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Summary. We propose in this paper a method to hierarchically organize a certain
type of piecewise affine differential system. This specific class of dynamical systems
has been extensively studied for the past few years, as it provides a good framework
to model gene regulatory networks. Using the hierarchical organization of a piece-
wise affine system, we present a technique to qualitatively analyze the asymptotic
behavior of the whole system thanks to the analysis of several smaller subsystems.
Specifically adapted to these networks, an algorithm of threshold elimination is pre-
sented, that refines in certain cases the hierarchical decomposition and therefore
improves the analysis.

1 Introduction

This article deals with hierarchical organization and hierarchical analysis of
a class of piecewise affine systems of differential equations. This particular
class of systems was first introduced by L. Glass in the 70’s [10] as a model
of genetic regulatory networks. Various aspects of these systems have been
extensively studied since then, see e.g. [2, 6, 11], as they provide algorithmic
methods to analyze qualitative dynamics of interaction networks. A computer
tool, the Genetic Network Analyzer (GNA), has besides been elaborated to
compute qualitative simulations of piecewise affine systems of relatively high
dimensions [5].

Theoretically, a qualitative study of the dynamical behavior of a piece-
wise affine system consists in computing a transition graph, which can be
seen as an abstraction of the phase portrait1. Such a study allows one to de-
duce asymptotic qualitative properties of the dynamics, such as the existence
and the characterization of attractors. However, as the dimension of the sys-
tem grows, finding these properties becomes harder. One way to improve this
analysis is to take advantage of the structure of piecewise affine systems. The

1 a directed edge exists between two regions if and only if there exists a solution of
the system passing in finite time from the first to the second region.
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structure can be represented by an interaction graph, representing the mutual
influences among the variables.

We propose here a method to decompose the interaction graph of a piece-
wise affine system in a hierarchical form [16]. This decomposition, based on
the strongly connected components of the graph, has already been performed
for general classes of dynamical systems [17]. The existing theorems are nev-
ertheless quite general, and not really well-adapted to the piecewise affine
framework. The paper is organized in three parts. We begin with some brief
recalls about the piecewise affine framework. The second section deals with
the hierarchical organization of the interaction graph, and with the asymp-
totic qualitative analysis of the dynamical behaviors of a piecewise affine sys-
tem, based on the hierarchical decomposition. We briefly evoke in the last
part an efficient pre-processing algorithm that may help this analysis by re-
fining the decomposition. This algorithm has been successfully applied to a
9-dimensional system modeling the carbon starvation response network of E.
coli bacterium, developped in [15].

2 The framework of piecewise affine systems

2.1 Structure of a piecewise affine system

We start with some headlines about the piecewise affine framework used to
model gene regulatory networks. It will consist of some basic definitions and
properties that we use in the rest of the paper; for a more exhaustive formula-
tion of those systems, the reader is referred to [5, 6, 11] and references therein.
In the following, a “piecewise affine (PWA) system” designates a dynamical
system of the form:

ẋ(t) = K (x(t))− Γ (x(t))x(t) (1)

where the state variable x(t) is an n-dimensional vector of concentrations of
different proteins produced by n interacting genes.The production term K(x)
is a vector lying in R

n
+ and the decay term Γ (x) is an n-dimensional diagonal

matrix Γ (x) = diag(Γ1(x), . . . , Γn(x)), with Γi(x) > 0. System (1) can be
written as n ordinary differential equations:

ẋi = Ki(x)− Γi(x)xi , xi ≥ 0 (2)

For i ∈ {1, . . . , n}, the state variable xi lies in a nonnegative interval [0,maxi].
Therefore, the state vector x(t) evolves within a hyperrectangular set Ω =
∏n

i=1[0,maxi]. To each xi, we associate pi ordered positive constants: 0 <
θ1i < θ2i < · · · < θpi

i < maxi, called thresholds. By convention, for each

i ∈ {1, . . . , n}, we set θ0
i = 0 and θpi+1

i = maxi.
The production and degradation terms Ki(x) and Γi(x) share the same

mathematical form. For x ∈ Ω and i ∈ {1, . . . , n}:
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Ki(x) =
∑

l∈Li

κlibil(x) , Γi(x) =
∑

l∈L′
i

γlib
′

il(x) (3)

where Li and L
′

i are (possibly empty) finite sets of indices, κli and γ
l
i are posi-

tive constants and the functions bil and b
′

il are boolean valued. The functions
bil and b

′

il are often called regulation functions (see [6]) and are mathemati-

cally expressed by boolean expressions over the boolean variables s+(xi, θ
j
i ),

where i ∈ {1, . . . , n}, j ∈ {1, . . . , pi} and s+ is the so-called Heaviside (or
step) function: s+(x, θ) = 0 if x < θ and 1 if x > θ (we will denote s− the
function 1− s+).

The important consequence of these definitions is that a dynamical system
defined by differential equations (2) and (3) is well-posed over the hyperrect-
angle Ω of R

n
+, except on a subset of Lebesgue measure zero. Indeed, let us

denote Hi,j the hyperplane of R
n of equation xi = θji , for i ∈ {1, . . . , n} and

j ∈ {0, . . . , pi + 1} and let H be the subset: H =
⋃n
i=1

(

⋃pi+1
j=0 Hi,j

)

.

The vector field F (x) = K(x)−Γ (x)x is defined over Ω\H (on each open
hyperrectangle delimited by H, it is an affine vector field, with uncoupled
equations) but it is discontinuous on the hypersurface H. This discontinuity
of the vector field prevents us from defining global solutions in the classical
sense, and forces us to consider, on the threshold hyperplanes, a special type
of solutions known as Filippov solutions (see [6, 8]).

With a slight abuse of language, we will call in the following a hyperrectan-
gular domain of Ω an n-dimensional hyperrectangle included in Ω, the faces
of which are parallel to the axes and delimited in each direction i by two
hyperplanes Hi,j1 and Hi,j2 , where j1 < j2. Such a domain ∆ is unequivocally
characterized by a finite set of discrete equations of the form:

{

s+(xi, θ
0
i ) = · · · = s+(xi, θ

j1
i ) = 1

s+(xi, θ
j2
i ) = · · · = s+(xi, θ

pi

i ) = 0

in each direction i ∈ {1, . . . , n}. Particularly, and according to the literature
on PWA systems, elementary domains defined by: D =

∏n
i=1]θ

ji

i , θ
ji+1
i [, for

ji ∈ {0, . . . , pi} will be called regulatory domains or boxes.

Remark 1. To be complete and in accordance with the different articles about
PWA systems, the regulatory domain D defined above is a product of open
intervals: ]θji

i , θ
ji+1
i [ except if ji = 0 (or ji = pi). In those cases, we will replace

the open interval with the semi-open interval: [0, θ1
i [ (respectively: ]θ

pi

i ,maxi]).

This definition of PWA system is quite heavy and an usual way to schemat-
ically represent such a system is to draw its interaction graph.

Definition 1 (Interaction graph). Consider an n-dimensional PWA sys-
tem Σ (n ∈ N

∗) The interaction graph of Σ is the finite directed graph
GΣ = (V, E) where V = {v1, . . . , vn} (a vertex vi ∈ V represents a gene),
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and the set of edges E ⊂ V ×V is defined as follows: for all couples of vertices
(vi, vj) ∈ V

2, there exists a directed edge from vj to vi (noted (vj , vi) ∈ E) if
and only if Fi(x) explicitly depends on s

+(xj , θ
k
j ) for some k.

Whenever (vi, vj) ∈ E , we say that xj influences xi (or more rapidly that gene
j influences gene i). The interaction graph essentially captures the interactions
between genes and therefore captures the structure of the system.

Remark 2. For a lot of examples in the literature, edges of the interaction
graph are often labeled with a sign + or −, indicating whether the interaction
is positive (activation or induction) or negative (repression or inhibition). Such
a labeling is only possible for particular PWA systems. Indeed, for a general
system, a gene j may have both positive and negative actions on a gene i.

Example 1. Consider the three dimensional piecewise affine system given by:














ẋ1 = κ0
1s

+(x2, θ
1
2)s

+(x3, θ
1
3)− γ

0
1x1 , p1 = 2

ẋ2 = κ0
2 + κ1

2s
−(x1, θ

1
1) + κ2

2s
+(x2, θ

1
2)−

(

γ0
2 + γ1

2s
−(x1, θ

2
1)
)

x2 , p2 = 1

ẋ3 = κ0
3 + κ1

3s
+(x1, θ

1
1) + κ2

3s
−(x3, θ

1
3)−

(

γ0
3 + γ1

3s
−(x1, θ

2
1)
)

x3 , p3 = 1

The phase space of this system is the three dimensional hyperrectangle:
Ω = [0,max1] × [0,max2] × [0,max3]. The three dimensional phase space
is composed of 3× 2× 2 = 12 boxes. The interaction graph of Σ is:

v3

+

−

v1

+

v2

+
+

According to remark 2, this graph has been signed with respect to the signs
of the interactions. The edge (v1, v2) however could not be signed because x1

has both positive and negative actions on x2.

2.2 Dynamics of a piecewise affine system

In order to define properly the dynamics of system (1), we will have to parti-
tion Ω in different domains of the form: D = D1 × · · · ×Dn where, for each
i ∈ {1, . . . , n}, Di is either a singleton {θji } for some j ∈ {1, . . . , pi− 1}, or an

interval ]θji , θ
j+1
i [ (respectively [0, θ1

i [ or ]θ
pi

i ,maxi]).
If, for all i ∈ {1, . . . , n}, Di is not a singleton, then the domain D is a

regulatory domain, as we defined it in the previous section (it is also called
regular). Otherwise, (i.e. if for at least one i the set Di is reduced to a single-
ton), the domain D is called a singular or switching domain (see [6]). We will
respectively denote Dr and Ds the sets of regular and singular domains.

Over a regular domain D ∈ Dr, the production and decay terms Ki(x)
and Γi(x) are constants: Ki(x) = κDi ≥ 0, and Γi(x) = γDi > 0. System (1) is
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therefore a simple affine system in D, with n uncoupled equations. It follows
that x(t) monotonically2 converges towards the point:

φ(D) =
(

φD1 , . . . , φ
D
n

)

=

(

κD1
γD1

, . . . ,
κDn
γDn

)

(4)

which is an asymptotically stable equilibrium for the flow. This point is often
called focal point of the domain D. In the literature about PWA systems, it
is generally assumed that for any regular domain D, the focal point φ(D)
belongs to Ω\H, i.e. φ(D) does not lie on a threshold hyperplane. Therefore
φ(D) lies in a regular domain D′ ∈ Dr. We have then to consider two cases,
whether D′ = D or not. If D′ = D then the solution x(t) belongs to D for all
t ∈ R+. So φ(D) is indeed an asymptotically stable equilibrium. In the other
case, the trajectory escapes the domain D, i.e. there exists a finite time t∗ > 0
such that x(t∗) belongs to a singular domain that bounds D. Sometimes it
happens that the solution can be continued in the subsequent box without
difficulties (see [2] and references therein). Otherwise, we have to consider
singular dynamics over the singular domain.

Over a singular domainD ∈ Ds, we already mentioned that the vector field
is undefined. We thus cannot solve the differential equation in the classical
sense. We can nevertheless use a weaker notion of solution which is known as
Filippov solution (see [8]). We simply give here a brief summary of essential
points, interested readers will find more details in PWA literature (see e.g. [2]).

Let D ∈ Ds be a singular domain. The Filippov method consists in ex-
tending the system (1) to a differential inclusion:

ẋ ∈ H(x) = co
({

κD
′

− γD
′

x | D′ ∈ R(D)
})

, x(0) = x0 ∈ D (5)

where R(D) = {D′ ∈ Dr | D ⊆ ∂D′} is the set of all regulatory domains
which have D in their boundary and co(X) is the closed convex hull of X.
In the case where H(x0) ∩ supp(D) = ∅, then the solution does not stay in
D and instantaneously escapes towards a regulatory domain. In the other
case, we define a solution in the sense of Filippov as an absolutely continuous
function ξ(t) defined on [0, T ] such that ξ(0) = x0 and ξ̇(t) ∈ H(ξ(t)) for
almost all t ∈ [0, T ]. Such a solution exists for all initial conditions x0 but
is not guaranteed to be unique though, because of the generalization of the
differential equation to a differential inclusion.

Several authors have studied the dynamics of PWA systems using Filippov
method (see notably [1, 2, 6, 11]). Following [1, 6], we will here use a slightly
different definition of the differential inclusion (5):

ẋ ∈ H(x) = rect
({

κD
′

− γD
′

x | D′ ∈ R(D)
})

(6)

2 By this we mean that for each i, xi(t) is a monotone function of t.
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where rect(X) designates the smallest closed hyperrectangle, the faces of
which are parallel to the axes, containing the set X. This definition is clearly
an over-approximation of (5) (see figure 1). Following the same authors, we
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D1 D2

f1 = κD1 − γD1x∗
x∗

rect(f1, f2)

co(f1, f2)

f2 = κD2 − γD2x∗

Fig. 1. Representations of H(x) according to (5) and (6)

define, for a switching domain D the notion of target equilibrium set 3, which
is a generalization of the focal points of regular domains:

Definition 2. Let D ∈ Ds be a switching domain. The target equilibrium set
of D, noted Ψ(D) is defined by: Ψ(D) = supp(D)∩rect ({φ(D′) | D′ ∈ R(D)})

The main interest of such sets lies in the following result (see [6]):

Lemma 1. Given a singular domain D ∈ Ds and an initial condition x0 ∈ D,
any solution ξ(t) of the differential inclusion (6) satisfies the property that
for all i ∈ {1, . . . , n}, ξi(t) monotonically converges towards the orthogonal
projection of Ψ(D) on [0,maxi]: πi (Ψ(D)) = {ψi ∈ [0,maxi] | ψ ∈ Ψ(D)}

3 Hierarchical organization of piecewise affine systems

3.1 The strongly connected components decomposition

The notion of hierarchical organization of a PWA system relies on the well
known strongly connected components (SCC) decomposition of the interaction
graph. This work has already been done for more general dynamical systems
(see e.g. [17]) according to a special definition of the interaction graph. For
PWA systems, we will use the definition 1. According to this definition, the
interaction graph of an n-dimensional PWA system Σ is a digraph GΣ = (V, E)
with card(V) = n.

3 To be in accordance with PWA literature, we should have defined first focal sets
as done for instance in [2]. We do not enter the details here, since definition 2
and lemma 1 will be sufficient for what follows.
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We recall here some basics about digraphs (see e.g. [3] for more details)
Let G = (V,E) be a digraph. Two vertices u, v ∈ V are mutually reachable
(denoted u ∼ v) if and only if there exist two (directed) paths ρ and ρ′ such
that ρ joins u to v and ρ′ joins v to u. This relation is clearly an equiva-
lence relation on the set V of vertices. The strongly connected components of
the digraph G are then defined as the elements of V/ ∼, that is to say the
equivalence classes of the relation ∼. In other words, a strongly connected
component of a digraph G is a maximal set of vertices C ⊆ V such that for
every pair u, v ∈ C, u and v are reachable from each other.

The SCC decomposition of a digraph G consists in computing the strongly
connected components of G: C1, . . . , Ck and then to compute the digraph
Gscc = (V scc, Escc) defined as follows:

• V scc = {C1, . . . Ck},
• given i, j ∈ {1, . . . , k} the edge (Ci, Cj) belongs to E

scc if and only if there
are u ∈ Ci and v ∈ Cj such that (u, v) ∈ E.

It can be easily proved (see [3]) that the digraph Gscc contains no (oriented)
cycles. It is called a dag (for directed acyclic graph). This is a key property
of Gscc, because every dag can be topologically sorted (see [3], section 22.4).
A topological sort of a dag can be viewed as a classification of its vertices in
several hierarchical levels H0, H1, . . . such that the vertices of the first level
H0 are vertices with no predecessors, and the predecessors of vertices of level
Hi, i > 0 are contained in inferior levels Hj with j < i (see figure 2).

v4 v6 v2

v7 v1 v5

v3 v8

v1 v7

v2 v3 v4

v5 v6

v8

H0

H1

H2

H3

Fig. 2. A dag (on the left) and its topological sort (on the right), with 4 levels.

The interest of SCC decomposition of the interaction graph of a PWA sys-
tem is quite obvious. Indeed, when performing this decomposition, we isolate
several subsystems involving groups of variables that “work” together. These
subsystems are ordered in several hierarchical levels which can allow the de-
composition of the analysis of the whole system. Let us illustrate this by a
simple 4-dimensional example.

Example 2. Consider the PWA system (Σ):
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ẋ1 = κ0
1 + κ1

1f1(x) + κ2
1s

+(x1, θ
1
1)s−(x2, θ

2
2)s+(x3, θ

1
3)f1(x) − γ1x1

ẋ2 = κ0
2 + κ1

2f2(x) + κ2
2s

+(x1, θ
1
1)s+(x2, θ

1
2)f2(x) − γ2x2

ẋ3 = κ0
3 + κ1

3s
−(x4, θ

1
4) − γ3x3

ẋ4 = κ0
4 + κ1

4s
−(x3, θ

1
3) − γ4x4

(7)

with f1(x) =
(

1− s−(x1, θ
2
1)s

+(x2, θ
1
2)
)

and f2(x) =
(

1− s−(x1, θ
2
1)s

−(x2, θ
1
2)
)

.
Its interaction graph and its SCC graph are represented by:

v1

+

+ v2

−
+

v3

+
−

v4

−

v3, v4
+
v1, v2

We have therefore decomposed system (7) into two isolated bidimensional
subsystems with simple interaction graphs:

(Σ1) v3

−

v4

−

(Σ2) v1

+

+ v2

−
+

The first one (Σ1) is the well known “biological switch” often used in the
literature to illustrate the concept of bistability (see [7] for theoretical aspects
and [9] for experimental investigations). The second system is a negative loop
with positive self-regulation of the two variables.
Under the following assumptions, giving the relative positions of focal points
with respect to the thresholds:















0 < κ0
1/γ1 < θ11 < (κ0

1 + κ1
1)/γ1 < θ21 < (κ0

1 + κ1
1 + κ2

1)/γ1 < max1

0 < κ0
2/γ2 < θ12 < (κ0

2 + κ1
2)/γ2 < θ22 < (κ0

2 + κ1
2 + κ2

2)/γ2 < max2

0 < κ0
3/γ3 < θ13 < (κ0

3 + κ1
3)/γ3 < max3

0 < κ0
4/γ4 < θ14 < (κ0

4 + κ1
4)/γ4 < max4

(8)

a qualitative analysis can be made of these simple bidimensional PWA sys-
tems. Figure 3 presents the two phase portraits. System (Σ1) shows two
asymptotically stable steady states whereas (Σ2) shows an attractive cycle.

The method of qualitative simulation of PWA systems used in this example
to compute the phase portraits of (Σ1) and (Σ2) is the one exposed in [2,
6]. For such simple systems, this analysis can be carried out directly. We
nevertheless recall the existence of the GNA software [5] that implements
this technique and allows to qualitatively analyze higher dimensional PWA
systems. The SCC decomposition has besides been implemented as a GNA
module [4].
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x3

x4

x1

x2

κ0

3

γ3

κ0

3
+ κ1

3

γ3

κ0

4
+ κ1

4

γ4

κ0

4

γ4

θ1

1
θ2

1

θ1

2

θ2

2

Fig. 3. Phase portraits of subsystems (Σ1) and (Σ2).

It must be noted that subsystems (Σ1) and (Σ2) are isolated, that is, un-
related among themselves. To rebuild the whole system (Σ), one has to take
into consideration the unique edge of the SCC graph which corresponds to
the term s+(x3, θ

1
3) of the first equation of system (7). The question that is

addressed in the next section is whether it is possible to deduce the qualita-
tive behavior of the system (7) (or at least a part of its behavior) from the
qualitative analysis of the isolated subsystems (Σ1) and (Σ2). This issue can
be of particular importance if the initial system dimension is high because in
that case a direct qualitative analysis of the whole system can lead to a huge
transition graph.

3.2 Asymptotic analysis of hierarchical PWA systems

As we already said, the use of the SCC decomposition to analyze the behavior
of a dynamical system is not new. In [17] for instance, Vidyasagar proposes
to use such a decomposition for a more general class of dynamical systems, in
order to express it in a triangular form:

ẋi(t) = fi (t, x1(t), . . . , xi(t)) , i = 1, . . . ,m

Then, assuming that 0 is an equilibrium point for all isolated subsystems,
he proves some powerful theorems (based on the general theory of dynamical
systems) linking the stability of these equilibria and the stability of 0 as an
equilibrium of the initial system. The underlying idea is actually quite simple:
it consists in “injecting” the value of the equilibrium of the first subsystem
into the second, then the value of the first and the second subsystems into the
third, and so on until we obtain the whole system equilibrium.

Because of the discontinuities of the PWA vector fields, such general the-
orems are not directly applicable. We however propose in the following a
technique specifically adapted to PWA framework that allows one to use the
hierarchical organization of a PWA system for the analysis of its asymptotic
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dynamics. To present this method, we will use the system (Σ) presented in
example 2 as an illustrating example.

Let us therefore consider the PWA system (7) and let us assume the in-
equalities (8) on the parameters, placing the different focal points with respect
to the thresholds. The letter x designates the vector (x1, x2, x3, x4) lying in

Ω =
∏4

i=1[0,maxi]). In the following, a hyperrectangular domain denotes an
n-dimensional hyperrectangle, the faces of which are contained in threshold
hyperplanes. We recall that such a domain is unequivocally denoted by a finite
set of discrete equations. These domains will take an essential part because
according to the definition of a PWA system (see equation (3)), the interac-
tions between variables take place only by means of qualitative values, i.e. by
means of terms of the form s+(xi, θ

j
i ). Therefore, instead of “injecting” the

exact value of an equilibrium into a subsequent system, we will only have to
inject its qualitative value, that is, a set of discrete equations involving the
discrete variables s+(xi, θ

j
i ).

Let us first focus on the subsystem (Σ1). As we said before, this system
shows two attractors (see figure 3), which are the two regular steady states:

A =
(

(κ0
3 + κ1

3)/γ3, κ
0
4/γ4

)

and A′ =
(

κ0
3/γ3, (κ

0
4 + κ1

4)/γ4

)

Remark 3. There is actually a third equilibrium point which is the singular
steady state (x3, x4) =

(

θ13, θ
1
4

)

. This steady state will be neglicted here as it
can be easily shown to be unstable (see [2] for a precise definition of stability
and unstability of singular steady states).

Let ∆ and ∆′ be the smallest hyperrectangular domains containing respec-
tively the two steady states:∆ =]θ1

3,max3]×[0, θ
1
4[ and∆

′ = [0, θ1
3[×]θ

1
4,max4].

These sets are given by their discrete equations:

∆ :

{

s+(x3, θ
1
3) = 1

s+(x4, θ
1
4) = 0

and ∆′ :

{

s+(x3, θ
1
3) = 0

s+(x4, θ
1
4) = 1

System (Σ1) has therefore two types of trajectories: the first ones converging
towards the attractor A and the second ones towards A′ (we neglect here the
trajectories leading to (θ1

3, θ
1
4), see remark 3). According to which attractor

we are heading to, we respectively inject the discrete equations of ∆ or ∆′

into the system (Σ2). We consequently have to consider two cases:

• If (x3, x4) converges towards A, then s
+(x3, θ

1
3) = 1 and the bidimensional

system involving the variables x1 and x2 can be replaced by:

(Σ2)

{

ẋ1 = κ0
1 + κ1

1f1(x) + κ2
1s

+(x1, θ
1
1)s

−(x2, θ
2
2)f1(x)− γ1x1

ẋ2 = κ0
2 + κ1

2f2(x) + κ2
2s

+(x1, θ
1
1)s

+(x2, θ
1
2)f2(x)− γ2x2

• If, on the contrary, (x3, x4) converges towards A
′, then s+(x3, θ

1
3) = 0 and

thus we replace (Σ2) by:
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(Σ′

2)

{

ẋ1 = κ0
1 + κ1

1f1(x)− γ1x1

ẋ2 = κ0
2 + κ1

2f2(x) + κ2
2s

+(x1, θ
1
1)s

+(x2, θ
1
2)f2(x)− γ2x2

We have removed the dependency in x3 and therefore have reduced the analy-
sis of the 4-dimensional system (7) to the analysis of two uncoupled bidimen-
sional systems.

Before carrying on and completing the analysis of this special system, we
have to justify that such a simplification is correct. The proof that follows
concerns the current example, however it is pretty straightforward and can
easily be generalized to any similar situation.

It relies on two main facts. First, ∆ and ∆′ are positively invariants4 for
the flow of subsystem (Σ1) (this comes directly from the fact that A and A′ are
regular steady states of (Σ1)). The second fact is that these sets are reached in
finite time, given (almost) any initial condition (x0

3, x
0
4) ∈ [0,max3]×[0,max4].

This result is quite obvious and directly comes from the qualitative analysis of
the dynamics of system (Σ1) (see fig. 3). For a better understanding of what
happens, we make here an additional assumption: γ3 = γ4 = γ. With this
assumption, the trajectories in each box can easily be shown to be straight
segments, and it becomes possible to draw the basins of attraction B(A) and
B(A′) of the two attractors (see figure 4). It must be noted that the points

x3

x4

κ0

3

γ

κ0

4

γ

A′

A

κ0

4
+ κ1

4

γ

κ0

3
+ κ1

3

γ

S1

S2

B(A′)

B(A)

Fig. 4. Basins of attraction of the two attractors A and A′.

lying in the boundary between B(A) and B(A′) (which is composed of the
union of the two segments S1 ∪ S2, see figure 4) will be supposed not to
belong to these basins, as they all lead to the unstable steady state (θ1

3, θ
1
4).

We are now able to formalize the previous statement:

Proposition 1. Let x0 ∈ Ω such that (x0
3, x

0
4) /∈ S1 ∪ S2, and let x(t) be

the solution of (7) with x(0) = x0. Then, whatever x0
1 and x0

2, there exists a
finite time t∗ ∈ R+ such that (x3(t

∗), x4(t
∗)) ∈ ∆ (respectively ∆′) and Ξ =

{(x1(t), x2(t)) | t ≥ t∗} is the solution of system (Σ2) (resp. (Σ
′

2)), starting
from the point (x1(t

∗), x2(t
∗)) at time t∗.

4 This is a classical notion in dynamical systems theory, see e.g. [13].
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According to this proposition, and after analyzing the phase portraits of sys-
tems (Σ2) and (Σ′

2), we can complete the asymptotic qualitative analysis of
system (7). We actually find two main attractors, which are a regular steady
state contained in the box:

]

θ11, θ
2
1

[

×
[

0, θ12
[

×
[

0, θ13
[

×
]

θ14,max4

]

and an attrac-

tive cycle contained in the region: [0,max1]× [0,max2]×
]

θ13,max3

]

×
[

0, θ14
[

.

3.3 Generalization for other types of attractors

We have so far restricted ourselves to a very particular kind of attractors
which are regular steady states. It must be noted that this is not a limitation
for the method and other types of attractors can be considered as well (see
for instance figure 5).
Consider, for n ∈ N

∗, an n-dimensional PWA system given by equations (2)
and (3). Suppose that its SCC decomposition leads to the hierarchical graph:

v1, . . . , vp vp+1, . . . , vn

Let y and z denote the subvectors:

{

y = (y1, . . . , yp) = (x1, . . . , xp)
z = (z1, . . . , zn−p) = (xp+1, . . . , xn)

and suppose that the y-subsystem has a unique global attractor A ⊂ Ωy =
∏p

i=1[0,maxi]. In order to apply the previous technique, we will have to define
a hyperrectangle hull of A:

Definition 3. Let p ∈ N
∗ and Ω =

∏p
i=1[0,maxi]. Given a subset Λ of Ω,

we call hyperrectangular hull of Λ (noted ∆(Λ)), the smallest p-dimensional
hyperrectangle, the faces of which are contained in threshold hyperplanes, that
contains Λ. The set ∆(Λ) is unequivocally determined by a finite set of discrete
equations.

Following the technique presented in the previous section, we state the fol-
lowing proposition:

Proposition 2. If we suppose that the y-subsystem has a unique global attrac-
tor A ⊂ Ωy, then the asymptotic behavior of the z-subsystem is the same as
the asymptotic behavior of the z-system in which we have injected the discrete
equations of the hyperrectangle ∆(A).

Although we do not give the proof here, it mainly relies on the two key points
precedently evoked: the set ∆(A) is positively invariant for the subsystem in
y, and given any initial condition x0 ∈ Ω, there exists a finite time t∗ ∈ R+

such that y(t∗) ∈ ∆(A). Obviously, if the system in y shows several attractors,
then a complete analysis leads to consider subsequently the different cases.



Hierarchical analysis of piecewise affine systems

Contrary to the case of regular steady states, where the hyperrectangular
hull is reduced to the box containing the steady state, for other attractors,
the hull can contain many boxes, and can even be equal to the whole phase
space. In those cases, the technique may fail to uncouple the two subsystems.
This is actually to relate to a general issue for all model reduction techniques,
which is the issue of irreducibility of systems.

Another limitation of the presented approach is that its effectiveness is
directly related to the SCC decomposition. Obviously it is not applicable if,
for instance, the interaction graph of the initial system is already strongly
connected. it may also happen for real biological high dimensional systems,
that the SCC decomposition has a main strongly connected component of rel-
atively high dimension, which is not very satisfactory from a model reduction
point of view. For this reason, we propose in the next part a simple algorithm
that may be able to solve this problem, for certain systems, by “cutting”
this main component into smaller ones. This technique has been successfully
applied to the example of the carbon starvation in E. coli bacterium [15].

∆(A)

A

∆(A)

A singular steady state A more complex attractor

Fig. 5. Two types of attractors (2-d) with their hyperrectangular hulls.

4 Threshold elimination, application to a biological

model

We propose in this section a simple and straightforward preprocessing treat-
ment whose goal is to possibly refine the model reduction of the SCC de-
composition. It is based on the simple following observation. Let us consider
a n-dimensional PWA system (Σ). We compute, for each regulatory domain
D ∈ Dr, the focal point φ(D) with formula (4). We denote by Φ the set of all
focal points: Φ = {φ(D) | D ∈ Dr}.

Lemma 2. If, for i ∈ {1, . . . , n}, there exist j1, j2 ∈ {1, . . . , pi} such that for
all φ ∈ Φ, θj1i < φi < θj2i , then, let ∆

(i) = [0,max1]× . . . ]θ
j1
i , θ

j2
i [. . . [0,maxn]:

(i) ∆(i) is positively invariant for (Σ).
(ii)Given any initial condition x0 ∈ Ω, ∃t∗ ∈ R+ , x(t

∗) ∈ ∆(i).
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This can be easily deduced from lemma 1, as, for all domains D (both regular
and singular) the attractive equilibrium set Ψ(D) is contained in the set ∆(i).

This provides us with a simple procedure to eliminate the thresholds
θ1i , . . . , θ

j1
i and θj2i , . . . , θ

pi

i (by replacing s+(xi, θ
0
i ), . . . , s

+(xi, θ
j1
i ) by 1 and

s+(xi, θ
j2
i ), . . . , s+(xi, θ

pi

i ) by 0). By doing this, we possibly cut some edges of
the interaction graph, and therefore possibly refine the SCC decomposition.
The two major advantages of this procedure are that it can be performed
directly on the structure of the PWA system regardless of its dynamics, and
it can also be performed independently in each direction i ∈ {1, . . . , n}.

The method presented in this paper, together with the threshold elimi-
nation algorithm have been succesfully applied (see [16] for details) to a real
biological example: the carbon starvation response network in the bacterium
E. coli. The piecewise affine model of this network can be found in two differ-
ent versions [14, 15]. In both cases, the SCC decomposition has a relatively
big component, which is not satisfactory. After threshold elimination, we man-
aged to refine it with a central three dimensional component (the same for the
two versions), a complete dynamical analysis of which can be found in [12].

5 Conclusion

The method presented in this article provides an algorithmic way to analyze a
PWA dynamical system of relatively high dimension, analyzing several smaller
dynamical systems. From a mathematical point of view, this is to be related
with the general concept of model reduction. The concept of model reduction
of a dynamical system is not a well-posed mathematical problem. Indeed,
according to the expression of the differential equations of the system, there
are many ways to reduce a system. The goal, however, is always the same:
it consists in simplifying the system in order to make its dynamical study
easier. In the present paper, the term “reduction” must be understood in a
very specific way. It corresponds to the reduction of the number of vertices and
edges of the interaction graph. As we saw in the 4-dimensional example in the
second part, cutting a particular edge can lead to uncouple two subsystems
of the whole system, and therefore drastically simplify the analysis. We must
be aware though that this situation is specific and for higher dimensional
systems such simplifications will certainly rarely happen. It is mainly for this
reason that we proposed the threshold elimination algorithm in the last part.
Indeed, it can be easily implemented and allows, as a preprocessing treatment,
a rapid simplification of a system. The application on the real example of
carbon starvation response seems quite encouraging. So as to show its practical
relevance, the method presented here has to be tested on other examples of
real biological models.
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