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Abstract:- Kinematic analysis of a two-legged -FF-(S)-P-U-EE-U-P-(S)-FF- closed chain, wherein
all six degrees of freedom in the two spherical joints are actuated, requires nothing more elaborate
than a quadratic equation. This result was obtained by observing that the -U-EE-U- line traces
a ruled surface with simple quadratic parametrization if one actuates only two of each S-joint’s
actuators. A selection among the ruling lines is easily made by noting the constraint imposed by
the two remaining S-joint actuators upon the perpendicular to compatible -U-EE-U- lines. -EE-
stands for end effector, -FF- for fixed frame while -P-, -S- and -U- indicate prismatic, spherical and
universal (Cardan or Hooke) joints, respectively. () states that all axes of the enclosed joint are
actuated.

1 Introduction

Recently, an article [8] dealing with inverse and direct position and direct velocity analysis of an
interesting two legged parallel manipulator was submitted to Journal of Robotic Systems for review.
This manipulator is interesting because of its peculiar architecture and because the direct kinematics
are easily amenable to a closed form solution if one chooses a geometric approach which apparently
eluded the authors. Each identical leg contains a base(-FF-) mounted spherical joint wherein all
three axes are actuated. Furthermore the leg contains a passive prismatic joint and is connected to
the end effector(-EE-) with a passive universal joint. Consider the configuration of this manipulator
whose layout and actuation arrangement is shown in Fig. 1 and whose design parameters and joint
variables are described in Fig. 2.

The actuated S-joints attached to -FF- position the P-joint leg lines via the joint angles 6; and
¢i, i = 1,2. Although the two free P-joints cannot locate the U-joint centres, C' and @, the third
S-joint actuators ¥; and o fully define the orientations v and w of the universal joint cross legs
supported on bearings attached to the P-joint pistons. There is no loss in generality if one chooses
U-joint cross legs, carried in bearings on -EE-, to have common axial orientation u. Since the legs
on the same cross are designed to be perpendicular therefore v x w = u. Furthermore if (q — c) is
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Figure 2: Manipulator geometry
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Figure 3: Solution model geometry

the difference of the position vectors of @ and C then (q—¢)-u = 0. All that remains is to describe
the direct positioning of C and ). This will be carried out algebraically first, then by means of
descriptive geometry. If solutions are to exist, then u cannot vanish and OC N AQ cannot exit.

2 Direct Kinematics

Origin O is chosen on the leg line actuated by 61, ¢1, ¥1. O is at the foot of the common perpendic-
ular on that line while A is at the foot on the other leg line. The common perpendicular OA and its
length d is found using the known positions of the S-joint centres and the distance separating them
on -FF-. After setting up #1, ¢1 the unknown displacement, ¢,, of the P-joint on the leg containing
O, locates the point C which becomes the centre of a sphere radius R which is the length of -EE-,
i.e., the distance between C and (). The sphere contains all possible locations of () but then so does
the leg line on A whose unknown P-joint displacement locates (). Due to fortunate coordinate frame
choice one may write the position of ) in terms of the free parameter ¢, by intersecting the circle
of radius r = vV R? — d? with the line AQ. r may be nondimensionalized to p = r/d. The circle is
the sphere section formed by a plane on AQ and parallel to OC. Alternately, the circle is a right
section of a cone of revolution, apex coincident with the sphere centre as shown in Fig. 3, and with
an apex half-angle of 3 = cos™!(d/R). This makes a, = ¢, = d; always. Intersections, e.g., like the
one on @, of this circle and the line AQ), shown in the upper drawing on Fig. 2, are expressed by
the two following equations.

(e —ca)?+qp—1>=0, a’¢ -0’ =0

The univariate in g, is
(a® + b*)q2 — 2a%cpqy + (2 —1%) =0

which simplifies to
Q2 —20%cpqy +C* (2 —1%) =0



Consider that {a : b: 0} are direction numbers of the line A — Q.
tana =b/a=T, cos’a =a?/(a® +b%) =C?, sina=0b/(a®+b?) =S?

Position vectors a, ¢ and q of A, C and @) with respect to O, z-axis along OC' and z-axis along OA,
can now be written.

q C(Cecy £ /1? — §52¢2)
@y | = | S(Cecy £4/12 —52¢2) (1)
qz d

The cosines C in Eq. 1 are not to be confused with the point C. Now the scalar product (q—¢)-u =0
is formed and solved for c,.

[C(Cey £ /12 = 52¢2) — cgug + S(Cey £ /12 — S2c2)uy +du, =0
S?[(Cuy — Suz)® + (Cug + Suy)?]cs
+28d(Cuy — Sug)uzcy — [r?(Cuy + Suy)? — d?u?] =0
(Sts — Cuy)us
S(uz +u?)
V/(Sue = Cuy 22 + [ (Cug + Suy)? — u2)(u + u3)
S(u2 +u2)

cp=d

+d

Finally, ¢, computed with Eq. 2 can be used in Eq. 1 to produce the direct pose.

3 The Ruled Surface C(Q)

The two solutions of Eq. 2 produce two regulii of a surface ruled by CQ. Fig. 4 shows half of the
real part of each regulus. The half in the upper right quadrant is produced with ¢, > 0 and selection
of the positive discriminant in Eq. 1. The other half in the lower left quadrant is the result when
¢z <0, still with a positive discriminant /72 — S2¢2. Notice that the entire real surface can be
generated with only the positive discriminant while allowing ¢, to range between tangent condition
limits ¢,7 = £r/S, then negating all coordinates of C and @ . Of course the entire surface extends
above and below the two leg lines but only the segments between them are shown. These are of
interest because they span the length of EE between the U-joints. One may ask about the nature
of this surface, at least to know its implicit form f(x,y,2) = 0. This can be obtained by invoking a
second parameter ¢, normalized on the interval R, which parametrizes points along C'). Any point
P on the surface may be expressed by the following position vector.

Ca C(Cey £ /12 —S2¢2) — ¢, Dz
p=ct+tl@—c)=| 0 | +t| S(Cecy*/r?-5%3) T Py
0 d p:

First, ¢ may be eliminated to produce two equations in ¢, which is then eliminated to leave
f(z,y,2) =0.

¢z + (0./d)[C(Cey £ /72— 52¢2) — ] —p =0
(p2/d)S[Cecy £ /72 — S22 —py, =0 (3)



Figure 4: Sturm class VII Wringflache ruled surface




The difference between these two equations yields ¢, .

o = d(Spz — Cpy)
¢ S(d—p.)

This result can then be substituted into the second, simpler expression for p,, Eq. 3, and simplified.
[C(Sz — Cy)z — (d— 2)y]* — S*[p*(d — 2)* — (Sz — Cy)’]2* = 0 (4)

Dz, Dy, P- have been replaced by z,y,z to render the implicit form more familiar. Eq. 4 can be
expanded to reveal its quartic form, Eq. 5 .

222% +y?2? — 2dy*z — 2 cot adzyz + csc? ad’y? + p*(d — 2)?22 =0 (5)
The species expressed in this quartic surface are the following.

2,2 ,2,2 2 2 4,3 2
xz’yz)y zﬂxyz7y 7z )z 52:

4 Descriptive Geometric Solution

Refering again to Fig. 4 and to Eq. 1 the following may be stated.

Lemma 1 The subset of lines, in the congruence or two parameter family of lines intersecting two
given ones, which make a constant angle B with respect to the common perpendicular, of length d,
between the two given lines is identical to that subset which subtends segments of constant length
R = dsecp.

This leads to a straightforward descriptive geometric kinematic solution. One sees in Fig. 5 various
projections of the pair of leg lines and the pair of angles 91,2 imposed on the respective U-joint
crosses attached to these legs. The connecting line directions which satisfy this joint angle input
condition are formed by a quasi-“Monge’s Construction”. A description of the classical “Monge’s
Construction” may be found in [9]. It is a method to find the connecting line direction between two
given lines where it is desired that the connection makes respective angles 31, 82 with respect to the
lines to be connected. For example, a plumber may wish to solve this problem in order to connect
two skew pipelines between two straight-run “Wye”-fittings, i.e., not “Tee’s”. The construction
places two cones of revolution, half apex angle 31, 32, with their apices on the centre of a sphere.
The line intersections of the planes of the four small circle cone-sphere intersections locate up to
four real generators, common to both cones, which specify the required connecting direction. In
the case at hand, one of the cones is replaced by a plane on the sphere centre. This plane is
perpendicular to u = v X w or, conversely, parallel to the two U-joint crosses with axis parallel to
v and w, respectively. The compatible, real solution pair illustrated in Fig. 5 shows the EE lines
C@ and CR which form such a plane on C. Notice that this plane is equally well defined by CST
where CS is the U-joint cross direction on leg line 1 and CT is the U-joint cross direction on leg
line 2. The construction may be summed up by the simultaneous solution of the following four
equations in line coordinates. The first two define the congruence of lines with variable Pliicker ray
coordinates P,{po1 : Po2 : Po3 : P23 : P31 : P12} intersecting the given leg lines with axial coordinates
Qa{Qo1 : Qo2 : Qoz : Q23 : Q31 : Q12} and Ry{Ro1 : Ro2 : Ro3 : Roz : R3y : Riz}. The third
equation is the constraint imposed by the leg line mounted U-joint crosses and the fourth is the cone
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Figure 5: End effector U-joint cross direction by descriptive geometry




apex half angle constraint.

Qo1po1 + Qozpoz2 + Qozpos + Q23p2s + Q31p31 + Q12p12 =0
Ro1po1 + Ro2po2 + Rospos + R23p2s + R31p31 + Riapia =0
Uz Po1 + UyPo2 + UzPo3 =0
[(P51Q12 — P12Q31)por + (Pi2Q23 — PosQ12)po2 + (PasQs1 — P31Q23)pos)”
—cos® B [(Ps1Q12 — P12Q31)” + (P12Q23 — P23Q12)”
+(P23Q31 — P31Q23)” + poy + poo + i3] =0

If the connecting line direction, i.e., all three poi1,po2,pos, iS known then the third and fourth
equations may be replaced by the Pliicker orthogonality condition pgi1p2s + po2ps1 + pospiz = 0.
Descriptive geometric solutions to various connecting line problems may be found in any elementary
text, e.g., [6]. It is believed however that the systematic division, of all types of these problems,
into two phases, i.e., first determining the required direction of connection to suit a particular
requirement and then solving the so-called kernel problem of joining two lines with a connection in
this specific direction, is mentioned only in [10].

5 Conclusion

The symmetrical workspace of this two legged manipulator is neatly defined by positional limits ¢,
and its centre lies at the midpoint of the leg line common perpendicular. Self motion singularity arises
whenever leg lines intersect, including parallel configuration. Of course there are the singularities
inherent in nonredundant spherical wrists [3, 1]. The greatest challenge which remains in connection
with the spherically actuated two legged (S)-P-U manipulator is to define its dextrous workspace
and therefrom derive some interesting applications for this novel device which at this time is only a
slightly bizarre curiosity. On the other hand the forgoing treatment shows clearly the sort of insights
which may be gained by applying geometric methods.

5.1 Better Choices & Digging Deeper

In retrospect, a simpler solution results from a symmetrically placed frame and double parametriza-
tion along the lines. The z-axis remains as before but the origin O is placed midway along the
common normal between the leg lines BC' and AQ while the y-axis is on a plane containing the
z-axis and bisecting all transversals C'@. Note that B replaces O in the original frame labelling
scheme. An angle v is defined from either leg line to the plane y = 0. Now scalar parameter ¢
“pushes” @ away from A along AQ while s similarly locates C' to produce

tcosy —8Cos7y cosy(t + s)
q=| tsiny |, e=| ssiny |, q—c=| siny(t—s)
d/2 —d/2 d

Then (q — ¢) - u =0 and the circle of radius r become
ug cosy(t + 8) + uysiny(t — s) +u,d =0, [cosy(t+ 8)]* + [siny(s — )] —r*> =0

Further simplification can be wrought upon these equations by setting j = cosy(t + s) and k =
siny(t — s), which is easily invertable to ¢t = t(j, k) and s = s(j, k).

U] + uyk —u.d =0, PZ+EE-r=0



Then the ruled surface ® on which any point P has the position vector p may be obtained by adding
a third parameter X\ to “push” P along the EE line CQ away from C towrads Q.

(—cosy)s + Acosy(t + s) z
p= (sinvy)s + Asiny(t — s) =y
—% + Ad z

This system is deparametrized by solving the first two rows for j and k then substituting for A from

the third. 2d[2 d(cot 7)y] 2d[2 d(tan y)z]
_ zz —d(coty)y] . _ yz —altany)x
cosy(t+s) = 2+ d)22—d) siny(t —s) = (22 + d)(2z — d)

Finally the circle equation supplies ®(z,y, 2).
4d*{[(dtany)z — 2yz]* + [(dcotv)y — 2zx)°} —r?(42® —d*)* =0

This surface has been studied extensively for well over 150 years and its properties are well known.
Contributions by Burmeister [2], Magnus [4], Miiller [5] and Sturm [7] are cited in this regard.
Furthermore, it is pointed out in conclusion that this literature, through its treatment of such
ruled surfaces, reveals even more secrets concerning this two-legged manipulator. E.g., the desired
connecting lines are also contained in a second order line series; a hyperbolic paraboloid. However
this and the treatment of manipulator singularities and workspace is left for a sequel.
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