.2.2 Four 5R chains

The values of θP
1 , P = A, . . . , D, are given. This defines the second joint axes, kP

2 . Then, the vectors of the
third joint axes must satisfy

kP
2
· kP

3
= cosαP

23
, P = A, . . . , D , (5)

where αP
23 are the the constant angles between the second and third joints. Moreover, the angles between k

and each of the vectors kP
3

depend only on h and not on the platform’s orientation:

k · kP
3

= cosψP
3
, P = A, . . . , D , (6)

the relationship between h and cosψP
3 being given by Equation (3).

Furthermore, the angles between the heave planes of each leg are constant (since these planes are fixed
in the platform) and this gives m − 1 = 3 independent equations for the angles between the vectors kP

3 for
different P :

kA
3
· kP

3
= cosψA

3
cosψP

3
+ sinψA

3
sinψP

3
cAP , P = B,C,D , (7)

where cAP is the cosine of the constant angle between the heave planes of legs A and P . Equation (7)
was obtained by decomposing each vector kP

3
into a component in the platform plane and another along the

platform axis.
Equations (5), (6), (7) provide 11 algebraic equations for the 16 unknowns h, k, kP

3 . The remaining 5
equations are the conditions for unit length of the unknown vectors. All these equations have to be solved
together with (3) which relate cosψP

3 and sinψP
3 to h. At this time, it is not known what is the maximum

number of solutions of this problem.

3.2.3 Three 5R chains

Let the fourth actuator control θA
2

. This means that the vector kA
3

is known. Then, Equations (5) and (7)
for P = A,B, as well as (6) for P = A,B,C, give us 7 different equations for the 10 unknowns h, k, kP

3
,

P = A,B.

4 Velocity Kinematics

In this section we assume that the mechanism is in a known configuration. For the purposes of velocity
analysis, we choose the instantaneous reference frame Oijk. The origin is fixed in the base while the co-
ordinate vectors are constant in the mobile platform. For a chosen Cartesian frame in space we associate
a standard basis, {%x,%y,%z, τ x, τ y, τ z}, in the six-dimensional space of twists, S. The elements of this
basis are the three rotations and three translations about the coordinate axes. The coordinates of a twist,
ξ = (ωx, ωy, ωz, vx, vy, vz), in the standard basis are given by



ωσ = τ σ ◦ ξ ; vσ = %σ ◦ ξ , σ = x, y, z , (8)

where “◦” is the reciprocal screw product. Note that in (8) the rotational coordinates are generated by (the
wrenches along) the translational basis screws and vice versa.

Below, we perform our analysis assuming four 5R chains. At the end of the section we make specific
comments on the differences occurring with the other versions of the architecture.

4.1 The screw system of the platform twists

The relationship between the instantaneous motion of the platform, the output twist ξ = (ω,v), and the joint
velocities θ̇P

i is given by the twist equations of the serial subchains:

ξ =
5

∑

i=1

θ̇P
i ξP

i , P = A, . . . , D , (9)

where the joint screws are denoted by ξP
i .

Equation (9) is a necessary and sufficient condition for the output twist, ξ, and the joint velocities, θ̇P
i , to

be feasible. Therefore, the space of all the possible platform twists, T , is given by

T =

D
⋂

P=A

TP , (10)

where TP is the output twist space of the subchain P ,

TP = Span (ξP
1
, . . . , ξP

5
) , P = A, . . . , D . (11)

For any subspace, L, of vector space S, let L⊥ be the reciprocal companion of L,

L⊥ = {ρ | ρ ◦ ξ = 0 ∀ξ ∈ L} , (12)

Since (L⊥)⊥ = L, Equation (10) implies

T ⊥ =

D
∑

P=A

T ⊥
P . (13)

It is easy to see that, when ξP
1 , . . . , ξ

P
5 are linearly independent, the 1-dimensional space T ⊥

P is spanned by
the screw %P = (kP

4 ,0), i.e., a rotation with an axis through O and perpendicular to the heave plane of the
subchain. If the joint screws of the subchain are linearly dependent, T ⊥

P will be of dimension at least two and
will contain screws outside Span (%P ). Physically, the reciprocal screws in T ⊥

P represent wrenches (a pure
force in the case of %P ) which, if applied to the platform, can be resisted by the subchain P with zero torque
from the actuator.

From (13) it follows that T ⊥ includes at least T ⊥
max = Span (%A, . . . ,%D). The vectors kP

4 are all co-
planar and not all parallel (Section 2), hence T ⊥

max is a planar pencil of rotations throughO in a plane parallel
to the platform (first special 2-system with zero pitch, [8].

T ⊥
max = Span (%x,%y) . (14)

Since Tmax is a subspace reciprocal to T ⊥
max, it must be a twist subspace of dimension four spanned by three

pure rotations throughO and a pure translation perpendicular to the plane of the planar pencil, i.e.,

Tmax = Span (%x,%y,%z, τ z) . (15)

When all serial subchains are nonsingular, i.e., their five screws are linearly independent, the output twist
space of the manipulator is T = Tmax. Otherwise, T can be a smaller subspace of Tmax.

This confirms our conclusions in Section 2 that the feasible motions of the platform are three rotations
and one translation.



4.2 The velocity equations

The 24 scalar equations in (9) are not all independent. (If they were, the instantaneous mobility of the
mechanisms would be zero). The output twist needs to be in Tmax and hence reciprocal to %x and %y. This
means that, in the chosen coordinate system, the vx and vy coordinates of ξ are both zero. The same is true
for the first three joint screw, ξ

P
i , i = 1, 2, 3 (all their translational coordinates are zeroes since their axes are

through O). Thus, in the scalar equations for the vx and vy coordinates in (9) there will be only terms from
the 4th and 5th joint twists:

0 = %σ ◦ (ξP
4 θ̇

P
4 + ξP

5 θ̇
P
5 ) , σ = x, y . (16)

In other words, the translation of the origin caused by these two twists must be perpendicular to the platform
plane. The two equations in (16) are linearly dependent and equivalent to the single equation for each leg P :

0 = (k · rP
4 ) θ̇P

4 + (k · rP
5 ) θ̇P

5 , P = A, . . . , D , (17)
where rP

i =
−→

OPi, i = 4, 5.
Now we can specify a minimal system of equations, which determines the velocities in every configura-

tion. It consists of the 4 × 4 = 16 equations for the ωx, ωy, ωz and vz coordinates in (9) together with the 4
equations (17). We have 20 equations for the 20 joint velocities and 4 components of the output twist. The 4
equations for every P in (9) can be written as

s =

5
∑

i=1

θ̇P
i sP

i , P = A, . . . , D , (18)

where the 4-vectors s, sP
i are formed by the ωx, ωy, ωz and vz coordinates of the corresponding twists ξ, ξ

P
i .

The 20 equations (17) and (18) are a necessary and sufficient condition for the 24 joint and output velocities
to be feasible.

Equation (17) implies that the joint velocities of the 4th and 5th joint velocities are not independent
unless both points P4 and P5 are in the Oxy plane. Note that such a configuration is possible only if the
links are specially proportioned. Also, this would be a singularity of increased instantaneous mobility [9]
and the mechanism as a whole will instantaneously have more than 4 DoF. If we assume that in the given
configuration this is not the case, then we can further simplify the system of velocity equations.

Equations (16) show that the combined twist due to the fourth and fifth joints, ξ
P
4 θ̇

P
4 +ξ

P
5 θ̇

P
5 , is in Tmax .

However, when P4 and P5 are not both in Oxy, there is only one screw, ξP
45

, which is both in Span (ξP
4
, ξP

5
)

and Tmax . This is the rotation about the intersection line of the Oxy plane and the plane defined by ξP
4 and

ξP
5

(Figure 5). When the two planes are parallel, ξP
45

is a translation perpendicular to both planes, i.e., τ z.
Defining the 4-vector s45 from ξP

45
by suppressing two of the coordinates as above, we can write the

velocity equations of the mechanism as

s =

3
∑

i=1

θ̇P
i sP

i + θ̇P
45s

P
45 , P = A, . . . , D , (19)

where sP
45

= (kP
4
, rP

45
) and θ̇P

45
= θ̇P

4
+θ̇P

5
when

−→

P4P5 intersectsOxy, while sP
45

= (0, 1) and θ̇P
45

= l45θ̇
P
4

=

−l45θ̇
P
5

when
−→

P4P5 is parallel to Oxy. Here rP
45

is the distance from O to the line of intersection, with the

positive direction chosen along the projection of
−→

OP5 on Oxy.
Equation (19) shows that the velocity kinematics of the studied architecture is described by an instanta-

neously equivalent parallel mechanism. The equivalent mechanism has four legs with four joints each, with
joint screws ξP

1 , ξ
P
2 , ξ

P
3 , ξ

P
45. All joint screws as well as the platform twist are in the 4-dimensional space

Tmax = Span (%x,%y,%z, τ z). In other words we have an instantaneous 4-dimensional analogue of pla-
nar and spherical mechanisms, where all twists stay always within a 3-dimensional twist space. The twists
and wrenches involved in the velocity and singularity analysis of such mechanisms with n < 6 DoF can be
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Figure 5. The joint screws of leg P .

treated as n-dimensional and the Jacobian matrices involved are n×n [9, 10]. Velocity analysis in such cases
amounts to an n-dimensional version of screw calculus. However, one needs to remember that when using
reciprocal screws (i.e., wrenches) one needs to consider a different set of n coordinates.

4.3 The input-output velocity equation

We can now proceed to eliminate the passive joint velocities from Equation (19) and obtain a linear relation-
ship between the input and output velocities. For each leg, we find a screw (interpreted as a wrench), wP

1
,

reciprocal to all joint screws except the active-joint screw sP
1 . The wrench can be considered 4-dimensional

because we are interested only in screws with ωx and ωy coordinates equal to zero. (These two coordinates
are of no interest since the screws in Span (%x,%y) are reciprocal to all twists in Tmax.). The coordinates of
such a 4-dimensional wrench are

w = (fz,m) = (fz,mx,my,mz), (20)

Given a twist in Tmax, sP
1

= (ωx, ωy, ωz, vz) = (ω, vz), the reciprocal product is given by

w ◦ s = fzvz + m · ω , (21)

When the passive joint screws in the serial subchain are linearly independent, the underlying screw of the
wrench wP

1
is determined in a unique way. When rP

45
<∞ and sP

45
is a rotation we have:

wP
1

= (−
1

rP
45

kP
2
kP

3
kP

4
, kP

2
× kP

3
) , P = A, . . . , D , (22)

When rP
45 = ∞, i.e. sP

45 is a translation, wP
1 becomes:

wP
1

= (0,kP
2
× kP

3
) , P = A, . . . , D , (23)

We take the reciprocal product of wP
1

with Equation (19) and obtain the input output velocity equation











(kA
2 × kA

3 )T − 1

rP

45

kA
2 kA

3 kA
4

(kB
2
× kB

3
)T − 1

rP

45

kB
2
kB

3
kB

4

(kC
2
× kC

3
)T − 1

rP

45

kC
2
kC

3
kC

4

(kD
2 × kD

3 )T − 1

rP

45

kD
2 kD

3 kD
4











[

ω

vz

]

=









kA
1
kA

2
kA

3
0 0 0

0 kB
1
kB

2
kB

3
0 0

0 0 kC
1 kC

2 kC
3 0

0 0 0 kD
1 kD

2 kD
3

















θ̇A
1

θ̇B
1

θ̇C
1

θ̇D
1









(24)



where the terms with rP
45 become 0 when rP

45 = ∞. This equation is equivalent to (19) when the passive joint
screws in a subchain, sP

2
, sP

3
and sP

45
, are linearly independent [9]. Then, (24) can be used for the singularity

analysis of the mechanism [11, 9].

4.4 Alternative versions of the architecture

When the fourth chain has 4 DoF, the fourth equation in (19) is the twist equation of the subchain and the
fourth equation in (24) is simply vz = ḣ.

When the fourth actuator is on ξA
2 , (19) has only 3 screw equalities. The input-output equation (24) has a

different fourth equation given by

[(kA
1
× kA

3
)T ,−

1

rP
45

kA
2
kA

3
kA

4
]
T

s = kA
1
kA

2
kA

3
θ̇A
2
. (25)

5 Conclusions

In this paper, we presented a family of new 4-DoF parallel architectures. The equations describing the position
and velocity kinematics of the mechanisms were derived. The proposed architectures make it possible to
supplement an orientational parallel structure with a translational motion fixed in the mobile frame, which is
ideal for motion simulation.
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