
Hybrid Model of gene regulatory networks,

the case of the lac-operon

Laurent Tournier and Etienne Farcot

LMC-IMAG, 51 rue des Mathématiques,
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Abstract. The study of genetic regulatory networks has become an
important field of research in biomathematics and biocomputing. With
the early progresses made in biotechnology, there will be more and more
data available concerning the expression of genes ; the understanding of
such complex systems will then become crucial. However, even though
several serious models have been proposed ([3], [1]), these systems still
raise some challenging questions, from both qualitative and quantitative
points of view. What we propose in this paper, after a brief description of
the well-known lac-operon, is a hybrid model of the regulatory mechanism
responsible for the treatment of lactose by the bacterium e-coli.

1 Introduction of the problem

The notion of gene regulatory networks comes from cellular biology. The cell,
which is frequently used as experimental unit, can be viewed as a network of
biochemical activities, involving gene products (mRNA and proteins in active
and inactive states) and other biochemical entities (such as ions or other small
molecules). We know today that proteins, which are bio-molecules essential to the
life of the cell, are synthetized by the cell itself using the information contained in
the DNA. This major concept is known as the central dogma of cell biology [4].
But even though it was a fundamental discovery, this dogma was not sufficient
to explain how the cell regulates this synthesis during time and space in order
to organize the different functions it must achieve to grow and divide.

Within the past decades, notably thanks to the work of F. Jacob and J.
Monod, a lot of concepts have been developed by cell biologists to explain this
regulation process. The first step was done thanks to the study of the mechanism
of lactose treatment in the bacterium e-coli [2]. Jacob and Monod isolated a
little group of genes that had a coordinated expression and they studied the
mechanisms that were responsible for the regulation of this expression. This
regulation unit was named lac-operon. Thanks to their work, it was actually
confirmed that some genes were regulating the state of other genes, but they do so
after a series of regulatory events, involving proteins and other molecules. So gene
regulatory networks are complex systems, including different types of regulatory
interactions. Since this discovery, biologists have isolated other operons and the
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notion of gene regulation has become an active field of research (we can cite for
instance the tryptophane operon [7] or the λ-phage [6]).

What we propose in this paper is a model of regulatory networks - through
the typical case of the lac-operon - with the intention to approach as precisely
as possible their dynamics. A lot of models have already been proposed, and we
can classify them in two main categories : discrete and continuous models. The
discrete approach was initiated by S. Kauffman who proposed a very interesting
boolean idealization of gene regulation [3]. This was followed by R. Thomas
who presented asynchronous logical networks [9], [8]. The continuous models are
numerous ; we will cite notably the work of L. Glass who suggested an original
piecewise linear approximation of gene interactions [1]. What we want here is to
use the hybrid systems methodology, because it seems to us that the dynamics of
operons (considering the example of the lac-operon) can be effectively modeled
by a hybrid system, mixing discrete and continuous approaches.

2 Biological description of the lac-operon

Escherichia coli is a procaryote organism that has been very well studied by
biologists. Its genome is entirely known, and we member more than 4000 genes
along a single DNA molecule. It is clear that the bacterium cannot express all
these genes continuously over the time. It must so detect with precision when a
specific protein becomes necessary for its metabolism and then produce it.

Let us consider the case of two specific enzymes : the lactose permease and
the β-galactosidase. These two enzymes are responsible for the treatment of
lactose : The first one allows the bacterium to make external lactose enter the
cytoplasm of the cell, while the second is used for degrading internal lactose in
glucose, which is its basic source of energy. When there is no glucose left, and
if lactose is present outside, these two proteins are vital for e-coli, whereas in
different conditions, they are useless. The bacterium has so to detect whether
these enzymes are necessary or not, and if it is the case, it must produce them
quickly. This behaviour is ensured by the lac-operon. Let us now describe its
operating mode.

As we can see on fig 1, the genes coding for permease and galactosidase are
adjacent along the DNA molecule (with another gene coding for a third protein
whose role will be neglicted in this paper). There exists a specific protein, noted
i and named repressor, coded by another gene, I, that have an affinity with
a special site of the DNA molecule, named operator, located just before the
lactose genes (see fig 1). The binding between the repressor and the operator
prevents the genes from being transcripted. When the repressor is present in
suitable concentration in the cell, the expression of the lac-operon is therefore
blocked. The repressor has another important property : when it is in presence
of a lactose molecule, it binds to it on a specific sub-sequence of amino-acids.
The effect of this binding is a change in the conformation of the protein, which
results in the loss of its affinity with the operator (the repressor is then said to
be inactive). As a consequence, when the bacterium is in presence of lactose, the
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Fig. 1. schematic representation of the lac-operon.

latter penetrates the cell in very small quantity (thanks to the residual amount
of permease) and this is enough to drop the concentration of active repressor
and to start the expression of the lac-operon genes. This phenomenon is called
induction and the role of inducer is therefore played by lactose itself.

This set of interactions is often called negative loop, but it is not the unique
regulation process of the lac-operon. Indeed, cellular biologists pointed out an-
other mechanism which is not dependent on lactose but on glucose. As a matter
of fact, even if lactose is available, the bacterium will choose to treat it only if
it is strictly necessary, that is to say, only if there is no glucose left. To that
end, there exists a second loop, said positive, based on the concentration of glu-
cose within the cell. As soon as glucose should happen to lack, the consequence
is an increase of the concentration of the molecule c-AMP. This c-AMP binds
itself with the protein CAP to form a complex that have a particular affinity
with a site of the DNA molecule situated before the lactose genes. This site,
named promoter (see figure 1), is the place where the RNA-polymerase binds
itself to the DNA in order to initiate the transcription. The presence of the
complex (CAP-cAMP) strongly increases the affinity between polymerase and
the promoter, and thus allows to speed up the transcription (the acceleration is
often estimated at a factor 50). That is why the drop of glucose concentration
is another induction mechanism of the lac-operon. This phenomenon is known
as catabolite repression. With its two regulation loops, the lac-operon allows
e-coli to adapt its production in lactose-metabolism enzymes according to the
external and internal conditions of the bacterium.

It is interesting to note that this description is representative of the function-
ning of any operon. Indeed, biologists discovered that the regulated genes often
had one or several operators and that the sequences of these operators were sim-
ilar. This is mainly thanks to these operators that regulating proteins like i may
inhibit or, on the contrary activate the transcription. The understanding of the
lac-operon regulation process is therefore important to have a deeper knowledge
of gene regulation mechanisms.
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3 Formalization of the gene regulation network

As we said previously, there already exist several models of the lac-operon in the
litterature ([3], [10], . . .), either discrete or continuous. The hybrid system that
we build here is inspired from both approaches, trying to use the simplicity of
the boolean view to represent biological switches, while studying the continuous
evolution in time of biological variables.

In that case, we have to consider a priori five continuous variables represent-
ing the concentration of five important species. First, the concentrations of the
two enzymes will be noted x(t) and y(t), x standing for the β-galactosidase and
y for the permease. Then the concentration of RNA molecules issued from the
transcription of the genes will be noted z(t). We will also have to represent the
concentrations in internal glucose and lactose, respectively by g(t) and l(t). Fi-
nally, we will have two control variables, gext(t) and lext(t) modeling the external
sources of the two glucides.

If we consider the biological description we made in the first section, we notice
two different parts in our system. The first part concerns the regulation at the
genetic level and the second part takes into account the metabolism of the cell,
involving the kinetics of enzymatic catalyse reactions.

3.1 Modeling genetic regulation

As we said, the regulation of the transcription of the lac-operon genes depends
indirectly on the concentrations of glucose and lactose inside the cell. We decided
in our model not to take into account the repressor and the activator molecules,
but to make the production of enzymes result directly from the inner concentra-
tions of the two glucides. To represent this dependency, we have been inspired
by the discrete approach initiated by L. Glass [1], who models the interactions
between genes with piecewise linear functions on rectangular boxes.

Let us consider two thresholds θg and θl such that :
{

0 < θg < [g]max

0 < θl < [l]max

The phase space is thus cut into four boxes (see fig 2). Each one has a biological
interpretation. For instance the box ḠL (g < θg and l > θl) corresponds to the
activated induction state.

Formally, the evolution of the RNA variable will follow a piecewise linear
differential equation, with a piecewise constant production term and a linear
decay term :

ż = γ(g, l) − ν1z (1)

with γ(g, l) piecewise constant :

γ(g, l) =







ε if : l < θl (repression)
ε + γ if : l > θl and g > θg (moderate induction)
ε + 50γ if : l > θl and g < θg (accelerated induction)
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Fig. 2. the four operating modes of the lac-operon.

The term ε is a small perturbation term that represents a very weak production
of the enzymes even if the transcription is blocked. Thanks to this assumption,
we can assure that there is constantly a residual amount of enzymes in the cell
in order to start the induction phenomenon.

The equation (1) represents the transcriptional process. Concerning the con-
centration in enzyme, we model the translational process by a linear differential
system :

{

ẋ = αz − ν2x

ẏ = βz − ν3y
(2)

and we considered like in [10] that β = 2α. (We will refer to table 1 for the
values of the different constants)

The equations (1) and (2) establish the dynamics of the RNA and of the
enzymes. They actually give the different biological modes we described pre-
viously, and as in any hybrid system, the biological switches are modeled by
instantaneous switches. Though this may appear as a rough approximation,
this piecewise linear model offers several advantages. First the equations can
be solved formally, and secondly it allows an analytical analysis that makes pos-
sible a qualitative interpretation of the curves obtained (notably of the equilibria
observed).

3.2 Modeling metabolism kinetics

At this point, we have to write the equations for glucose and lactose concen-
trations. These variables are critical because their values control the switches
of the operon from one mode to another. Unfortunately, the usual differential
equations used in biophysics to describe protein kinetics are often strongly non
linear.
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Let us establish the different terms of lactose and glucose appearance and
disappearance :

– external lactose enters the cell thanks to the permease transporter,
– inside the cell, it disappears thanks to β-galactosidase.
– external glucose enters the cell thanks to a special mechanism named PTS

(for sugar PhosphoTransferase System),
– glucose is produced by the degradation of lactose by β-galactosidase,
– glucose is degraded by the bacterium in order to produce energy.

Taking into account these factors, we can write the equations :

l̇ = Cat(lext; y) − Cat(l;x)
ġ = PTS(gluext) + Cat(l;x) − Degr(g)

where Cat(substrate; enzyme) represents the kinetics of the enzymatic catalysis

of the chemical reaction : Substrate
Enzyme
−−−−−→ Product ; and PTS(gluext) and

Degr(g) represents respectively the supply in glucose and the degradation of
glucose to produce energy.

We made here several assumptions :

First, the terms PTS(gluext) and Degr(g) were approximated by linear terms
as in [10], with a common coefficient δ.

Then, to model the terms Cat(substrate; enzyme), we used the well-known
Michaelis and Menten formalism [5]. The enzymatic catalyse reaction can be
represented by the chemical equation :

E + S

k1



k
−1

(ES)
k2

→ E + P

where E is the enzyme, S the substrate, (ES) a short-life intermediate complex,
and P the product of catalysis. The velocity of the reaction follows the Michaelis-
Menten law :

d[S]

dt
= −

k2[E][S]

KM + [S]

here, [A] is the concentration of metabolite A, and KM is the Michaelis constant :

KM = k
−1+k2

k1

. (see fig 3)
Following our will to obtain a piecewise linear differential system, we decided to
propose a piecewise linear version of this velocity :

−

d[S]

dt
'







vm if : [S] < KM

2

vm + k̃[E] if : [S] > KM

2
and [E] < [E]sat

vm + k̃[E]sat if : [S] > KM

2
and [E] > [E]sat

(3)
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Fig. 3. Michaelis-Menten function and piecewise linear approximation (3) with param-
eters : KM = 0.25, k = 1, [E]sat = 0.75, k̃ = 0.7 and vm = 0.1

where vm, [E]sat and k̃ are constant.

We can see on fig 3 the shape of the Michaelis-Menten surface and of its
piecewise linear approximation.

We used this approximation to represent the two enzymatic reactions of our
system :

Lactoseext
perm
−−−→ Lactoseint

Lactoseint
β−gal
−−−−→ Glucose + Galactose

4 Results

The model described in previous section has been implemented, with the set of
parameters shown in table 1.
Although we do not claim that this model yields precise quantitative values, we
tried to deal as far as possible with realistic orders of amplitudes. The concen-
trations are expressed in mol/g DCW (dry cell weight), and the time in minutes.
With these units, we obtained plausible simulations, according to [10] results.
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Fig. 4. Evolution of different concentrations versus time. We can observe a pe-
riod of moderate induction between times 100 and 200, and a period of active
induction between times 400 and 500. The first of these is due to the simultane-
ous presence of lactose and glucose. The second to the presence of lactose only.
In second plot, permease is the dotted line and β-galactosidase the full line. In
the last plot, lactose is the full line and glucose the dashed line. Between mod-
erate and active induction, there is no difference in the shape of curves, but the
amplitude varies with a multiplicative coefficient of 50.

name value name value

ν1 0.716 k̃1 0.09

ε 5e − 13 k̃2 0.2
γ 6e − 12 vm1 6.5e − 9
α 9.4 vm2 7e − 9
ν2 = ν3 0.033 xsat 1.2e − 7
δ 20 ysat 2.4e − 7
KM1

4e − 7 θg 1e − 7
KM2

1e − 9 θl 1e − 8

Table 1. Table of parameters used for the simulation
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But the most important feature, beyond this quantitative considerations, is
the ability of our piecewise linear model to reproduce the qualitative behaviours
of the lac-operon, ie. the induction of this operon by lactose, moderated by the
presence of glucose. This is shown in figure (4).

5 Future work

The model we present in this paper is built upon several assumptions. In com-
parison with the article [10], we neglicted some biological phenomenons that it
would be interesting to integrate :

– the transport of glucides through membranes is a very complicated process
including for instance the inducer exclusion phenomenon. Actually, the
presence of glucose outside the cell would have a negative effect on the pene-
tration of lactose inside the cell. Although the exact mechanism is not known,
it is assumed (see [10]) that lactose transport follows saturation kinetics. It
would be interesting to consider this assumption in the hybrid model.

– another fact is that lactose is also present in the cell in a different form : the
allo-lactose. They follow similar kinetics but with different constants. It is
the allo-lactose which is responsible for the induction of the operon.

– we can also imagine different piecewise linear approximations of Michaelis-
Menten kinetics function, in order to better approach the enzymatic catalysis
kinetics.

Finally, a subsequent step will be to apply the hybrid methodology to model
other gene networks. We can cite especially the case of the tryptophan operon,
which is quite similar to the lac-operon, and then the regulation network respon-
sible for the λ-phage infection of e-coli, which is certainly more complex.
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