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Introduction

The mathematical analysis discussed in this report focuses on a model rep-
resenting the evolution of a population of cells in a tissue, in analogy with
the classical model for bacterial growth in a chemostat. The basis of this
study is the formulation of a model which describes the dynamics of cancer
cells taking into account their metabolism and the pH component. The idea
which has motivated this work is the intention hereinafter to compare how
two population of cells, typically healthy and cancer cells, evolve and inter-
act in the same environment, consuming glucose and oxygen.
The presented analysis is based on a two dimensional dynamical system
which describes the behavior of cancer cells in a substrate of glucose. In
the first section we introduce the model, defining the variables and the set
of parameters. Then we briefly present the higher dimension system that
models the interaction of two type of cells lying in the same tissue, in pres-
ence of oxygen and glucose. The main part of the report is devoted to a
mathematical analysis of one population model: we start from a qualitative
study to determine nullclines and equilibria, then we discuss the stability of
the steady states and we present the system behavior with respect to some
parameters that have a particular biological meaning. We conclude with an
interesting interpretation of the mathematical results which could be useful
for further study in the same field.
The discussed analysis is supported by the use of the software XPP-Aut
due to Bard Ermentrout (available on http://www.pitt.edu/̃ phase/) which
allows a good graphical approach for simulating, animating, and analyzing
dynamical systems.
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1 The model

The evolution of a population of cells in a tissue can be described in analogy
with the classical model for bacterial growth in a chemostat. A chemostat
is a device for harvesting bacteria (Fig 1): a stock solution of nutrient is
pumped at some fixed rate into a chamber where the bacteria are being
cultivated. An outflow valve allows the growth medium to leave at the same
rate, so that the volume of the culture remains constant. A system with two
ordinary differential equations describes how the microorganisms reproduce
at the expense of nutrient consumption.

Figure 1: Stirred bioreactor operated as a chemostat, with a continuous inflow (the
feed) and outflow (the effluent). The rate of medium flow is controlled to keep the
culture volume constant.

In the same way, we consider one type of cells, cancer cells, into a culture
chamber (the tissue), that consume nutrients coming in through arteries. We
assume to have one substrate, typically glucose, since we know that cancer
cells prefer to use glucose more then oxygen in their growth process. In
order to maintain a convenient population level, we suppose that some cells
leave the tissue and that the volume of the culture remains constant.
Let x denote the cells density and S the substrate concentration. The model
describing their dynamics is the following

ẋ = −αDx−mx+ µ(S, h)x (1)

Ṡ = DS0 −DS −
1
η
µ(S, h)x. (2)

First of all we can assert that the way x changes inside the culture chamber
depends on three main factors: the growing capability of cancer cells, their
metabolic capacity, the number of cells that flow out through veins and the
natural cell death. It is obvious that the growth function gives a positive
contribution while the other two terms are negative. Let us discuss the
different parameters:

3



• αD represents the rate of cells which leave the tissue. We assume that
α ' 0. D is a constant related to the intake/output blood flow.

• m is a parameter which represents the rate of death for unit time.

• µ is a function which describes the growth process of cancer cells. It
depends on two factors:
- the concentration of glucose;
- the concentration of protons or pH level.

The hydrogen-ion concentration [H+] is described by the function h = h(x)
that we define as

h(x) := h0 + γx

where γ ∈ R+ denotes the number of hydrogen-ions in cancer cells and h0

represents the concentration of protons in the absence of cancer cells. It is
related to the pH value of the healthy tissue.
Let us remark that, in mathematical terms, the potential hydrogen or pH1 is
defined as the negative common logarithm of the concentration of hydrogen
ions [H+] in moles/litre: pH = −log10[H+].
The growth function µ is strictly related to the function h. Normally if h
has a big value, the blood acidity is high and this makes healthy cell life
difficult. Cancer cells can live in acidity solutions more easily then normal
cells. In this model, we define the growth function as

µ(S, h) :=
1

k2 + h2

(
lS

k′ + S

)
,

where k, k′, l ∈ R+.
With regard to the second equation, it represents the rate of change of
glucose in the culture chamber. The positive term DS0 is due to the re-
plenishment from blood coming in through arteries. The first negative term
−DS depends from the depletion due to the outflow of nutrient through
veins. The last one is related to the part of nutrient solution consumed by
cells in their growth process.
The following table lists the parameters we have introduced in our system:

Quantity Symbol
Rate of cells which leave the tissue α
Cell death rate m
Intake/output blood flow rate D
Glucose concentration in reservoir S0

Yield constant η

1The pH scale is from 0 to 14 with 7.0 being neutral: anything above 7.0 is alkaline,
anything below 7.0 is acid. Optimally, we want the fluids in our body to have a neutral
or 7.0− 7.2 pH level.
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1.1 Model with two population of cells

The evolution of cancer cells interacting with healthy cells in a tissue with
two substrates, glucose and oxygen, is described by a dynamical system of
four ordinary differential equations. This model is due to the collabora-
tion between Jean-Luc Gouzé and Madalena Chaves (INRIA-Comore) and
Frédéric Dayan (UNS-LJAD).
Let x1, x2 be respectively normal and cancer cells and S1, S2 glucose and
oxygen concentration. The model is defined below.

ẋ1 = −α1Dx1 −m1x1 + µ1(S1, S2, h)x1 (3)
ẋ2 = −α2Dx2 −m2x2 + µ2(S1, S2, h)x2 (4)

Ṡ1 = DS0
1 −DS1 −

1
η1
1

µ1(S1, S2, h)x1 −
1
η2
1

µ2(S1, S2, h)x2 (5)

Ṡ2 = DS0
2 −DS2 −

1
η1
2

µ1(S1, S2, h)x1 −
1
η2
2

µ2(S1, S2, h)x2 (6)

The idea behind each equation is an extension of the discussion made in the
previous section. The dynamics of the cell populations depends on the grow-
ing capability of cells - here function of both cell populations and substrates
- their metabolism, the number of cells that flow out through veins and the
natural cell death. The differential equations describing the evolution of
the nutrients concentration are similar to equation (2) but clearly take into
account the contribution of both populations in consuming substrate.
The model is conceptually simple but the big number of parameters and the
totally absence of a priori information on their magnitude makes the anal-
ysis more complicated. The study of one population behavior could give a
hint for the choice of the parameters and should be interesting for further
studies.

2 Qualitative analysis

2.1 Nullclines

The first goal of qualitative analysis is to find the fixed points of the system
that are solutions of the following problem{

−αDx−mx+ µ(S, h)x = 0
DS0 −DS − 1

η µ(S, h)x = 0.

It is obvious that one steady state is given by x = 0, S = S0. The cor-
responding function h is given by h0 and represents the concentration of
protons in the equilibrium state, h = h0 = 10−7.4.
We remark that the domain of our system is x ≥ 0 and S ≥ 0, since it is the
only interesting region from a biological point of view. Sometime we take
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into account a larger domain for completeness of the mathematical analysis.
In order to obtain more information about equilibria and vector fields, it
is useful to plot the nullclines, curves in the plane along which the rate of
change of a particular variable is zero. The usefulness of these curves is that
they break up the plane into regions along which the derivatives of each
variable have a constant sign. Thus, the general direction of the flow is easy
to determine. Furthermore, the intersections of the nullclines are the fixed
points of the system.
In our case the x-nullcline and the S-nullcline are respectively solutions of
the equations ẋ = 0 and Ṡ = 0.

x-nullcline
(−αD −m+ µ(S, h)) x = 0. (7)

One solution of equation (7) is clearly the line x = 0 and the other one is
the solution of

−αD −m+
1

k2 + h2

(
lS

k′ + S

)
= 0.

Then we have

S =
(αD +m)(k2 + h2) k′

l − (αD +m)(k2 + h2)
.

In order to well define the x-nullcline, we need to understand the behavior
of S = S(x). Since we know the expression of h as function of x, simply
h(x) = h0 + γx, we can consider S = S(h), without complicating the above
formula and then we derive from that the behavior of S as function of x.
We have

S(h) =
C(k2 + h2) k′

l − C(k2 + h2)

where C = αD+m, C > 0. The analysis of function S is synthesized in few
simple steps:

1. Value in 0. S(0) = Ck′k2

l−Ck2 .

2. Study of sign. The sign of the function depends on the choice of the
parameters. If we take the values such that l−Ck2 > 0 then we have
two vertical asymptotes

h2 = −
√
l − Ck2

C
h1 =

√
l − Ck2

C
. (8)

The resulting function is shown in Fig 2. If we choose the parameters
such that l − Ck2 < 0, we have a function always negative as shown
in Fig 3.
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3. Limits.

lim
h→±∞

C(k2 + h2) k′

l − C(k2 + h2)
= −k′ < 0,

then we have an horizontal asymptote in the negative half-plane.

lim
h→h∓1

S(h) = ±∞ lim
h→h∓2

S(h) = ∓∞.

4. Derivatives.

S′(h) =
2Ck′h(l − Ck2 − Ch2) + Ck′(h2 + k2)2Ch

(l − C(k2 + h2))2
=

2Ck′lh
(l − C(k2 + h2))2

From the above result, for h > 0 we have S′(h) > 0 so that the
function is increasing, for h < 0 the function S in decreasing and there
is a minimum for h = 0.

Figure 2: x-nullcline in the case l − Ck2 > 0.

Figure 3: x-nullcline in the case l − Ck2 < 0.
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S-nullcline

DS0 −DS −
1
η

1
k2 + h2

(
lS

k′ + S

)
x = 0.

The S-nullcline is represented by a second order equation in S that is

Dη (k2 + h2)S2 − (DS0η (k2 + h2)−Dη (k2 + h2)k′ − lx)S −DS0η (k2 + h2)k′

η(k2 + h2)(k′ + S)
= 0

Observing that in our domain the denominator is always non zero, the so-
lution of this equation is

S =
T (h)±

√
T (h)2 + 4D2η2 (k2 + h2)2 S0k′

2Dη (k2 + h2)
,

where T (h) = DS0η (k2 + h2)−Dη (k2 + h2)k′ − lx and x = h−h0
γ .

Let us observe that the term under square root is greater than T (h) so that
one of the two solutions is negative and not interesting for our study. The
solution which represents the S-nullcline is

S = S(h) =
T (h) +

√
T (h)2 + 4D2η2 (k2 + h2)2 S0k′

2Dη (k2 + h2)
.

The qualitative analysis of this function is more complex then the x-nullcline.
Anyway using a Matlab function (see Appendix) we can have a clear idea
of the behavior of the S-nullcline. It is shown in Fig 4.

Figure 4: S-nullcline for particular choice of the parameters. Changing the param-
eters values, the maximum and the minimum of the function vary but the qualitative
behavior remains similar.

2.2 Equilibria

After plotting x-nullcline and S-nullcline separately, it is important to in-
vestigate their intersections for seeking fixed points and then studying the
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stability of the system. The analysis presented in this section is supported
by the extensive use of the software XPP-Aut.
I have written a file System.ode (enclose in Appendix) in which I have de-
fined the system (1)-(2) and chose the values of the parameters observing
how the behavior of the system changes varying them. Using XPP-Aut we
can plot the x- and S-nullclines and draw the vector fields that give a hint
about how trajectories move around in the plane. Once having the graphical
representation of the fixed points, it is possible to know precise information
about the stability of the equilibria.

2.2.1 Numerical values of the parameters

The system is characterized by ten parameters. We don’t know a priori
information about their magnitude. After numerous simulations, we have
decided to start our analysis from those values which have lead to some
interesting behavior of the system, in terms of fixed points and stability,
in the biological domain. In particular we initially assume h0 ' 0 because
it represents the hydrogen ion concentration at some point. From the def-
inition of pH in the previous sections, we know that the concentration of
hydrogen ions is mathematically expressed by 10 to a negative power. We
also assume α ' 0 because it is related to the number of cells that leave the
tissue and it is very small.
We can notice that there will be always at least one intersection between
the two curves because of the presence of the line x = 0 in the x-nullcline,
this is the trivial equilibrium.

Let us start from the following parameters values:

α = 0.1 h0 = 0.0001 m = 0.5
D = 10 k = 0.8 k′ = 7
l = 100 η = 0.3 γ = 1.5

The concentration of glucose in reservoir is initially small, S0 = 3.
The resulting graph is shown in Fig 5 where we focus on the upper half
plane, though the significant domain from a biological point of view is re-
stricted to x ≥ 0 and S ≥ 0.
We observe three intersections: two of them are stable fixed points, labeled
by a circle, the other one is unstable and labeled by a triangle. We can be
sure about the stability of such points simply looking at the eigenvalues of
the linearized system in the neighborhood of each point. These eigenvalues
are automatically computed by XPP-Aut. They have both negative real
part if correspond to a stable fixed point. On the other hand, if we are in
the neighborhood of an unstable node, there is at least one eigenvalue with
positive real part.
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Figure 5: The x-nullcline is plotted in red, the S-nullcline in green. They corre-
spond to α = 0.1, m = 0.5, η = 0.3, h0 = 0.0001, γ = 1.5, D = 10, l = 100,
k = 0.8, k′ = 7, S0 = 3. The rows represent the vector fields. We observe two
stable external equilibria and one unstable in the middle.

Another example of result is shown in Fig 6, where we have decreased
the value of γ (notice that the scale on the axes is different with respect to
the previous phase portrait).

Figure 6: The x-nullcline is plotted in red, the S-nullcline in green. They corre-
spond to α = 0.1, m = 0.5, η = 0.3, h0 = 0.0001, γ = 0.5, D = 10, l = 100,
k = 0.8, k′ = 7, S0 = 3.
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Several implementations with different values of the parameters have
shown the mutual behavior of the x- and S-nullclines and have suggested
the analysis of the system with respect to particular parameters: k, h0 and
S0. The motivation of this choice is explained in the following sections where
we present the mentioned analysis. We don’t exclude the possibility to find
new interesting results from the study of the system as function of other
parameters.
Before proceeding, it is important to notice that, in the domain we are con-
sidering, there isn’t the possibility to have more than three steady states.
In fact it should happen if the green curve had a minimum lower then the
red curve in the region x > 0. Several implementations with a matlab func-
tion for searching minima have shown that the minimum of the S-nullcline
is ”appreciably” higher then the minimum of the x-nullcline, so that the
maximum number of equilibrium points we can observe is three.
Moreover, we remark that the positive state space (x ≥ 0 ; S ≥ 0) is invari-
ant. This guarantees that positive (and biological) initial conditions give
rise to positive/biological solutions. If we look at Fig 7, the curves colored
in yellow and blue divide the half plane in invariant sets. In Fig 8, we can
see branches of trajectories which start from different initial conditions in
the positive state space and remain in the same region.

Figure 7: The x-nullcline is plotted in red, the S-nullcline in green. The yellow
and blue curves delimited the invariant sets.
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Figure 8: Branches of trajectories starting from different initial conditions in the
region x ≥ 0, S ≥ 0. They evolve remaining in the same space.

3 Bifurcations and continuations

The software XPP-Aut contains a package, AUTO, very efficient for detect-
ing bifurcations of fixed points and limit cycles. A bifurcation occurs when
a small smooth change made to the parameter values (the bifurcation pa-
rameters) of a system causes a sudden ”qualitative” or topological change
in its behavior. Using AUTO, once known the coordinates of an equilibrium
point, it is possible to plot the curve of the fixed points as function of a par-
ticular parameter. We present the analysis with respect to the parameters
k, h0, S0.

3.1 Diagram with respect to ”critical” population size

The parameter k is introduced in the system through the growth function
µ that is

µ(S, h) :=
1

k2 + h2

(
lS

k′ + S

)
.

We can interpret k as an indicator of a ”critical” population size. Let us
explain in which sense. If we fix the variable S, the function µ can be
seen as 1 − f(h), up to a constant (1/k2), where f is the Hill function
f(h) = hn/(kn + hn) with n = 2. For having an idea of the behavior of µ,
we can see Fig 9. As h < k the function assumes its maximum value. As
h > k, the function tends to be zero, then the growth rate is small. We
recall that h = h0 +γx, with h0 ' 0. In terms of cells density, we can assert
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that, as x < k/γ, the growth rate is high while as x > k/γ the growth rate
is small so that we observe an inhibitory effect: x large ⇒ function small.
In this sense we say that the parameter k is related to a critical population
size.

Figure 9: Behavior of the function 1/(k2 + h2).

Why we have decided to study the system as function of k? The mo-
tivation is based on the definition of the formula for the asymptote of the
x-nullcline (8). We have observed that this line is particularly important for
understanding the behavior of the system, so we have focused the attention
on one of the parameters involved in such formula.
Let us observe the diagram in Fig 10 which synthesizes the behavior of the
system for 0.8 ≤ k ≤ 6.5. The other parameters are fixed. First of all we
have a quick summary of stability from the diagram itself: thick solid lines
indicate stable fixed points, thin lines are unstable fixed points. The point
labeled by the number 3 is denoted, in the information window, as BP and
corresponds to a bifurcation point. It has the typical features of a pitchfork
bifurcation point, apart of a little interval discussed later. This particular
point occurs at the value k = 2.739 and is characterized by two stable fixed
points that tend to appear and disappear in symmetrical pairs. So, we can
see that, as k < 2.739, the system performs three fixed points, two stable
and one unstable.
The point labeled by 2 is denoted as LP and corresponds to k = 2.776. We
can notice that as 2.739 ≤ k ≤ 2.776, the system figures out very different
situations, although the variation of the parameter is extremely small. It
starts from having two stable fixed points, one stable and one unstable (see
Fig 11). Then slowly increasing k, we observe three steady states (the exter-
nal ones are stable and the other one is unstable) and finally, as k = 2.776,
we have again two fixed points and both are stable. As k > 2.776, the sys-
tem presents only one stable fixed point that corresponds to the trivial one
x = 0, S = S0.
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Figure 10: Bifurcation diagram as the parameter k varies. The other parameters
are fixed: α = 0.1, m = 0.5, η = 0.3, h0 = 0.0001, γ = 1.5, D = 10, l = 100,
k′ = 7, S0 = 3. Thick solid lines indicate stable fixed points, thin are unstable fixed
points.

Figure 11: The four images show how the number of the fixed points and their
stability change as 2.739 ≤ k ≤ 2.776 and soon after the value labeled by 2.

The discussion above is interesting from a mathematical point of view
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but needs to be restricted to the domain where our system has still a meaning
from a biological point of view. So we look at the horizontal line and the
upper branch. Basically the system performs only one stable point which is
very close to zero if k > 2.739, while presents a higher stable equilibrium as
k > 2.739. We can interpret this results saying that for big values of k, the
maximum growth rate 1/k2 is small, then the increase of cells concentration
is negligible. On the contrary, if the value of k is small, the maximum growth
rate is high, then we observe an increase in the concentration of cells and
we can justify the presence of a stable fixed point on the upper branch.

3.2 System behavior with respect to the tissue pH

Till now we have assumed that the parameter h0 is extremely small. We can
observe the behavior of the system when we increase the value of h0. It is
interesting because we know the particular biological meaning of h0 that is
defined as the concentration of hydrogen-ions in the tissue when there aren’t
cancer cells but only normal cells. Basically, the variation of h0 corresponds
to consider a different tissue, where the normal concentration of protons and
then the pH are different.
Let us fixed the other parameters: α = 0.1, m = 0.5, S0 = 3, η = 0.5,
h0 = 0.0001, γ = 1.5, D = 10, l = 100, k = 0.8, k1 = 7. Plotting the phase
portrait, we have the result shown in Fig 12.

Figure 12: The x-nullcline is plotted in red, the S-nullcline in green. The points
labeled by circles are stable equilibria.

In Fig 13, we can observe the diagram obtained starting from two dif-
ferent initial conditions. In the first graphics we start from the stable fixed
point x = 2.615, S = 2.2155 (in the positive square). The second one is plot-
ted setting as initial condition the stable node x = −3.2307, S = 3.9692.
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It should be optimal to superimpose the two graphics but we can deduce
our results easily comparing them from Fig 13, where we can notice that
the line in the second diagram is always below the two lines in the first one.
We find that there is a particular point labeled by 2, in the first diagram,
that corresponds to h0 = 4.4. Before this node, we have three fixed points,
the upper one is stable, the other one is unstable (x ' 0), the last one, with
negative x, is stable (this is shown in the second diagram). If we look at
what happen for h = 4.4, we expect to obtain only two fixed points and
indeed it is what we gain (Fig 14). As h > 4.4, the systems performs again
three steady states, Fig 15.

Figure 13: Diagram representing fixed points when the parameter h0 varies.
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Figure 14: x-nullcline and S-nullcline with two intersections. The graphics corre-
sponds to h0 = 4.4.

Figure 15: x-nullcline and S-nullcline with three intersections. The graphics cor-
responds to h0 = 8.

Once again we remind that the system domain which is interesting from
a biological point of view is x ≥ 0 and S ≥ 0. So let us interpret the
mathematical result in such region. The study of the bifurcation diagram
corresponding to h0 is interesting because allows to find a sort of threshold,
4.4, such that, as h0 > 4.4, the system performs only one stable point,
the trivial equilibrium. This means that the tissue is not affect by cancer
cells. Why? We recall that h0 represents the concentration of protons in
the absence of cancer cells. If such concentration is high, the pH is low,
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then the tissue is characterized by high acidity that is an obstacle for cell
life. Cancer cells couldn’t grow in such solution because, consuming glucose,
they produce protons increasing tissue acidity that becomes more and more
dangerous for them.

3.3 Varying the glucose concentration in reservoir

Let us focus on the domain x ≥ 0. We are sure to have at least one fixed
point, that is the trivial equilibrium (nothing happens). Such point is stable
if it is the only steady state of the system, while it is usually unstable if
there is a second equilibrium point. In this case, the latter will result stable.
From several simulations we have observed that, when the x- and S-nullclines
intersect at a point in the state space x > 0 S > 0, this point has a bigger
x-coordinate as high is the value of the glucose concentration in reservoir
S0. Basically S0 represents an input for our system, then it is interesting
to plot the curve of fixed points as S0 varies. This variation corresponds
in some way to increase the number of blood vessels coming into the tissue
(angiogenesis2).
We start from a low value of S0 and the other parameters fixed, then we
increase the value of glucose concentration and we initially observe a consis-
tent increase in the number of cells in the culture chamber. After a while,
their growth becomes less sensitive to the initial concentration of glucose
and finally any further increase of S0 doesn’t produce any increment in the
number of cells. This phenomena is shown in Fig 16 where we choose some
values for S0 and we observe how the coordinates of the stable fixed point
change.

2Angiogenesis is a physiological process involving the growth of new blood vessels from
pre-existing vessels.
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Figure 16: A) Corresponds to S0 = 10, the singular point is x = 2.8844, S =
9.327. B) Corresponds to S0 = 15, the singular point is x = 3.1958, S = 14.254.
C) Corresponds to S0 = 40, the singular point is x = 3.6873, S = 39.14. D)
Corresponds to S0 = 100, the singular point is x = 3.9025, S = 99.089.

Using AUTO, it is possible to have a graphical representation of the
continuation of fixed points as the parameter S0 changes. In this way we
have the result that we expect as shown in Fig 17. The fact that the drawn
curve is thick and solid implies the fixed points are stable. AUTO specially
marks certain points with small crosses and numbers. As we move around
the diagram, the text area beneath the diagram gives us a summary of
information about the current location such as the value of the parameter,
the state variable, the period, and the point type for special points. In this
case there aren’t special points but it is interesting to notice that after the
point labeled by 8 for example, the cell density x changes very slowly as
S0 increases. In fact, as discussed in the previous sections, the red curve
representing the x-nullcline is limited by a vertical asymptote, given by
h =

√
(l − Ck2)/C, that is

x =
1
γ

(
−h0 +

√
l − (αD +m)k2

αD +m

)
.
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Figure 17: The curve represents the fixed points of the system as the glucose
concentration in reservoir S0 changes and the other parameters are fixed such that
the resulting asymptote is x = 4.0603.

This result is very interesting because it means that, although we try
to increase the concentration of nutrientin reservoir, there exist a sort of
limit for the cells concentration. Starting from any initial condition, if the
concentration of cells increases as the concentration of glucose in reservoir is
higher and higher, we observe that at some point, it doesn’t change anymore.
The presence of such limit should be related in some way to the distinction
between benign and malign tumor. The higher concentration of cancer cells,
given by the stable equilibria, could be small in the specific case and then
represent a benign tumor or big and then represent a malign tumor.

4 Conclusion

The results we have presented in this report give an idea of the behavior of
a two dimensional system representing the evolution of a cancer cell popu-
lation when we take into account their metabolism and the pH component.
The analysis of the fixed points and their stability guarantees that the sys-
tem doesn’t perform any oscillation but, starting from any initial condition,
always tends to a stable fixed points in the ”positive” state space x ≥ 0,
S ≥ 0. This point can coincide with the trivial equilibrium x = 0, S = S0

which means that there aren’t cancer cells growing in the tissue or with a sta-
ble fixed point lying on the red convex function limited from an asymptote.
This means that, in the case we observe an increase in the concentration of
cancer cells in the tissue, this concentration cannot go to infinite but will
stabilize at some point. Even if we increase the nutrient solution for the
cells, they wont growth anymore.
The extensive use of the software XPP-Aut and the tool AUTO have lead
to a graphical approach for understanding how fixed points and stability
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change with respect to particular parameters. Through this analysis, we
have obtained two important results.
The first one is related to the hydrogen-ions concentration h0 and consists
on the observation that after some threshold, a big value of h0 is an obstacle
for the cancer cells. This should explain why, in the process of metastasis,
cancer cells attach some organs and not others. So it could suggest a study
of this process as function of the pH of the particular tissues.
The other interesting result is described in the last section, where we study
the curve of fixed points as S0 changes. The advantage of this observation
is that the parameter S0 has a precise biological meaning and its variation
can be interpreted as the angiogenesis process. Starting from any initial
condition of the system, if we observe an increase in the concentration of
cells in the tissue, we should increase such density with a higher value of the
glucose concentration in reservoir. Anyway this process could not produce
an infinite increase in the number of cells because of the asymptote which
represents a limit for that.
We remark that part of the mathematical analysis in the report cannot
be translated into biological terms, since it involves negative values of the
variables which have not biological meaning. Anyway we have chosen to
mention it to better understand the whole idea.
The description of one cell population model could be a starting point for
approaching the study of the more complex dynamics of two cell types in a
substrate of glucose and oxygen. This model is in fact characterized by a
sort of symmetry and each part can be seen as explained in this report. The
presented analysis could be a hint for choosing two settings of parameters for
the two populations. Then the observation of how the system evolve with
respect to these parameters should be done using the graphical approach we
have proposed, using the software XPP-Aut.
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Appendix

File System.ode

############################################################
#Model with one population of cell in a substrate of glucose
############################################################
# numerical values of the parameters
# parameters in the first equation
par a=0.1, m=0.5
# parameters in the second equation
par S0=3, eta=0.5
# common parameters
par h0=0.01, gamma=1.5, D=10, l=100, k=5, k1=7
#
# hydrogen-ion concentration
h(x)=h0+gamma*x
#
# growth function
mu=1/(k^2+(h(x))^2)*(l*S/(k1+S))
# differential equations
x’=-a*D*x-m*x+mu*x
S’=D*S0-D*S-1/eta*mu*x
#
# auxiliary variable for growth function
aux growth=mu
#
@ bounds=1e25 # to prevent "out of bounds" error
@ total=1000 1 # to extend the run time
@ maxstor=100000 # to increase the maximum storage capacity
@ meth=stiff
@ xp=x, xlo=-10, xhi=10, dt=0.001
@ yp=S, ylo=0, yhi=40
#
done
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