
Mathematical Modeling of
Genetic Regulatory Networks

Hidde de Jong
Projet HELIX

INRIA Rhône-Alpes
655, avenue de l’Europe

Montbonnot, 38334 Saint Ismier CEDEX

Email: Hidde.de-Jong@inrialpes.fr



2

Overview

1. Genetic regulatory networks

2. Modeling and simulation of genetic regulatory networks

3. Modeling and simulation approaches:

l differential equations

l stochastic equations

4. Conclusions



3

Genes and proteins
v Genes code for proteins that are essential for development

and functioning of organism: gene expression

DNA

RNA

transcription

protein

translation

protein and
modifier molecule

post-translational
    modification
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Regulation of gene expression

v Regulation of gene expression on several levels

v Gene expression controlled by proteins produced by other
genes: regulatory interactions

transcriptional
   regulation

translational
  regulation

    regulation of
post-translational
    modification
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repressors

repressor complex

activator

gene 1

gene 3

gene 2

Genetic regulatory network

v Genetic regulatory network consists of set of genes, proteins,
small molecules, and their mutual regulatory interactions

v Development and functioning of organisms cell emerges from
interactions in genetic regulatory networks
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Bacteriophage λ infection of E. coli

v Response of E. coli to phage λ
infection involves decision
between alternative
developmental pathways:
lytic cycle and lysogeny
Ptashne, 1992
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Genetic regulatory network phage λ

v Choice between alternative developmental pathways controlled
by network of genes, proteins, and mutual regulatory
interactions

McAdams & Shapiro, 1995
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v Most genetic regulatory networks are large and complex
Cells have many components that can interact in complex ways

v Dynamics of large and complex genetic regulatory processes
hard to understand by intuitive approaches alone

v Mathematical methods for modeling and simulation are
required:

l precise and unambiguous description of network of interactions

l systematical derivation of behavioral predictions

v Practical application of mathematical methods requires user-
friendly computer tools

Computational approaches
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Mathematical modeling approaches
v Mathematical modeling has developed since the 1960s and is

currently attracting much attention
Bower and Bolouri, 2001; Hasty et al., 2001; McAdams and Arkin, 1998;
Smolen et al., 2000; de Jong, 2002

v Two approaches to computer modeling and simulation
discussed in this session:

l differential equations

l stochastic equations

v Jean-Luc Gouzé will discuss class of piecewise-linear
differential equations central to this project in more detail
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Differential equation models

v Cellular concentration of proteins, mRNAs, and other molecules
at time-point t represented by continuous variable xi(t) ∈ R≥0

v Regulatory interactions modeled by kinetic equations

where  fi(x) is rate law

v Rate of change of variable xi is function of other concentration
variables x = [x1,…, xn]´

v Differential equations are major modeling formalism in
mathematical biology

Segel, 1984; Kaplan and Glass, 1995; Murray, 2002

xi = fi(x),    1 ≤ i ≤ n,.
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Negative feedback system

v Gene encodes a protein inhibiting its own expression:
negative feedback

v Negative feedback important for homeostasis, maintenance of
system near a desired state

Thomas and d’Ari, 1990

gene

mRNA

protein

-
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Model of negative feedback system
gene

mRNA

protein

–

x1 = mRNA concentration

x2 = protein concentration

x1 = κ1 f (x2) - γ1 x1

x2 = κ2 x1 - γ2 x2

κ1 , κ2 > 0, production rate constants

γ1, γ2 > 0, degradation rate constants

.

.

f (x2) =               ,  θ  > 0 threshold
θ n

θ n + x2
n

x2

f (x2 )

θ0
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Steady state analysis

v No analytical solution of nonlinear differential equations
describing feedback system

v System has single steady state at  x = 0

v Steady state is stable, that is, after perturbation system will
return to steady state (homeostasis)

.

x2

x1

0

x2 = 0 
.

x1 = 0 
.

x1 = 0 :  x1 =           f (x2)
κ1
γ1

x2 = 0 :  x1 =           x2
γ2
κ2

.

.
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Transient behavior after pertubation

v Numerical simulation of differential equations shows transient
behavior towards steady state after perturbation

Initial values x1 (0), x2 (0) correspond to perturbation

x1

x2

t
0

x2

x1

0

x2 = 0 
.

x1 = 0 
.
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Positive feedback system

v Gene encodes a protein activating its own expression:
positive feedback

v Positive feedback important for differentiation, evolution
towards one of two alternative states of system

gene

mRNA

protein

+
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Model of positive feedback system
gene

mRNA

protein

+

x1 = mRNA concentration

x2 = protein concentration

x1 = κ1 f (x2) - γ1 x1

x2 = κ2 x1 - γ2 x2

κ1 , κ2 > 0, production rate constants

γ1, γ2 > 0, degradation rate constants

.

.

f (x2) =
x2

θ n + x2
n

n

x2

f (x2 )

θ0
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Steady state analysis

v No analytical solution of nonlinear differential equations
describing feedback system

v System has three steady states

v Two stable and one unstable steady state. System will tend to
one of two stable steady states (differentiation)

x2

x1

0

x2 = 0 
.

x1 = 0 
.

x1 = 0 :  x1 =           f (x2)
κ1
γ1

x2 = 0 :  x1 =           x2
γ2
κ2

.

.
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Transient behavior after pertubation

v Depending on strength of perturbation, transient behavior
towards different steady states

x1

x2

t
0

x2

x1

0

x2 = 0 
.

x1 = 0 
.

x1

x2

t0
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Model of time-delay feedback system

v Time to complete transcription and translation introduces time-
delay in differential equations

v Time-delay feedback systems may exhibit oscillatory behavior

gene

mRNA

protein

-

x1 = mRNA concentration

x2 = protein concentration

x1 = κ1 f (x2) - γ1 x1

x2 = κ2 x1 - γ2 x2

.

.

x1(t ) = x1(t - τ1) ,  τ1 > 0 time-delay

x2(t ) = x2(t - τ2) ,  τ2 > 0 time-delay

τ

τ

τ

τ
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More complex feedback systems

v Gene encodes a protein activating synthesis of another protein
inhibiting expression of gene: positive and negative feedback

v Interlocking feedback loops give rise to models with complex
dynamics: numerical simulation techniques necessary

gene a

mRNA b

protein A

-

protein B

gene b

+

mRNA a
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Application of differential equations

v Differential equations have been used to model a variety of
genetic regulatory networks:

l circadian rhythms in Drosophila (Leloup and Goldbeter, 1998)

l λ phage infection of E. coli (McAdams and Shapiro, 1998)

l segmentation of early embryo of Drosophila (Reinitz and Sharp, 1996)

l cell division in Xenopus (Novak and Tyson, 1993)

l Trp synthesis in E. coli (Santillán and Mackey, 2001)

l induction of lac operon in E. coli (Carrier and Keasling, 1999)

l developmental cycle of bacteriophage T7 (Endy et al., 2000)

l ...
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Simulaton of phage ? infection

v Kinetic model of the phage ? network underlying decision
between lytic cycle and lysogeny
McAdams & Shapiro, 1995
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Simulaton of phage ? infection

v Time evolution of promoter activity and protein concentrations
in (a) lysogenic and (b) lytic pathways

McAdams & Shapiro, 1995
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Evaluation of differential equations

v Pro: general formalism for which powerful analysis and
simulation techniques exist

v Contra: numerical techniques are often not appropriate due to
lack of quantitative knowledge

value of parameters and evolution of concentrations are not known

v Contra: implicit assumptions of continuous and deterministic
change of concentrations may not be valid on molecular level
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Gene expression is discrete process

v Gene expression is result of large number of discrete events:
chemical reactions

0 1 2 3 4 n-1 n0 1 2 3 4 n-1 n
DNA

0 1 2 3 4 n-1 n

RNA polymerase

DNA + RNAP → DNA0 • RNAP

0 1 2 3 4 n-1 n
DNA

DNAi • RNAP → DNAi+1 • RNAP
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Gene expression is stochastic process

v Gene expression is stochastic process: random time
intervals τ between occurrence of reactions

v Time interval τ has probability distribution

P(τ )

τ

0 1 2 3 4 n-1 n0 1 2 3 4 n-1 n
DNA

RNA polymerase
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Differential equations are abstractions

v Differential equation models make continuous and
deterministic abstraction of discrete and stochastic process

l xi(t) ∈ R≥0 is continuous variable

l xi = fi(x) determines change in xi at t

v Abstraction may not be warranted when modeling gene
regulation on molecular level: low number of molecules

v Therefore, more realistic stochastic models of gene regulation

.

.



28

Stochastic variables

v Stochastic variables Xi describe number of molecules of
proteins, mRNAs, etc.

l Xi(t) ∈ N≥0 is discrete variable

l P(Xi(t)) is probability distribution describing probability that at time-
point t cell contains Xi molecules of i

.

P(Xi(t))

Xi(t)



29

Stochastic master equations

v Stochastic master equations describe evolution of state X  =
[X1,…, Xn]´ of regulatory system

l m is the number of reactions that can occur in the system

l αj ∆t is the probability that reaction j will occur in [t, t +∆t] given that
the system is in state X at t

l βj ∆t is the probability that reaction j will bring the system in state X
from another state in [t, t +∆t]

van Kampen, 1997

P(X (t +∆t)) = P(X (t )) (1 - ∑ αj ∆t ) + ∑ βj ∆t
j = 1 j = 1

mm
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Stochastic simulation

v For ∆t → 0 we obtain

v Analytical solution of master equations is not possible

v Stochastic simulation by predicting a sequence of reactions
changing the state of the system, starting from initial state X0

Stochastic simulation uses stochastic variables τ and ρ
τ = time interval until occurrence of next reaction

ρ = type of reaction

Gillespie, 1977

P(X (t )) = ∑ (βj - αj P(X (t )))
j = 1

m∂
∂t
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Reactions in gene expression

v Five possible reactions in gene expression are considered

0 1 2 3 4 n-1 n

RNA polymerase

0 1 2 3 4 n-1 n
DNA + RNAP → DNA0 • RNAP

DNAi • RNAP → DNAi+1 • RNAP
0 1 2 3 4 n-1 n 0 1 2 3 4 n-1 n

DNAn • RNAP → DNA + RNAP
0 1 2 3 4 n-1 n 0 1 2 3 4 n-1 n

DNA + R  → DNA • R
0 1 2 3 4 n-1 n 0 1 2 3 4 n-1 n

repressor

DNA • R  → DNA + R
0 1 2 3 4 n-1 n 0 1 2 3 4 n-1 n

1

3

2

5

4
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Simulation of gene expression

v Stochastic simulation from initial state

0 1 2 3 4 n-1 n 0 1 2 3 4 n-1 n
DNA + RNAP → DNA0 • RNAP

DNAi • RNAP → DNAi+1 • RNAP
0 1 2 3 4 n-1 n 0 1 2 3 4 n-1 n

DNAi • RNAP → DNAi+1 • RNAP
0 1 2 3 4 n-1 n 0 1 2 3 4 n-1 n

reaction 1 chosen

reaction 2 chosen

reaction 2 chosen
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Stochastic outcome of simulation

v Simulation starting from same initial state will generally lead to
different results

0 1 2 3 4 n-1 n 0 1 2 3 4 n-1 n
DNA + R → DNA • R

DNA • R → DNA + R
0 1 2 3 4 n-1 n 0 1 2 3 4 n-1 n

DNA + RNAP → DNA0 • RNAP
0 1 2 3 4 n-1 n 0 1 2 3 4 n-1 n

reaction 4 chosen

reaction 5 chosen

reaction 1 chosen
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Stochastic simulation and master equation

v Repeating stochastic simulations allows approximation of
P(X (t )) in master equation to be given

X1

t

P(X1(t1))

X1(t1)

t1
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Application of stochastic equations

v Stochastic equations have been used to model genetic and
other regulatory systems:

l λ phage infection of E. coli (Arkin et al., 1998)

l chemotactic signalling in E. coli (Morton-Firth and Bray, 1998)

l ...
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Stochastic analysis of phage ? infection

v Stochastic model of ?
lysis-lysogeny
decision network
Arkin et al., 1998
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Stochastic analysis of phage ? infection

v Time evolution of Cro and CI
dimer concentrations

v Due to stochastic fluctuations,
under identical conditions cells
follow one or other pathway with
some probability

Arkin et al., 1998
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Comparison with deterministic approach

v Deterministic models can be
seen as predicting average
behavior of cell population
Gillespie, 2000

v However, analysis of average
behavior may obscure that
one part of population
chooses one pathway rather
than another

Arkin et al., 1998
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Evaluation of stochastic equations

v Pro: more realistic models of gene regulation

v Contra: required information on regulatory mechanisms on
molecular level usually not available

reaction schemas and values of parameters τ and ρ are not or
incompletely known

v Contra: stochastic simulation is computationally expensive

large networks cannot currently be handled
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Conclusions

v Computer tools for modeling and simulation will be necessary
to understand genetic regulatory processes

v Variety of approaches available, representing genetic
regulatory systems on different levels of abstraction

v Choice of approach depends on aim of analysis and on
available information:

l knowledge on reaction mechanisms

l quantitative data on model parameters and gene expression levels

v Serious applications are beginning to emerge
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