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Abstract

The experimental study of genetic regulatory networks has made tremendous
progress in recent years resulting in a huge amount of data onthe molecular in-
teractions in model organisms. It is therefore not possibleanymore to intuitively
understand how the genes and interactions together influence the behavior of the
system. In order to answer such questions, a rigorous modeling and analysis ap-
proach is necessary. In this chapter, we present a family of such models and anal-
ysis methods enabling us to better understand the dynamics of genetic regulatory
networks. We apply such methods to the network that underlies the nutritional
stress response of the bacteriumE. coli.

The functioning and development of living organisms is controlled by large and
complex networks of genes, proteins, small molecules, and their interactions, so-called
genetic regulatory networks. The study of these networks has recently taken a qualita-
tive leap through the use of modern genomic techniques that allow for the simultaneous
measurement of the expression levels of all genes of an organism. This has resulted in
an ever growing description of the interactions in the studied genetic regulatory net-
works. However, it is necessary to go beyond the simple description of the interactions
in order to understand the behavior of these networks and their relation with the actual
functioning of the organism. Since the networks under studyare usually very large, an
intuitive approach for their understanding is out of question. In order to support this
work, mathematical and computer tools are necessary: the unambiguous description
of the phenomena that mathematical models provide allows for a detailed analysis of
the behaviors at play, though they might not exactly represent the exact behavior of the
networks.

In this chapter, we will be mostly interested in the modelingof the genetic reg-
ulatory networks by means ofdifferential equations. This classical approach allows
precise numerical predictions of deterministic dynamic properties of genetic regulatory
networks to be made. However, for most networks of biological interest the applica-
tion of differential equations is far from straightforward. First, the biochemical reaction
mechanisms underlying the interactions are usually not or incompletely known, which
complicates the formulation of the models. Second, quantitative data on kinetic pa-
rameters and molecular concentrations is generally absent, even for extensively-studied
systems, which makes standard numerical methods difficult to apply. In practice, the
modeler disposes of much weaker information on the network components and their
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interactions. Instead of details on the mechanisms throughwhich a protein regulates a
gene, we typically only know whether the protein is an activator or an inhibitor. And
even if it had been shown, for example, that the protein bindsto one or several sites up-
stream of the coding region of the gene, numerical values of dissociation constants and
other parameters are rarely available. At best, it is possible to infer that the regulatory
protein strongly or weakly binds to the DNA, with a greater affinity for one site than
for another.

Due to those uncertainties, we cannot hope to build a model that is guaranteed to
reproduce the exact behavior of the considered genetic regulatory network. No model
will be quantitativelyaccurate. It is therefore necessary to concentrate on the construc-
tion of models that reproduce thequalitative dynamical propertiesof the network, that
is, dynamical properties that are invariant for a range of parameter values and reac-
tion mechanisms. The qualitative properties express the intimate connection between
the behavior of the system and the structure of the network ofmolecular interactions,
independently from the quantitative details of the latter.

Consequently, qualitative approaches have been developedfor the modeling, anal-
ysis, and simulation of genetic regulatory networks and other networks of biological
interactions: Boolean networks [20, 30], Petri nets [22, 27], process algebras [28],
qualitative differential equations [17], hybrid automata[11],... In this chapter, we con-
centrate on one particular class of qualitative models of genetic regulatory networks,
originally proposed by Glass and Kauffman [12]:piecewise-linear (PL) differential
equations. In Section 1, we describe this family of models and give a small example.
In Section 2, we show qualitative results that have been obtained for the analysis of
such systems. We then illustrate these models on the nutritional stress response ofE.
coli in Section 3, before discussing remaining challenges for the analysis and control
of such models in Section 4.

1 Models of genetic regulatory networks

Among the many emerging families of models (see [5]), a classof piecewise-linear
(PL) models, originally proposed by Glass and Kauffman [12], has been widely used
in modeling genetic regulatory networks. The variables in the piecewise-linear differ-
ential equation (PLDE) models are the concentrations of proteins encoded by the genes,
while the differential equations describe the regulatory interactions in the network by
means of step functions. The use of step functions is motivated by the switch-like
behavior of many of the interactions in genetic regulatory networks [26], but it leads
to some mathematical difficulties. The vector field for the PLDE model is undefined
when one of the variables assumes a value where the step function is discontinuous,
referred to as a threshold value. Recent work by Gouzé and Sari [13] uses an approach
due to Filippov to define the solutions on the threshold hyperplanes. The approach
involves extending the PLDE to a piecewise-linear differential inclusion (PLDI). As is
well known, such discontinuities can lead to sliding modes.The definitions and results
of this section are mainly from [3].

The family of PL-models is best illustrated with an example:the schematic diagram
in Figure 1 describes a simple genetic regulatory network. In this example, the genes
a andb code for the proteins A and B, which in turn control the expression of the two
genesa andb. Protein A inhibits genea and activates geneb above certain threshold
concentrations, which are assumed to be different. Similarly protein B inhibits geneb
and activates genea above different threshold concentrations. This two-gene regulatory
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network is simple but represents many features of regulation found in real networks:
auto-regulation, cross-regulation and inhibition/activation. Such a two-gene network
could be found as a module of a more complex genetic regulatory network from a real
biological system.

Figure 1: Example of a genetic regulatory network of two genes (a andb), each coding
for a regulatory protein (A and B).

The equations modeling the example network in Figure 1 can bewritten down as
{

ẋa = κas+(xb, θ
1
b )s

−(xa, θ2
a) − γaxa

ẋb = κbs
+(xa, θ1

a)s−(xb, θ
2
b ) − γbxb

(1)

wheres+(xs, θs) is equal to0 when xs < θs and equal to1 when xs > θs and
s−(xs, θs) = 1 − s+(xs, θs). In this model, genea is expressed at a rateκa if the
concentrationxb of proteinb is above the thresholdθ1

b and the concentrationxa of
protein A is below the thresholdθ2

a. Similarly, geneb is expressed at a rateκb if the
concentrationxa of protein A is above the thresholdθ1

a and the concentrationxb of
the protein B is below the thresholdθ2

b . Degradation of both proteins is assumed to be
proportional to their own concentrations, so that the expression of the genesa andb is
modulated by the degradation ratesγaxa andγbxb respectively.

Such a model is readily generalized to models containing both expression and
degradation terms for each gene:

ẋi = fi(x) − γixi

wherefi(x) represents the expression rate of genei, depending on the whole state
x = (x1, · · · , xn)T andγixi is the degradation rate. However, the expression rates
of (1) have the added property of being constant for values ofxa andxb belonging to
intervals that do not contain thresholds valuesθ

j
i . This can be rewritten by detailing

fi(x) as follows:

fi(x) =

Li
∑

l=1

κilbil(x)

wherebil(x) is a combination of step-functionss±(xr, θ
j
r) andκil > 0 is a rate param-

eter. The generalized form of (1) is a piecewise linear model

ẋ = f(x) − γx (2)

where the model is linear within hyper-rectangles of the state-space.
The dynamics of the piecewise-linear system (2) can be studied in then-dimensional

state-spaceΩ = Ω1 × Ω2 × · · · × Ωn, where eachΩi is defined byΩi = {x ∈ IR+ |

0 ≤ xi ≤ maxi} for some positive parametermaxi > maxx∈Ω

(

fi(x)
γi

)

. A protein
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encoded by a gene will be involved in different interactionsat different concentra-
tion thresholds, so for each variablexi, we assume there arepi ordered thresholds
θ1

i , · · · , θpi

i (we also defineθ0
i = 0 andθ

pi+1
i = maxi). The (n − 1)-dimensional

hyperplanes defined by these thresholds partitionΩ into hyper-rectangular regions we
call domains. Specifically, a domainD ⊂ Ω is defined to be a setD = D1 × · · ·×Dn,
whereDi is one of the following:

Di = {xi ∈ Ωi|0 ≤ xi < θ1
i }

Di = {xi ∈ Ωi|θ
j
i < xi < θ

j+1
i } for j ∈ {1, · · · , pi − 1}

Di = {xi ∈ Ωi|θ
pi

i < xi ≤ maxi}

Di = {xi ∈ Ωi|xi = θ
j
i } for j ∈ {1, · · · , pi}

A domainD ∈ D is called a regulatory domain if none of the variablesxi has a
threshold value inD. In contrast, a domainD ∈ D is called a switching domain of
orderk ≤ n if exactlyk variables have threshold values inD [25]. The corresponding
variablesxi are called switching variables inD. For convenience, we denote the sets
of regulatory and switching domains byDr andDs respectively. It is also useful to
define the concept of a supporting hyperplane for a domain.

Definition 1 For every domainD ∈ Ds of order k ≥ 1, define supp(D) to be the
(n − k)-dimensional hyperplane containing D. IfD ∈ Dr then we define supp(D) to
be equal toΩ.

1.1 Solutions in regulatory domains

For any regulatory domainD ∈ Dr, the functionf(x) is constant for allx ∈ D, and
it follows that the piecewise-linear system (2) can be written as a linear vector field

ẋ = fD − γx (3)

wherefD is constant inD. Restricted toD, this is a classical linear ordinary differ-
ential equation. From (3), it is clear that all solutions inD monotonically converge
towards the corresponding equilibriumφ(D), which is defined byγφ(D) = fD. If
φ(D) belongs to the closure ofD, all solutions initiated inD converge towardsφ(D);
otherwise, all solutions reach the boundary ofD in finite time (which means that they
exit D).

Definition 2 Given a regulatory domainD ∈ Dr, the pointφ(D) = γ−1fD ∈ Ω is
called the focal point for the flow inD.

In Figure 2, example (1) is used to illustrate this concept: the considered regulatory
domainD is {xa ∈ Ωa|θ

1
a < xa < θ2

a} × {xb ∈ Ωb|θ
1
b < xb < θ2

b}, so that system
(1) becomes

{

ẋa = κa − γaxa

ẋb = κb − γbxb

and the corresponding focal point is
(

κa

γa
, κb

γb

)

. In the figure, this focal point is sup-

posed to be outside ofD: every solution starting inD therefore exits this domain in
finite time.
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Figure 2: Illustration of the focal pointφ(D) of a domainD in example (1)

1.2 Solutions in switching domains

In switching domains, the PL system (2) is not defined, since in a switching domain
of orderk ≥ 1, k variables assume a threshold value. If solutions do not simply go
through a switching domain, it is necessary to give a definition of what a solution can
be on that domain. Classically, this is done by using a construction originally proposed
by Filippov [10] and recently applied to PL systems of this form [13, 7].

The method consists of extending the system (3) to a differential inclusion,

ẋ ∈ H(x), (4)

whereH is a set-valued function (i.e.H(x) ⊆ IRn). If D is a regulatory domain, then
we defineH simply as

H(x) = {fD − γx}, (5)

for x ∈ D. If D is a switching domain, forx ∈ D, we defineH(x) as

H(x) = co({fD′

− γx | D′ ∈ R(D)}), (6)

whereR(D) = {D′ ∈ Dr|D ⊆ ∂D′} is the set of all regulatory domains withD
in their boundary, andco(X) is the closed convex hull ofX . For switching domains,
H(x) is generally multi-valued so we define solutions of the differential inclusion as
follows.

Definition 3 A solution of (4) on[0, T ] in the sense of Filippovis an absolutely con-
tinuous function (w.r.t.t) ξt(x0) such thatξ0(x0) = x0 and ξ̇t ∈ H(ξt), for almost all
t ∈ [0, T ].

In order to more easily define these Filippov solutions, it isuseful to define a con-
cept analogous to the focal points defined for regulatory domains, extended to deal with
switching domains.
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Definition 4 LetD ∈ Ds be a switching domain of orderk. Then its focal setΦ(D) is

Φ(D) = supp(D) ∩ co({φ(D′) | D′ ∈ R(D)}). (7)

HenceΦ(D) for D ∈ Ds is the convex hull of the focal pointsφ(D′) of all the regu-
latory domainsD′ havingD in their boundary, as defined above, intersected with the
threshold hyperplanesupp(D) containing the switching domainD (Figure 3).

We have shown that

H(x) = γ(Φ(D) − x) (8)

which is a compact way of writing thatH(x) = {y ∈ IRn | ∃φ ∈ Φ(D) such thaty =
γ(φ − x)}. The Filippov vector field is defined by means of the focal set.

D1

D2

φ(D1)

φ(D2)

D

φ(D)

Figure 3: Illustration of the definition of the focal set on a switching surfaceD ac-
cording to the Filippov definition of solutions. The convex hull of the pointsφ(D1)
andφ(D2) is simply the segment that links them, so that (7) implies that φ(D) is the
intersection of this segment with supp(D).

If Φ(D) = { }, with D a switching domain, solutions will simply crossD; other-
wise, sliding mode is possible and convergence takes place “in the direction” ofΦ(D).
If Φ(D) ∩ D = { }, solutions eventually leaveD. In the case whereΦ(D) ∩ D is not
empty, it can be assimilated to an equilibrium set withinD towards which all solutions
will converge in the following sense

Lemma 1 [3] For every regulatory domainD ∈ Dr, all solutionsξt in D monoton-
ically converge towards the focal setΦ(D). For every switching domainD ∈ Ds,
the non-switching component(ξt)i of the solutionξt in D monotonically converges
towards the closed interval

πi(Φ(D)) = {φi ∈ Ωi | φ ∈ Φ(D)},
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the projection ofΦ(D) onto Ωi, if (ξ0)i 6∈ πi(Φ(D)). Every switching component
(ξt)i of the solutionξt in D is a constant(ξt)i = πi(Φ(D)) = θ

qi

i .

Basically, this means that convergence does not take place towardsΦ(D), but to-
wards the smallest hyper-rectangle that containsΦ(D). Indeed, ifΦ(D) is neither
empty, nor a singleton, andξt0 belongs toΦ(D), the Fillipov vector field at this point
is defined asH(ξt0) = γ(Φ(D) − ξt0) and there is no guarantee that no element of
H(ξt0) points outside ofΦ(D) (we know however that a solution stays atξt0 ). How-
ever, due to the structure of the differential equations, itis certain that the transient so-
lution does not leave the smallest hyper-rectangle containing Φ(D). This phenomenon
is illustrated in Figure 4

Figure 4: Illustration of the non invariance ofΦ(D): solutions with initial condition on
Φ(D) stay inside the boxΠ(D) but do not necessarily stay inΦ(D)

We then have the following corollary

Corollary 1 [3] All solutions ξt in D converge towardsΠ(D), if ξ0 6∈ Π(D). For all
solutionsξt in D, Π(D) is invariant.

Adding the following assumption

Assumption 1 For all domainsD ∈ D,

Φ(D) ∩ supp(D′) = {}, ∀D′ ⊆ ∂D. (9)

it has been possible to develop stability results for this family of systems.

2 Stability and qualitative properties of PL models

The stability analysis of the various equilibria is a directconsequence of the analy-
sis in the previous section. It is easily seen that equilibria x̄r in someD ∈ Dr are
asymptotically stable. Indeed, they are the focal points ofthe domains in which they
are contained, so that the convergence that was described inthe previous section, leads
to asymptotic stability. The more difficult part consists indefining and handling the
stability of Filippov equilibria that lie in switching surfaces.

In a switching domainD ∈ Ds, recall that solutions are defined by considering the
differential inclusionH(x). We say that a pointy ∈ Ω is an equilibrium point for the
differential inclusion if

0 ∈ H(y), (10)
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whereH is computed using the Filippov construction in (6). In otherwords, there is
a solution in the sense of Filippov,ξt, such thatξt(y) = y, ∀t > 0. We call such
a point asingular equilibrium point. It is easily seen that, fory to be an equilibrium
point insideD, it must belong toΦ(D). Also, since Assumption 1 preventsΦ(D) from
intersecting the border ofD, we then have thatΦ(D) ⊂ D. Every elementφ of Φ(D)
is then an equilibrium whenΦ(D) ⊂ D so that, for everyφ ∈ Φ(D), there exists a
solutionξt(φ) = φ for all t.

One of the interesting results of [3] concerns the link between the configuration of
the state transition graph and the stability of an equilibrium. This discrete, qualitative
description of the dynamics of the PL system that underlies the qualitative simulation
of genetic regulatory networks was originally due to Glass.It indicates the passages
between the different domains making up the phase space. A state transition graph is a
directed graph whose vertices are the domains of the system and whose edges are the
possible transitions between these domains (easily determined by examining the PL
model [3]). The transition graph of system (1) is illustrated in Figure 5.

Figure 5: Subdivision of the state-space in 25 domains and transition graph of system
(1)

For a two-dimensional system, we show how this graph indicates the stability of
singular equilibria:

Theorem 1 [3] Let the dimension of the PL model be 2, and letD be a switching
domain containing a singular equilibrium pointφ(D). If for all regulatory domains
D′ ∈ R(D) (that is, adjacent toD), there exists a transition fromD′ to D in the state
transition graph, thenφ(D) is asymptotically stable.

This result is purely qualitative: the actual value of the parameters is not needed. It
can be directly applied to show that the singular equilibrium (xa, xb) = (θ2

a, θ2
b ), cor-

responding toD19 on Figure 5, is asymptotically stable because there are transitions to
D19 from D13, D15, D23 andD25, the regulatory domains adjacent toD19.

A generalization, but in a weaker form, of this theorem to dimensionn is also
available.

Theorem 2 AssumeΩ ⊂ IRn. Let D ∈ Ds be a switching domain of orderp ≥ 1
containing a singular equilibrium setΦ(D) that satisfies Assumption 1. If for allD′ ∈
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R(D), there is a transition fromD′ to D in the state transition graph, thenΠ(D) is
asymptotically stable.

These results are very helpful for the qualitative analysisof the genetic regulatory
networks. However, some stable equilibria cannot be identified through those criteria.
Some less restrictive criteria are therefore under development. Without these new re-
sults, we can discover stable equilibria that would not havebeen directly identified by
our criteria through a rigorous simplification of the model before applying the criteria:
this can be done through model reduction or identification ofregions of the state-space
that cannot be reached by the solutions (maybe after some finite time). We will illus-
trate the kind of things that can be done on an example in the following section. In
that section, since the resulting models are very simple, wedo not need to go back to
transition graph analysis at the end of the reduction procedure, but we could have done
so, and it will be necessary to do so if the model reduction procedure does not yield
very small models.

3 Carbon starvation response ofE. coli

We will present a specific model reduction and stability analysis for the model in di-
mension 6 of the carbon starvation response ofE. coliof Ropers et al. [29]. In their nat-
ural environment, bacteria likeEscherichia colirarely encounter conditions allowing
continuous, balanced growth. While nutrients are available,E. coli cells grow quickly,
leading to an exponential increase of their biomass, a statecalledexponential phase.
However, upon depletion of an essential nutrient, the bacteria are no longer able to
maintain fast growth rates, and the population consequently enters a non-growth state,
calledstationary phase(Figure 6). During the transition from exponential to stationary
phase, each individualE. coli bacterium undergoes numerous physiological changes,
concerning among other things the morphology and the metabolism of the cell, as well
as gene expression [19]. These changes enable the cell to survive prolonged periods of
starvation and be resistant to multiple stresses. Thiscarbon starvation responsecan be
reversed and growth resumed, as soon as carbon sources become available again.

Figure 6: Nutrient-stress response of bacteria during the transition from exponential to
stationary phase.

On the molecular level, the transition from exponential phase to stationary phase is
controlled by a complex genetic regulatory network integrating various environmental
signals [18, 24, 32]. The molecular basis of the adaptation of the growth ofE. coli
to carbon starvation conditions has been the focus of extensive studies for decades
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[18]. However, notwithstanding the enormous amount of information accumulated on
the genes, proteins, and other molecules known to be involved in the stress adaptation
process, there is currently no global understanding of how the response of the cell
emerges from the network of molecular interactions. Moreover, with some exceptions
[1, 16, 31], numerical values for the parameters characterizing the interactions and
the molecular concentrations are absent, which makes it difficult to apply traditional
methods for the dynamical modeling of genetic regulatory networks.

Figure 7: Network of key genes, proteins, and regulatory interactions involved in the
carbon starvation network inE. coli. The notation follows, in a somewhat simplified
form, the graphical conventions proposed by Kohn [23]. The contents of the boxes
labeled ‘Activation’ and ‘Supercoiling’ are detailed in [29].

The above circumstances have motivated the qualitative analysis of the carbon star-
vation response network inE. coli [29]. The objective of the study was to simulate the
response of anE. coli bacterium to the absence or presence of carbon sources in the
growth medium. To this end, an initial, simple model of the carbon starvation response
network has been built on the basis of literature data. It includes six genes that are be-
lieved to play a key role in the carbon starvation response (Figure 7). More specifically,
the network includes genes encoding proteins whose activity depends on the transduc-
tion of the carbon starvation signal (the global regulatorcrp and the adenylate cyclase
cya), genes involved in the metabolism (the global regulatorfis), cellular growth (the
rrn genes coding for stable RNAs), and DNA supercoiling, an important modulator of
gene expression (the topoisomerasetopAand the gyrasegyrAB).

3.1 Model of carbon starvation response

The graphical representation of the network has been translated into a PL model sup-
plemented with parameter inequality constraints. The resulting model consists of seven
variables, one concentration variable for the product of each of the six genes ((xc, xy ,-
xf , xg, xt, xr) for (crp, cya, fis, gyrAB, topA, rrn)) and one input variableus represent-
ing the presence or absence of a carbon starvation signal [29]. The 38 parameters are
constrained by 54 parameter inequalities, the choice of which is largely determined by
experimental data.
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The model of Ropers et al. is:


















































ẋc = κ1
c + κ2

cs
−(xf , θ2

f )s+(xc, θ
1
c )s+(xy , θ1

y)s
+(us, θs)

+κ3
cs

−(xf , θ1
f ) − γcxc

ẋy = κ1
y + κ2

y

(

1 − s+(xc, θ
3
c )s+(xy , θ3

y)s+(us, θs)
)

− γyxy

ẋf =
(

κ1
f + κ2

fs+(xg, θ
1
g)s−(xt, θ

2
t )
)

(

1 − s+(xc, θ
1
c)s

+(xy, θ1
y)s+(us, θs)

)

s−(xf , θ5
f ) − γfxf

ẋg = κg

(

1 − s+(xg , θ2
g)s

−(xt, θ
1
t )
)

s−(xf , θ4
f ) − γgxg

ẋt = κts
+(xg, θ

2
g)s−(xt, θ

1
t )s+(xf , θ4

f ) − γtxt

ẋr = κ1
rs

+(xf , θ3
f ) + κ2

r − γrxr

with us = 0 in the presence of carbon sources andus = 1 in a depleted environment
(andθs = 0.5). In order to univoquely determine the situation of the various focal
points in the state-space, the following constraints on theparameters are needed:



































































0 < θ1
c < θ2

c < θ3
c < maxc, θ1

c <
κ1

c

γc
< θ2

c , θ1
c <

(κ1
c+κ2

c)
γc

< θ2
c ,

θ3
c <

(κ1
c+κ3

c)
γc

< maxc

0 < θ1
y < θ2

y < θ3
y < maxy, θ1

y <
κ1

y

γy
< θ2

y, θ3
y <

(κ1
y+κ2

y)

γy
< maxy

0 < θ1
f < θ2

f < θ3
f < θ4

f < θ5
f < maxf , θ1

f <
κ1

f

γf
< θ2

f ,

θ5
f <

(κ1
f+κ2

f )

γf
< maxf

0 < θ1
g < θ2

g < maxg, θ2
g <

κg

γg
< maxg

0 < θ1
t < θ2

t < maxt, θ2
t < κt

γt
< maxt

0 < θr < maxr, 0 <
κ2

r

γr
< θr, θr <

(κ1
r+κ2

r)
γr

< maxr

A qualitative analysis of this model has been carried out in [29] by using GNA (Genetic
Network Analyzer[6]), a computer tool that automatically generates the state-transition
graph and possible trajectories in that graph, that is, qualitative solutions that are pos-
sible for this system. The following simulations are produced for the transition to the
stationary phase (Figure 8) and to the exponential phase (Figure 9). In the first case,
we see that the solution converges towards a single region ofthe state space, where we
can guess that convergence towards an equilibrium takes place. In the second case, the
behavior of the solution is not as clear: oscillations can bedetected between various
regions but it is impossible to say, based on the transition graph alone, if those oscilla-
tions are damped or not. Therefore, it is useful to try and analyze the model further to
check what kind of oscillations take place (and in the same time if convergence actually
takes place towards an equilibrium in the case of the entry instationary phase).

3.2 Asymptotic dynamics

Since the 6-dimensional model, with all its constraints, istoo complex to handle di-
rectly, we first check if some kind of simplifications can be made. Independently of the
case that we will study (stationary phase or exponential phase conditions), we notice
that

• xr is a variable whose evolution depends on, but does not influence the rest of
the system. As a consequence, it can be removed from the analysis. Once the
analysis of the remaining 5-dimensional system is completed, we will be able
to easily identify the consequence of its behavior on the concentration of stable
RNAs (xr).
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Figure 8: Entry into stationary phase: qualitative temporal evolution of the proteins and
stable RNA concentration in a depleted environment with theorganisms being at the
equilibrium of the exponential phase at the initial time. Convergence to one domain
is detected (the domain wherexc > θ3

c , xy = θ3
y, xf < θ1

f , xg = θ2
g , xt < θ1

t and
xr < θr)
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Figure 9: Entry into exponential phase: qualitative temporal evolution of the proteins
and stable RNA concentration in a rich environment with the organisms being at the
equilibrium of the stationary phase at the initial time. Oscillations of thexf andxg

states is detected.
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• There exists a finite time after whichxt(t) ≤ θ1
t since, as long asxt > θ1

t , the
xt dynamics reduces to

ẋt = −γtxt.

Oncext reachesθ1
t , we cannot a priori rule out a sliding mode alongxt =

θ1
t . Sinceθ1

t < θ2
t , this indicates that we can replaces−(xt, θ

2
t ) with 1 for the

purpose of our analysis. We simply consider that the aforementioned finite time
has already occurred.

• Similar studies show thatxc(t) ≥ θ1
c andxy(t) ≥ θ1

y after some finite time. We
can then replaces+(xc, θ

1
c ) ands+(xy , θ1

y) with 1 in our analysis.

The system that we need to analyze has now become


























ẋc = κ1
c + κ2

cs
−(xf , θ2

f )s+(us, θs) + κ3
cs

−(xf , θ1
f ) − γcxc

ẋy = κ1
y + κ2

y

(

1 − s+(xc, θ
3
c )s+(xy , θ3

y)s+(us, θs)
)

− γyxy

ẋf =
(

κ1
f + κ2

fs+(xg, θ
1
g)
)

s−(us, θs)s
−(xf , θ5

f ) − γfxf

ẋg = κg

(

1 − s+(xg , θ2
g)s

−(xt, θ
1
t )
)

s−(xf , θ4
f ) − γgxg

ẋt = κts
+(xg, θ

2
g)s−(xt, θ

1
t )s+(xf , θ4

f ) − γtxt

The next simplification step consists in seeing thatxy does not influence the rest of the
model, so that it can be removed, and thatxc does not influence the rest of the model
either (exceptxy) so that it can also be removed. These actions are in the same line of
thought as the removal ofxr. As a consequence of these simplifications, we are able to
see that the core of the long term dynamics is not really influenced byxr, xy andxc.
We now have the three-dimensional system:











ẋf =
(

κ1
f + κ2

fs+(xg, θ
1
g)
)

s−(us, θs)s
−(xf , θ5

f ) − γfxf

ẋg = κg

(

1 − s+(xg , θ2
g)s

−(xt, θ
1
t )
)

s−(xf , θ4
f ) − γgxg

ẋt = κts
+(xg, θ

2
g)s−(xt, θ

1
t )s+(xf , θ4

f ) − γtxt

(11)

Once we have analyzed the behavior of the solutions of this model, we will be able to
reconstruct what happens withxc, xy andxr. For this analysis, we still suppose that
xt ≤ θ1

t .

3.3 Asymptotic dynamics in the absence of carbon sources

The analysis of the caseus = 1, the stationary phase solution in a depleted environ-
ment, is very straightforward. System (11) becomes







ẋf = −γfxf

ẋg = κg

(

1 − s+(xg , θ2
g)s

−(xt, θ
1
t )
)

s−(xf , θ4
f ) − γgxg

ẋt = κts
+(xg, θ

2
g)s−(xt, θ

1
t )s+(xf , θ4

f ) − γtxt

so thatxf goes to0. It is then directly seen that, after a finite time (the time taken for
xf to fall belowθ4

f ), we have

ẋt = −γtxt

so thatxt also goes to zero. Thexg dynamics then reduce to

ẋg = κgs
−(xg, θ

2
g) − γgxg
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so thatxg reachesθ2
g in finite time. The three dimensional system thus has a very

simple behavior: the state goes to(xf , xg, xt) = (0, θ2
g, 0).

Since the solutions of the 6-dimensional system are bounded, the behavior of the
other three states can be deduced from the analysis of the corresponding equations with
(xf , xg, xt) approaching their equilibrium (so thatxf < θ1

f , xt < θ1
t andxg > θ1

g).
We then have:







ẋc = κ1
c + κ2

c + κ3
c − γcxc

ẋy = κ1
y + κ2

y

(

1 − s+(xc, θ
3
c )s+(xy , θ3

y)
)

− γyxy

ẋr = κ2
r − γrxr

It is then directly seen that, once(xf , xg, xt) is close to its equilibrium, the variables

(xc, xr) exponentially converge towards(κ1
c+κ2

c+κ3
c

γc
,

κ2
r

γr
) while xy reachesθ3

y in finite
time.

3.4 Asymptotic dynamics in the presence of carbon sources

The caseus = 0, the behavior of the model in an environment rich in carbon sources,
is more intricate to analyze. System (11) becomes











ẋf =
(

κ1
f + κ2

fs+(xg, θ
1
g)
)

s−(xf , θ5
f ) − γfxf

ẋg = κg

(

1 − s+(xg , θ2
g)s

−(xt, θ
1
t )
)

s−(xf , θ4
f ) − γgxg

ẋt = κts
+(xg, θ

2
g)s−(xt, θ

1
t )s+(xf , θ4

f ) − γtxt

As stated earlier, we know thatxt ≤ θ1
t after some finite time; this does not help us for

further simplifications of this model. In the following, we will show that, after some
finite-time, we havext < θ1

t , which will help us eliminate thext equation. In order to
do that, we first show that, after some finite time,xg ≤ θ2

g.
Indeed, if we suppose thatxg > θ2

g for all times, system (11) would become










ẋf =
(

κ1
f + κ2

f

)

s−(xf , θ5
f ) − γfxf

ẋg = κgs
+(xt, θ

1
t )s−(xf , θ4

f ) − γgxg

ẋt = κts
−(xt, θ

1
t )s

+(xf , θ4
f ) − γtxt

which shows thatxf reachesθ5
f in finite time so thaṫxg becomes equal to

ẋg = −γgxg

This leads to the convergence ofxg to 0 and thus to belowθ2
g, which is a contradiction.

This shows thatxg should reachθ2
g in finite time whenxg(0) > θ2

g .
An ensuing case-by-case analysis shows that the region wherexg ≤ θ2

g is invariant.
We will now show thatxt is decreasing almost all of the time whenxg ≤ θ2

g and
xt ≤ θ1

t , that is in a region which we have shown to be reached in finite time and
invariant. Detailing three cases, we have:

xg < θ2
g or xf < θ4

f : ẋt = −γtxt.

xg = θ2
g and xf > θ4

f : We haveẋg = −γgxg < 0 at such a point and in a neighbor-
hood surrounding each such point so that any solution directly enters the region
wherexg < θ2

g (and consequentlẏxt = −γtxt, as we have seen).
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xg = θ2
g and xf = θ4

f : We haveẋf =
(

κ1
f + κ2

f

)

− γfxf > 0 at this point and in a

neighborhood surrounding it, so that any solution directlygoes in one of the two
previously described regions, where we have seen thatxt is decreasing.

For any solution of (11),xt could only increase ifx stayed in the second or third
region, which we have shown not to be possible. We then haveẋt = −γtxt for almost
all times in the region of interest. After elimination ofxt, we have to analyze the
following system:

{

ẋf =
(

κ1
f + κ2

fs+(xg, θ
1
g)
)

s−(xf , θ5
f ) − γfxf

ẋg = κgs
−(xg , θ2

g)s
−(xf , θ4

f ) − γgxg

(12)

At first sight, this analysis is not straightforward becausethis is a second order piece-
wise linear system with two thresholds in each direction, which theoretically gives rise
to 9 regions. However, as is illustrated on Figure 10, some ofthe regions have the same
dynamics and can be grouped together, giving rise to six regions.

Figure 10: Illustration of the vector field and the various regions for system (12). The
thick black lines indicate where sliding modes can occur.

The behavior of the solutions along the thick black lines, where sliding modes
are present, can be directly inferred from the Filippov construction. However, simple
observations indicate what actually happens: along the line wherexg = θ2

g andxf <

θ4
f , we have

ẋg = κgs
−(xg, θ

2
g) − γgxg

with
κg

γg

> θ2
g

so that the line is attractive (black wall). Moreover,

ẋf =
(

κ1
f + κ2

f

)

− γfxf > 0
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so thatxf is increasing and all solutions reach the end-point(xf , xg) = (θ4
f , θ2

g) in
finite time. In some sense, each time the solution reaches this black wall, there is a
resettaking place that sends the system to the end-point(θ4

f , θ2
g)

Along the line wherexf = θ5
f andxg > θ1

g , we have

ẋf =
(

κ1
f + κ2

f

)

s−(xf , θ5
f ) − γfxf

so that this line also is a black wall (bearing in mind that
κ1

f+κ2
f

γf
> θ5

f ). In addition,

ẋg = −γgxg

so thatxg is decreasing and all solutions reach the end-point(xf , xg) = (θ5
f , θ1

g) in
finite time.

The observation of Figure 10 (as well as a detailed analysis of the linear systems in
each of the regions) indicate that, eventually, the solutions oscillate around(xf , xg) =
(θ4

f , θ1
g). Whether this oscillation is damped, neutrally stable or unstable is still unclear.

It is clear, though, that the oscillation is bounded, as it cannot go beyond the black
walls.

In order to analyze the oscillations, we will compute the first return map from and
to the segment that links(θ4

f , θ1
g) to (θ4

f , θ2
g). We will therefore consider some(θ4

f , x)

as initial condition and compute the functionf(x) such that(θ4
f , f(x)) is the image of

(θ4
f , x) on the segment after one cycle around(θ4

f , θ1
g).

The first step consists in computing the image of(θ4
f , x), belonging to the initial

segment, on the horizontal segment that links(θ4
f , θ1

g) to (θ5
f , θ1

g). The transition takes

place in the region∆(4) so that (12) becomes
{

ẋf = κ1
f + κ2

f − γf xf

ẋg = −γg xg
(13)

whose solution is
{

xf (t) = θ4
f e−γf t +

κ1
f+κ2

f

γf
(1 − e−γf t)

xg(t) = x e−γgt
(14)

In the absence of the vertical black wall, and using the dynamics (13) for both regions
∆(4) and∆(5), it is then straightforward to see that the solution impactsthe target

segment whenxg(t) = θ1
g , that is, att = t1(x) =

ln(x)−ln(θ1
g)

γg
, so that

xf (t1(x)) = θ4
f e−γf t1(x) +

κ1
f+κ2

f

γf
(1 − e−γf t1(x))

= θ4
f

(

θ1
g

x

)

γf
γg

+
κ1

f +κ2
f

γf

(

1 −
(

θ1
g

x

)

γf
γg

)

However, it is possible that the actual solution hits the vertical black wall before reach-
ing the target segment, so that the previously computedxf (t1(x)) > θ5

f . In that case,
the actual solution stays on the vertical black wall until itreaches the point(θ5

f , θ1
g).

Therefore the target of the point(θ4
f , x) on the horizontal segment is

(f1(x), θ1
g) =



min



θ4
f

(

θ1
g

x

)

γf
γg

+
κ1

f + κ2
f

γf



1 −

(

θ1
g

x

)

γf
γg



 , θ5
f



 , θ1
g
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Similarly we can define(θ4
f , f2(x)) as the image of(x, θ1

g) (with x ∈ [θ4
f , θ5

f ]) on
the vertical segment below the equilibrium,(f3(x), θ1

g) as the image of(θ4
f , x) (with

x ∈ [0, θ1
g]) on the horizontal segment on the left of the equilibrium and(θ4

f , f4(x))

as the image of(x, θ1
g) (with x ∈ [0, θ4

f ]) on the initial segment.
This yields

f1(x) = min

(

θ4
f

(

θ1
g

x

)

γf
γg

+
κ1

f+κ2
f

γf

(

1 −
(

θ1
g

x

)

γf
γg

)

, θ5
f

)

f2(x) = θ1
g

(

θ4
f−

κ1
f

γf

x−
κ1

f
γf

)

γg
γf

f3(x) = θ4
f

(

θ1
g−

κg
γg

x−
κg
γg

)

γf
γg

+
κ1

f

γf



1 −

(

θ1
g−

κg
γg

x−
κg
γg

)

γf
γg





f4(x) = min






θ1

g

(

θ4
f−

κ1
f
+κ2

f
γf

x−
κ1

f
+κ2

f
γf

)

γg

γf

+
κg

γg






1 −

(

θ4
f−

κ1
f
+κ2

f
γf

x−
κ1

f
+κ2

f
γf

)

γg

γf






, θ2

g







andf(x) = f4(f3(f2(f1(x)))) which hasx = θ1
g as a fixed point. It was then shown

in [2] that f ′(x) < 1 when x > θ4
f , so that the sequencexn+1 = f(xn), which

represents the successive impacts on the initial segment converges tox = θ4
f . We can

then conclude that the cyclic solutions that surround(θ4
f , θ1

g) are damped. This point
is therefore a globally attractive equilibrium of (12) (cf.[9] that gives more general
results inn dimensions for a negative feedback loop).

Having elucidated the dynamical behavior of the(xf , xg) subsystem, we can now
deduce the behavior of all other states. From the moment thatwe havexg < θ2

g , it
comes from (11) that

ẋt = −γtxt

so thatxt goes to0. Once those three states are close to their equilibrium value, the
remaining three equations become







ẋc = κ1
c − γcxc

ẋy = κ1
y + κ2

y − γyxy

ẋr = κ1
r + κ2

r − γrxr

so that convergence of(xc, xy, xr) towards
(

κ1
c

γc
,

κ1
y+κ2

y

γy
,

κ1
r+κ2

r

γr

)

takes place.

3.5 Comparison of the equilibria

It is interesting to compare both equilibria: we have
xc xy xf xg xt xr

us = 1
κ1

c+κ2
c+κ3

c

γc
θ3

y 0 θ2
g 0

κ2
r

γr

us = 0
κ1

c

γc

κ1
y+κ2

y

γy
θ4

f θ1
g 0

κ1
r+κ2

r

γr

We see that most genes settle at different levels depending on the absence or pres-
ence of carbon sources. The most illustrative of the difference between the two states
(carbon starved or not) isxr, which represents the concentration of stable RNAs and is
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a good indicator of the cellular growth. As expected, when carbon sources are depleted,
the equilibrium level ofxr is smaller than when carbon sources are abundant: when

carbon shortage occurs,xr stays at a ”house-keeping”-level whereasκ1
r+κ2

r

γr
, the equi-

librium value in the presence of carbon sources, allows for fast cell growth. Also to be
noted is the fact thatxt = 0 in both cases; this does not mean thattopA, the gene cor-
responding toxt, is useless. Indeed, when the carbon sources are either continuously
present or absent, the effect oftopAeventually dies down. However, in a time-varying
environment, where nutrients are alternatively present and absent, an increase of thext

concentration can occur wheneverxg > θ2
g andxf > θ4

f . TopA thus influences the
transients.

3.6 Abstraction of the reduction method

We have seen that the preliminary model reduction has allowed for a simplification
of the model analysis. Indeed, a global stability analysis of a 6-order model is no
easy task, whereas there are various methods for the analysis of second order models.
The reduction of the dimension of dynamical models is critical in the further devel-
opment of the mathematical methods for genetic regulatory networks analysis because
the networks typically are very large, so that it is rarely possible to study them directly.
Classically, it has been attempted to apply time-scale separation methods, but these are
mainly efficient for eliminating the fast metabolic components from mixed metabolic-
genetic networks. Also balanced truncation methods have been introduced for genetic
regulatory networks where inputs signals (action on the network) and output signals
(measurements) are clearly identified ([15, 21]). In this example, we have exploited
thehierarchical triangular structure of the model arising after a finite time(this finite
time allowed us to get rid of some of the interactions interfering with the triangular
structure). We notice from graph theory that the identification of such a structure in
the graph corresponding to the network is equivalent to the search for the strongly
connected components of the graph. There are efficient algorithms to do so on large
graphs, so that this model reduction method is tractable forthe huge graphs that rep-
resent genetic regulatory networks (preliminary work on that subject has been done in
[4] with links to GNA). Combining this approach with thresholds elimination allows
for a progressive simplification of the graphs.

4 Challenges in PL models analysis

One of the major challenges in the analysis of models of genetic regulatory networks
lies in the difficulty of obtaining accurate parameters. Therefore, one has to develop
methods to identify the qualitative behavior of the system:when the parameters are
linked together through inequalities (instead of being fixed at given values), we would
like to be able to say something about the stability of the equilibria. Some interesting
results have been obtained on that subject in [3], as was shown in Section 2, and we
would like to identify other cases where stability results can be deduced.

As we have seen in the analysis ofE. coli, we are able to mathematically analyze PL
models that are not trivial (dimension 6). However, actual genetic regulatory networks
are much larger than that. It is therefore of paramount importance to develop methods
that will help analyzing such large systems. Two major research directions are explored
for that purpose: the model reduction approach (through balancing or through singular
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perturbations, in the linear case) and the separation of theoriginal model into smaller,
interconnected pieces that can be easily analyzed, as we have shown here.

Moreover, experimental techniques (e.g. gene deletion) are now available and al-
low to modify the production or degradation terms of some genes of the networks.
This leads to problems of mathematical control of piecewiseaffine genetic networks,
similar to more general problems for hybrid affine systems [14]. The global problem
is to control the trajectories through some prescribed sequence of rectangular regions.
Some preliminary results have been obtained in [8]. For example, we have shown that
a simple two-gene inhibitor system with a single equilibrium can be controlled to a
bistable switch. We believe that interesting and original control problems are still to be
solved in this domain.
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[8] E. Farcot and J.-L. Gouzé. How to control a biological switch: a mathematical
framework for the control of piecewise affine models of gene networks. Research
Report 5979, INRIA, 09 2006.
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