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Abstract. A formalism based on piecewise-linear (PL) differential equations, originally due
to Glass and Kauffman, has been shown to be well-suited to modelling genetic regulatory
networks. However, the discontinuous vector field inherent in the PL models raises some
mathematical problems in defining solutions on the surfaces of discontinuity. To overcome
these difficulties we use the approach of Filippov, which extends the vector field to a differ-
ential inclusion. We study the stability of equilibria (called singular equilibrium sets) that
lie on the surfaces of discontinuity. We prove several theorems that characterize the stability
of these singular equilibria directly from the state transition graph, which is a qualitative
representation of the dynamics of the system. We also formulate a stronger conjecture on
the stability of these singular equilibrium sets.

1. Introduction

Given the central role the genome plays in the control of cellular processes, to fully
understand the molecular basis for the functioning of living organisms, we need
to determine which genes are expressed, when and where in an organism, and to
what extent. The regulation of gene expression occurs through networks of regu-
latory interactions between DNA, RNA, proteins and small molecules, so-called
genetic regulatory networks. Most networks of interest consist of many individual
components interacting through complex positive and negative feedback loops, so
the resulting behaviour is difficult to understand. This complexity means that, in
addition to recent advances in experimental techniques in genomics, mathemati-
cal modelling and computational techniques will be essential to the understanding
of genetic regulatory networks (see [dJ02] for a review). The principal modelling
challenges come from incomplete knowledge of the biochemical reactions under-
pinning most networks, and the dearth of quantitative data for kinetic parameters
required for detailed mathematical models. Qualitative methods overcome both of
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these difficulties and are thus well-suited to the modelling and simulation of genetic
regulatory networks.

A class of piecewise-linear (PL) models, originally proposed by Glass and
Kauffman [GK73], is well suited to qualitative analysis and has been widely used
in modelling genetic regulatory networks. The properties of these PL models have
been well-studied in the mathematical biology literature, by for example Glass and
Pasternack [GP78], Snoussi [Sno89], Plahte et al [PMO94], Mestl et al [MPO95b],
Thomas et al [TTK95], Edwards [Edw00], Gouzé and Sari [GS02], and more re-
cently in the hybrid systems literature by Ghosh and Tomlin [GT01], Alur and
Belta [ABI+01], and Belta et al [BFH+04]. The variables in the piecewise-linear
differential equation (PLDE) models are the concentrations of proteins encoded
by the genes, while the differential equations describe the regulatory interactions
in the network by means of step functions. The use of step functions is motivated
by the switch-like behaviour of many of the interactions in genetic regulatory net-
works [YY71,Pta92], but it does lead to some difficulties. The vector field for the
PLDE model is undefined when one of the variables assumes a value where the
step function is discontinuous, referred to as a threshold value.

Recent work by Gouzé and Sari [GS02] uses an approach due to Filippov [Fil88]
to define the solutions on the threshold hyperplanes. Widely used in control theory,
the approach involves extending the PLDE to a piecewise-linear differential inclu-
sion (PLDI). The solutions of the PLDI on the threshold hyperplanes are called
sliding modes in the control literature. A qualitative simulation method based on
PLDI models has been implemented in the software tool Genetic NetworkAnalyzer
(GNA) [dJGHP03], and has been used to analyze several regulatory networks of
biological interest [VF04,dJGB+04,RdJP+05]. The qualitative simulation method
used by GNA is based on the computation of a state transition graph, a discrete
abstraction of the continuous dynamics of the PL system.

In order to analyze the dynamics of the system in phase space, we partition the
phase space into domains bounded by the threshold hyperplanes. Then the phase
space for the PL system is composed of domains where no variable takes a thresh-
old value, referred to as regulatory domains, and the threshold hyperplanes and
their intersections, where at least one variable has a threshold value, referred to as
switching domains. In addition to clarifying the definition of the vector field and its
solutions in the switching domains, the PLDI approach enables the definition and
computation of all equilibria for the PL system, including those that lie in switching
domains.

Equilibria of the PL systems that lie in regulatory domains (so-called regu-
lar equilibria) are known to be asymptotically stable. Several authors have also
studied the stability of periodic orbits in a restricted form of these PL systems
[GP78,Edw00]. On the other hand, the characterization of attractors in switching
domains (including so-called singular equilibria) is complicated by two facts: the
equilibria are not isolated points as they are in general set-valued, and the usual
uniqueness properties from the theory of ordinary differential equations do not
apply to the PLDI models. The stability of equilibria for PL systems is an impor-
tant subject in hybrid systems and control theory. See, for example, the review of
Decarlo et al [DBPL00]. Despite some recent work on the stability of sliding mode
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solutions [JR98,GP01,LN04], and some classical papers [PS87,SP94], we found
little in the literature that was practicable for studying stability of singular equilibria
in this particular PLDI system. Most results make assumptions that are appropriate
for large classes of control problems but do not hold for this system, such as the
linear system having a common equilibrium point in all domains, or do not consider
sliding modes [Bra98]. However, the structure of our particular PL system is such
that a more tailored approach is feasible.

The study of the stability of equilibria in switching domains (singular equilib-
ria) for PL models of genetic regulatory networks is the focus of this paper. There
are two main contributions we present. Firstly, we extend the work of Gouzé and
Sari [GS02] and de Jong et al [dJGH+04], putting the problem of stability in this
class of PL systems into the framework of differential inclusions and Filippov solu-
tions. Secondly, we prove several results on the stability of singular equilibria based
on properties of the state transition graph. Criteria for stability that are formulated
from properties of the state transition graph are both natural and practical, since one
goal of this work is to incorporate stability criteria into the qualitative simulation
method implemented in GNA.

The paper is organized as follows. In Section 2 we specify the PL system in
detail, define the domains and discuss the Filippov solutions of the PLDI. In Sec-
tion 3 we define regular and singular equilibrium points and sets. In Section 4 we
give an overview of the graphical description of the qualitative dynamics of the
PL system, the state transition graph, consisting of the domains and the transitions
between them. We also state and prove a proposition on transitions that will turn
out to be useful later on. In Section 6 we state and prove some theorems on the
stability of singular equilibrium sets, and state an additional stronger conjecture.
In the final section we present our conclusions and the discussion.

2. Piecewise-linear Models of Genetic Regulatory Networks

The schematic diagram in Figure 1 describes a simple genetic regulatory network.
In this example, the genes a and b code for the proteins A and B, which in turn con-
trol the expression of the two genes a and b. Protein A inhibits gene a and activates
gene b above certain threshold concentrations, which are assumed to be different.
Similarly protein B inhibits gene b and activates gene a above different threshold
concentrations. This two-gene regulatory network is simple but represents many
features of regulation found in real networks: auto-regulation, cross-regulation and

a b

A B

Fig. 1. Example of a genetic regulatory network of two genes (a and b), each coding for a
regulatory protein (A and B). The notation follows in a simplified form the conventions of
Kohn [Koh01].
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inhibition/activation. Such a two-gene network could be found as a module of a
more complex genetic regulatory network from a real biological system.

The dynamics of genetic regulatory networks can be modelled by a class of
dynamical systems proposed originally by Glass and Kauffman [GK73]. The model
has the general form

ẋi = fi(x) − γixi, 1 ≤ i ≤ n, (1)

where x = (x1, . . . , xn)
t is a non-negative vector of protein concentrations. The

non-negative quantities fi(x) and γixi represent synthesis and degradation rates
for each protein xi respectively. We can write the system (1) more compactly as

ẋ = f (x) − γ x, (2)

where f (x) = (f1(x), . . . , fn(x))t and γ = diag(γ1, . . . , γn) is a constant diag-
onal matrix. The more general case when γ = γ (x) is more complicated and will
not be considered here. The functions fi : R

n+ → R+ represent the dependence
of the rate of synthesis of a protein encoded by gene i on the concentrations x of
protein in the cell. They can be written as

fi(x) =
∑

i∈I

κilbil(x), (3)

where κil > 0 is a rate parameter, bil : R
n+ → {0, 1} is a boolean-valued regulation

function, and I is an index set. The regulation functions bil capture the conditions
under which the protein encoded by gene i is synthesized at a rate κil . These condi-
tions are written down as combinations of step functions s+, s− : K×R+ → {0, 1},
where

s+(xi, θ
j
i ) =

{
1, xi > θ

j
i ,

0, xi < θ
j
i ,

and s−(xi, θ
j
i ) = 1 − s+(xi, θ

j
i ), (4)

and K ⊆ R+. Here xi is a component of the concentration vector x for the pro-
teins, and the parameters θ

j
i are threshold concentrations. The use of such step

functions has been motivated by the observation that the activity of a gene changes
in a switch-like manner at a threshold concentration of a regulatory protein. The
model (2) is piecewise-linear (PL) with the above definition of the fi . Note that the
step functions are not defined for xi = θ

j
i , so neither are the regulation functions.

The parameters for the PL model are {θj
i }, {γi}, {κil}. The equations modelling the

example network in Figure 1 can be written down as

ẋa = κa s+(xb, θ
1
b ) s−(xa, θ

2
a ) − γa xa, (5)

ẋb = κb s+(xa, θ
1
a ) s−(xb, θ

2
b ) − γb xb. (6)

Gene a is expressed at a rate κa if the concentration xb of protein B is above the
threshold θ1

b and the concentration xa of protein A is below the threshold θ2
a . Sim-

ilarly, gene b is expressed at a rate κb if the concentration xa of protein A is above
the threshold θ1

a and the concentration xb of the protein B is below the threshold θ2
b .
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Degradation of both proteins is assumed to be proportional to their own concentra-
tions, so that the expression of the genes a and b is modulated by the degradation
rates γaxa and γbxb respectively. When necessary, the following parameter values
will be assumed: θ1

a = 4, θ2
a = 8, θ1

b = 4, θ2
b = 8, κa = 20, κb = 20, γa = 2, and

γb = 2.

2.1. Domains in Phase Space

The dynamics of the piecewise-linear system (2) can be studied in the n-dimensional
phase space � = �1 × . . .×�n, where each �i is defined by �i = {xi ∈ R+ | 0 ≤
xi ≤ maxi}, for some positive parameter maxi , with maxi > maxx∈�(fi(x)/γi).
A protein encoded by a gene will be involved in different interactions at different
concentration thresholds, so for each variable xi we assume there are pi ordered
thresholds θ1

i , . . . , θ
pi

i . The (n − 1)-dimensional hyperplanes defined by these
thresholds partition � into hyper-rectangular regions we call domains. Specifi-
cally, a domain D ⊂ � is defined to be a set D = D1 × · · · × Dn, where each set
Di , for 1 ≤ i ≤ n, is given by one of the following equations

Di = {xi ∈ �i | 0 ≤ xi < θ1
i },

Di = {xi ∈ �i | xi = θ1
i },

Di = {xi ∈ �i | θ1
i < xi < θ2

i },
Di = {xi ∈ �i | xi = θ2

i },
...

Di = {xi ∈ �i | xi = θ
pi

i },
Di = {xi ∈ �i | θ

pi

i < xi ≤ maxi}.
Let D denote the set of all domains in �. The total number of domains in � is∏n

i=1(2pi + 1). A domain D ∈ D is called a regulatory domain if none of the
variables xi has a threshold value in D. In contrast, a domain D ∈ D is called a
switching domain if at least one of the variables has a threshold value in D. The
corresponding variables xi are called switching variables in D. For convenience,
we denote the sets of regulatory and switching domains by Dr and Ds respectively.
Following Mestl et al [MPO95a], we define the order of a switching domain to be
the number of switching variables in that domain.

Definition 1. The order of a domain D ∈ D is the number k ∈ N, 0 ≤ k ≤ n, equal
to the number of switching variables in D, denoted order(D).

It is also useful to define the concept of a supporting hyperplane for a domain.

Definition 2. For every domain D ∈ Ds of order k ≥ 1, define supp(D) ⊂ � to
be the (n − k)-dimensional hyperplane containing D. If D ∈ Dr then we define
supp(D) to be equal to �.

For every domain D we can define the boundary ∂D of D in supp(D) to be the
set (closure(D) \ interior(D)), the closure and interior being taken with respect to
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supp(D) (if D is a point, then ∂D = {}). Then for every D ∈ D we can define the
useful sets

A(D) = {D′ ∈ D | D′ ⊆ ∂D}, and

R(D) = {D′ ∈ Dr | D ⊆ ∂D′}.
The set A(D) ⊂ D contains the domains in the boundary of D, which are always
switching domains, whereas R(D) ⊂ Dr is the set of regulatory domains that have
D in their boundary. Two domains D and D′ will be said contiguous if D ∈ A(D′)
or D′ ∈ A(D).

In Figure 2(a) the 2-dimensional phase space � for the example two-gene net-
work is shown. The phase space � is partitioned into 9 regulatory domains and
16 switching domains, since the protein concentrations have two thresholds each.
For example, the domain D1 = {(xa, xb) ∈ � | 0 ≤ xa < θ1

a , 0 ≤ xb < θ1
b } is

a regulatory domain, while D2 = {(xa, xb) ∈ � | 0 ≤ xa < θ1
a , xb = θ1

b } is a
switching domain. The only switching variable in D2 is xb, so D2 is a domain of
order 1. Here supp(D2) = {(xa, xb) ∈ � | xb = θ1

b }, for example.

2.2. Classical Solutions and Focal Points

For any regulatory domain D ∈ Dr , the function f (x) is constant for all x ∈ D,
and it follows that the piecewise-linear system (2) can be written as a linear vector
field

ẋ = f D − γ x, x ∈ D, (7)

where f D is constant in D. Restricted to D, this is a classical linear ordinary differ-
ential equation. We assume that the parameters {θj

i }, {γi}, {κil} are all fixed. For
any initial condition x(t0) ∈ D, the unique solution is given by

D2 D7 D12 D17 D22

xb

0

max b

θ1
a θ2

a
max a

D1

D3

D5

D6

D8 D13

D20

D18

D16D11 D21

D23

D15D10 D25

D4 D9 D14 D19θ2
b

θ1
b

D24

xa

(a)

xb

0

max b

θ2
b

θ1
b

θ1
a

max a

κb/γb

κa/γa

φ(D13)

D13

θ2
a

xa

(b)

Fig. 2. (a) Phase space box � for the PL model in Figure 1. (b) Focal point φ(D13) for the
regulatory domain D13: the variables xa and xb converge towards focal point values κa/γa

and κb/γb, respectively. With the parameter values from Section 2, the focal point lies in the
domain D25.
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x(t) = φ(D) + eγ (t0−t)(x(t0) − φ(D)), (8)

where φ(D) satisfies the linear system γφ(D) = f D . Clearly x(t) → φ(D)

monotonically as t → ∞, or until x(t) reaches the boundary of the regulatory
domain D.

Definition 3. Given a regulatory domain D ∈ Dr , the point φ(D) = γ −1f D ∈ �

is called the focal point for the flow in D.

Generally we make the assumption that φ(D) 	∈ supp(D′), for all D′ ⊆ ∂D, for
otherwise solutions can take infinite time to reach a focal point in the boundary
of their domain. This is a special case of a more general assumption we make in
Section 2.3. In the example network of Figure 1, it can easily be checked that for
the regulatory domain D13, the state equations reduce to

ẋa = κa − γa xa,

ẋb = κb − γb xb.

Hence the focal point of D13 is φ(D13) = (κa/γa, κb/γb), which lies outside D13,
in the domain D25 in fact, as shown in Figure 2(b). Thus solutions in D13 will
flow towards φ(D13) ∈ D25 until they leave the domain D13. Different regulatory
domains will usually have different focal points. In general, all solutions in a reg-
ulatory domain D flow towards the focal point φ(D) until they either reach it or
leave the domain D. What happens when a solution leaves a regulatory domain D

and enters a switching domain in the boundary of D? Since the step functions are
not defined when a variable xi takes some threshold value θ

qi

i , the vector field is
undefined on the switching domains. This can lead to mathematical difficulties if
trajectories in different regulatory domains flow into the same switching domain.
To regularise the ambiguity in how to continue such solutions, we use an approach
originally due to Filippov.

2.3. Filippov Solutions and Focal Sets

In switching domains, the PL system (2) is not defined, since in a switching domain
of order k ≥ 1, k variables assume a threshold value. Sometimes the solution in
a regulatory domain reaches a switching domain from which it can be continued
into a contiguous regulatory domain without difficulties [Sno89,ESAG01]. Such
switching domains have been called transparent walls [MPO95a,PMO94], e.g. the
switching domain D6 in the example network, shown in Figure 3. However, if the
solutions in two regulatory domains flow towards the same switching domain, then
the notion of solution has to be made precise. For example, consider the solutions
arriving at D14 from D13 and D15 in Figure 3. Such switching domains have been
called black walls in the literature.

In order to define the solutions on switching domains, we use a construction
originally proposed by Filippov [Fil88] and recently applied to PL systems of this
form [GS02,dJGH+04]. The Filippov approach is much used in control theory,
where the solutions on switching domains are known as sliding modes [ES98,
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xb

0

max b

θ1
a θ2

a
max a

θ2
b

D1

θ1
b

φ(D1)

φ(D11)

D6

D11

xa (a)

xb

0

max b

θ1
b

θ1
a θ2

a
max a

θ2
b

D15

D13

φ(D13)

φ(D15)

D14

xa (b)

Fig. 3. Behavior of the system of Figure 1 at some of the thresholds. The domains
D1, D6, D11, D13, D14 and D15 are shown, in addition to the focal points φ(D1) = (0, 0),
φ(D11) = (0, κb/γb), φ(D13) = (κa/γa, κb/γb) and φ(D15) = (κa/γa, 0). (a) The solution
trajectories in D11 can be continued in D1, whereas in (b), the solution trajectories in D13

cannot be continued in D15. The behavior of the system in D14 cannot be determined without
a Filippov-like approach.

Utk92], and the approach is consistent with the behaviour of the solutions seen in
numerical simulation of PL systems (e.g. using Euler’s method or another numer-
ical integration scheme). The method consists of extending the system (7) to a
differential inclusion,

ẋ ∈ H(x), (9)

where H is a set-valued function (i.e. H(x) ⊆ R
n). If D is a regulatory domain,

then we define H simply as

H(x) = {f D − γ x}, (10)

for x ∈ D. If D is a switching domain, for x ∈ D, we define H(x) as

H(x) = co({f D′ − γ x | D′ ∈ R(D)}), (11)

where we recall R(D) = {D′ ∈ Dr |D ⊆ ∂D′} is the set of all regulatory domains
with D in their boundary, and co(X) is the closed convex hull of X. For switching
domains, H(x) is generally multi-valued so we define solutions of the differential
inclusion as follows.

Definition 4. A solution of (9) on [0, T ] in the sense of Filippov is an absolutely
continuous function (w.r.t. t) ξt (x0) such that ξ0(x0) = x0 and ξ̇t ∈ H(ξt ), for
almost all t ∈ [0, T ].

Indeed, for a solution ξt in the sense of Filippov, we have that ξ̇τ is undefined at
the instant τ ∈ [0, T ] when ξt reaches or leaves a threshold plane. Hereafter we
will usually refer to “solutions in the sense of Filippov” as “Filippov solutions”
or simply as “solutions” when discussing solutions of the differential inclusion
ẋ ∈ H(x).

It is useful to define a concept analogous to the focal points defined for regula-
tory domains, extended to deal with switching domains.
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Definition 5. Let D ∈ D be a domain. If D is a regulatory domain then its focal
set 	(D) is given by

	(D) = {φ(D)}, (12)

where φ(D) is the focal point of D ∈ Dr as in Definition 3. If D is a switching
domain of order k, and supp(D) is the (n− k)-dimensional hyperplane supporting
D, then its focal set 	(D) is

	(D) = supp(D) ∩ co({φ(D′) | D′ ∈ R(D)}). (13)

Hence 	(D) for D ∈ Ds is the convex hull of the focal points φ(D′) of all the
regulatory domains D′ having D in their boundary, as defined above, intersected
with the threshold hyperplane supp(D) containing the switching domain D. Thus
	(D) can be a singleton, but more generally is a closed convex bounded set and
hence is referred to as a focal set. All solutions either cross a switching domain
instantaneously, or remain in it for some time [GS02]. The solutions that remain in
a switching domain are called sliding modes. These sliding modes can occur in D

when

	(D) 	= {}. (14)

Further, for D ∈ Ds , if 	(D) 	= {} and 	(D) ∩ D = {}, then all solutions will
eventually leave the switching domain. If 	(D) 	= {} and 	(D) ∩ D 	= {}, then
there are points in D that behave like a set of equilibrium points in the classical
sense. Under what conditions a set 	(D) with 	(D) ∩ D 	= {} will be stable in
some sense is the subject of the remainder of the paper. 1

For a switching domain D with 	(D) 	= {}, all solutions remaining (sliding) in
D converge towards 	(D) in a restricted sense. The convergence is monotonic in
the sense that for all components (ξt )i of Filippov solutions ξt (x) in D, each (ξt )i
monotonically converges towards the projection of 	(D) onto �i . This monotonic
convergence property is summarized in the following lemma. We denote by I the
set of the indices of the non-switching variables (I is a subset of {1, . . . , n}) and
by J the complementary set of switching variables. For domain D it holds that:

xj = θ
qj

j , j ∈ J.

Lemma 2.1. For every regulatory domain D ∈ Dr , all solutions ξt in D monoton-
ically converge towards the focal set 	(D). For every switching domain D ∈ Ds ,
and every i ∈ I , the component (ξt )i of the solution ξt in D monotonically con-
verges towards the closed interval

πi(	(D)) = {φi ∈ �i | φ ∈ 	(D)},
the projection of 	(D) onto �i , if (ξ0)i 	∈ πi(	(D)). For every i ∈ J , the compo-
nent (ξt )i of the solution ξt in D is a constant (ξt )i = πi(	(D)) = θ

qi

i .

1 See also the treatment in de Jong et al. [dJGH+04], where 	(D) is referred to as a target
equilibrium set.
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Proof. If D is a regulatory domain then 	(D) = {φ(D)}, and the solution ξt in D

is given by the classical solution (8). It is clear from (8), that for any x0 ∈ D ∈ Dr ,
ξt (x0) → φ(D) monotonically as t → ∞, or until ξt (x0) reaches ∂D.

If D is a switching domain, we apply the definition of Filippov solutions. From
(11), the differential inclusion on D ∈ Ds is given by the set

H(ξt ) = {
∑

D′∈R(D)

γ (αD′φ(D′) − ξt ) |
∑

D′∈R(D)

αD′ = 1, αD′ ≥ 0 }.

We write that the solution remains in D, so that ˙(ξt )i = 0, i ∈ J , and therefore:
∑

D′∈R(D)

αD′φi(D
′) − θ

qi

i = 0, i ∈ J. (15)

We remark that this is a system of linear equations in αD′ that depends only on D

and not on ξt .
The other components verify:

˙(ξt )i ∈ γi(
∑

D′∈R(D)

αD′φi(D
′) − (ξt )i), i ∈ I.

If we consider the point φ = ∑
D′∈R(D) αD′φ(D′), it belongs to the convex hull of

the φ(D′), D′ ∈ R(D), but also to the set supp(D) because of equation (15). Thus
the solutions remaining in D can be written

˙(ξt )i = γi(φi − (ξt )i), i ∈ I, φ ∈ 	(D)

Assume initially that, for some i ∈ I , (ξ0)i < min πi(	(D)). Therefore (ξ̇0)i >

0. Thus (ξt )i , i ∈ I , monotonically converges towards πi(	(D)) while it remains
in D. The case (ξt )i > max πi(	(D)) is proven in a similar way. Note that if i ∈ J ,
then (ξt )i = πi(	(D)) = θ

qi

i because the solution remains in D. ��
The same proof also gives the following corollary. By a slight abuse of nota-

tion, we will denote�(D) the smallest closed hyperrectangle in supp(D) containing
	(D), that is the hyperrectangle the projection of which on the ith axis is πi(	(D))

for all i.

Corollary 1. All solutions ξt in D converge towards �(D), if ξ0 	∈ �(D). For all
solutions ξt in D, �(D) is invariant.

Corollary 2. If 	(D) is a point, all solutions ξt in D converge monotonically
towards 	(D).

The above lemma and corollaries will be used in several proofs later in the paper.
To facilitate our discussion, we make a technical assumption on the focal sets for our
system. The assumption rules out some more difficult cases when proving results
on stability later in the paper.

Assumption 1. For all domains D ∈ D,

	(D) ∩ supp(D′) = {}, ∀D′ ⊆ ∂D. (16)
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It essentially says that for every domain D, both switching and regulatory, the focal
set 	(D) does not intersect the supporting hyperplane of any domain D′ in the
boundary of D. For regulatory domains, Assumption 1 is equivalent to the assump-
tion that φ(D) 	∈ supp(D′) for all D′ ⊆ ∂D. In fact, for regulatory domains this
assumption is the generic case, but this is not true for switching domains. We will
return to discuss the consequences of Assumption 1 in Section 6. The following
corollary of the assumption will also be used in the sequel, and is easily deduced
from the fact that all domains D and their support are parallel to the axes, like the
hyperrectangular region �(D).

Corollary 3. Under Assumption 1, for all domains D ∈ D,

�(D) ∩ supp(D′) = {}, ∀D′ ⊆ ∂D. (17)

3. Equilibria and Stability

The focal sets discussed above are not, in general, true equilibria for the system as
a whole, but under certain conditions they can be. If D ∈ Dr is a regulatory domain
then 	(D) is a singleton and if 	(D) ∈ D, it is known that 	(D) is a regular
equilibrium point for the system and is asymptotically stable. On the other hand,
if D ∈ Ds is a switching domain then 	(D) is generally a set and the situation is
more complex. If 	(D) ∩ D 	= {} and Assumption 1 holds, then 	(D) is a sin-
gular equilibrium set for the system and under certain conditions may be shown to
be asymptotically stable in some appropriate sense. These concepts are explained
more completely in the following sections.

3.1. Regular Equilibrium Points

Recall that in a regulatory domain D ∈ Dr , the differential inclusion reduces to the
linear system

ẋ = f D − γ x,

with γ = diag(γ1, . . . , γn), a constant positive diagonal matrix. The solutions are
given by

x(t) = φ(D) + eγ (t0−t)(x(t0) − φ(D)),

where φ(D) satisfies φ(D) = γ −1f D . We have seen that φ(D) ∈ � is the focal
point of the flow in the regulatory domain D. Under Assumption 1, if φ(D) 	∈ D

then all solutions converge monotonically towards φ(D) until they leave the domain
D. Alternatively, if φ(D) ∈ D then as t → ∞ all solutions starting in D converge
towards φ(D), which is then a stable equilibrium point. We recall the following
elementary result, originally due to Glass and Kauffman [GK73].

Theorem 3.1. Let D be a regulatory domain with focal point φ(D). If φ(D) ∈ D

then x = φ(D) is an asymptotically stable equilibrium point of (2).
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Hence any focal points lying within their associated regulatory domain are always
asymptotically stable, and we refer to them as regular equilibrium points. These
points have also been called regular stationary points (RSPs) in the literature [ST93,
MPO95a]. In the example network of Figure 1, it can be seen that for the regulatory
domain D1 the model reduces to

ẋa = −γa xa,

ẋb = −γb xb.

Hence the focal point of D1 is φ(D1) = (0, 0), which lies inside D1 = {(xa, xb) ∈
� | 0 ≤ xa < θ1

a , 0 ≤ xb < θ1
b }. Hence (0, 0) is a regular equilibrium point for

the example network, and is asymptotically stable by Theorem 3.1 (see Figure 4).
This stable regular equilibrium point represents a state of the network where both
gene a and gene b are off.

3.2. Singular Equilibrium Points and Sets

Since regular equilibrium points are well studied and are always asymptotically
stable, we focus on equilibrium points in switching domains for the remainder of
the paper. In a switching domain D ∈ Ds , recall that solutions are defined by con-
sidering the differential inclusion H(x). We say that a point y ∈ � is an equilibrium
point for the differential inclusion if

0 ∈ H(y), (18)

where H is computed using the Filippov construction as in (11). In other words,
there is a solution in the sense of Filippov, ξt , such that ξt (y) = y, ∀t > 0. We
call such a point a singular equilibrium point, although they have also been called
singular stationary points (SSPs) in the literature [ST93]. Given a switching domain
D ∈ Ds , we can check for singular equilibrium points by computing the focal set
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Fig. 4. (a) Phase space box � for the PL model in Figure 1 showing all the domains. (b)
Sketch of the vector field for the PL model in Figure 1, with the parameter values from Sec-
tion 2. There is a regular equilibrium point at (0, 0) ∈ D1 and there are singular equilibrium
points in D7 and D19.
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	(D). UnderAssumption 1, if 	(D)∩D 	= {} then we can deduce that 	(D) ⊆ D,
i.e. that D strictly contains or equals its focal set (	(D) being a closed set, equality
only occurs if D is a point). In fact, then every φ ∈ 	(D) is an equilibrium point
of the differential inclusion. That is, for each φ ∈ 	(D), there exists a solution ξt

such that ξt (φ) = φ, ∀t ≥ 0. Hence 	(D) is a set of singular equilibrium points
for the system, and we refer to such a 	(D) as a singular equilibrium set.

In the example network of Figure 1, it can be seen from applying Definition 5
to the switching domain D19 that the focal set 	(D19) is given by D19 itself. In this
example, D19 has order 2 in a two-dimensional phase space �, so D19 is simply
a point and 	(D19) is a singleton. Hence 	(D19) is a singular equilibrium point
and from examining the local behaviour of the vector field in Figure 4, it appears
to be stable in some sense. Similarly, 	(D7) is a singular equilibrium point and
from examining the local behaviour of the vector field, it appears to be a saddle-like
point and hence unstable.

The fact that equilibria in switching domains can be set-valued, in addition to the
non-uniqueness of solutions to differential inclusions, requires some extended defi-
nitions of stability. Filippov uses the term weakly stable to describe an equilibrium
point that is stable in the sense of Lyapunov for some solution of the differential
inclusion [Fil88]. The term stable is reserved for a stronger concept of stability,
and describes a equilibrium point that is stable in the sense of Lyapunov for every
solution of the differential inclusion. Asymptotically stable and weakly asymptot-
ically stable can be defined similarly. These concepts of stable and weakly stable
equilibrium points can be extended naturally to define stability for equilibrium
sets. The definitions below are motivated by the standard definitions of stability for
equilibrium points as found in Hirsch and Smale [HS74], and the formulation of
Lyapunov stability for sets in Bhatia and Szegö [BS67].

Definition 6. An equilibrium set E is stable if, for all neighbourhoods V with
E ⊆ V , there exists U such that E ⊆ U ⊆ V and for all x ∈ U , and for every
solution ξt of (9) with ξ0(x) = x,

ξt (x) ∈ V, ∀t ≥ 0.

Definition 7. An equilibrium set E is weakly stable if, for all neighbourhoods V

with E ⊆ V , there exists U such that E ⊆ U ⊆ V and for all x ∈ U , and for some
solution ξt of (9) with ξ0(x) = x,

ξt (x) ∈ V, ∀t ≥ 0.

Definition 8. An equilibrium set E is asymptotically stable if, for all neighbour-
hoods V with E ⊆ V , there exists U such that E ⊆ U ⊆ V and for all x ∈ U , and
for every solution ξt of (9) with ξ0(x) = x,

1. ξt (x) ∈ V, ∀t ≥ 0, and
2. limt→∞ ξt (x) ∈ E.

Definition 9. An equilibrium set E is weakly asymptotically stable if, for all neigh-
bourhoods V with E ⊆ V , there exists U such that E ⊆ U ⊆ V and for all x ∈ U ,
and for some solution ξt of (9) with ξ0(x) = x,
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1. ξt (x) ∈ V, ∀t ≥ 0, and
2. limt→∞ ξt (x) ∈ E.

Remark. – Hence for an asymptotically stable equilibrium set E, any equilibrium
point y ∈ E is weakly asymptotically stable in the above sense.

– The above definitions also apply to invariant sets. In this way, we can define the
stability of �(D).

The non-uniqueness of solutions to the differential inclusion also gives rise to two
different notions of instability.

Definition 10. An equilibrium set E is weakly unstable if there exists a neighbour-
hood V with E ⊆ V , such that for all neighbourhoods U with E ⊆ U ⊆ V , there
exist some x ∈ U , some τ > 0, such that for some solution ξt of (9), with ξ0(x) = x

ξτ (x) /∈ V.

Definition 11. An equilibrium set E is unstable if there exists a neighbourhood V

with E ⊆ V , such that for all neighbourhoods U with E ⊆ U ⊆ V , there exist
some x ∈ U , some τ > 0, such that for all solutions ξt of (9), with ξ0(x) = x

ξτ (x) /∈ V.

Remark. Definitions 10 and 11 have been formulated so that weakly unstable is
equivalent to not stable, and unstable is equivalent to not weakly stable. Hence if
an equilibrium set E is weakly unstable, it follows that E is not stable, but it may be
weakly stable. If an equilibrium set E is unstable, it follows that E is also weakly
unstable.

4. Graphical Representation of the Dynamics

De Jong et al have developed a discrete, qualitative description of the dynamics
of the PL system that underlies the qualitative simulation of genetic regulatory
networks [dJGH+04]. This formulation involves an abstraction of the dynamics of
the system by means of a state transition graph, a concept originally due to Glass
[Gla75]. The state transition graph is a discrete representation consisting of the
qualitative states of the system (the domains) and all possible transitions between
them. This description is the key to formulating and proving the results on stability
of singular equilibrium points in Section 5, so here we review some of the concepts
and prove a proposition on transitions that will be used in the proofs.

4.1. States and Transitions

The set of domains D can be thought of as qualitative states, since the PL sys-
tem (2) behaves in a qualitatively homogeneous manner in each domain D ∈ D.
The qualitative state associated with a domain can be either persistent (some solu-
tions remain in the domain for more than a single instant of time) or instantaneous
(all solutions pass through the domain instantaneously), the latter being of limited
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biological significance. Given two contiguous domains D, D′ ∈ D, we say that
there is transition from D to D′ if there is a solution in the sense of Filippov lying
in D and terminating in D′. We define a transition from D to D′ more precisely
below. Recall that A(D) ⊂ Ds is the set of all switching domains in the boundary
of D.

Definition 12. Let D, D′ ∈ D be two contiguous domains. We say that there exists
a transition from D to D′ if one of the following two properties holds:

1. If D′ ∈ A(D), then there exists x0 ∈ D and a Filippov solution ξt (x0) defined
on a finite time interval [0, τ ] such that
(a) ξt (x0) ∈ D for all t ∈ [0, τ ), and
(b) ξτ (x0) ∈ D′.

2. If D ∈ A(D′), then there exists x0 ∈ D and a Filippov solution ξt (x0) defined
on a finite time interval [0, τ ] such that
(a) ξ0(x0) = x0 ∈ D, and
(b) ξt (x0) ∈ D′ for all t ∈ (0, τ ].

The definition says that there exists a Filippov solution reaching D′ from D in finite
time without passing through an intermediate domain. Given contiguous D and D′,
then either D′ ⊆ ∂D (that is, D′ ∈ A(D)), or D ⊆ ∂D′ (that is, D ∈ A(D′)). If
D′ ⊆ ∂D then order(D′) > order(D), meaning D′ has more switching variables
then D. Alternatively, if D ⊆ ∂D′ then order(D′) < order(D), i.e. D′ has less
switching variables than D. Based on the order of the two domains, we can prove
the following two properties of transitions.

Proposition 4.1. Let D, D′ ∈ D be two contiguous domains such that D′ ∈ A(D).
Under Assumption 1, there exists a transition from D to D′ iff

1. 	(D) 	= {}.
2. For all i ∈ {1, . . . , n} such that xi is switching in D′ but not in D,

(d ′
i − di)(φi − d ′

i ) > 0, ∀d ∈ D, ∀d ′ ∈ D′, ∀φ ∈ 	(D). (19)

Proof. We first prove sufficiency. Suppose 	(D) 	= {}. Let xi be switching in D′
but not in D, then we can write D′ = D′

1 ×· · ·×D′
i ×· · ·×D′

n, with D′
i = {θqi

i }.
Assume initially that di < θ

qi

i , ∀d ∈ D. Then d ′
i − di > 0, ∀d ′ ∈ D′, ∀d ∈ D.

Thus condition 2 above yields φi − d ′
i > 0 for all φ ∈ 	(D), so d ′

i < φi .
Hence di < θ

qi

i < φi , ∀d ∈ D. Similarly, if di > θ
qi

i , ∀d ∈ D, it follows that
di > θ

qi

i > φi , ∀d ∈ D. See Figure 5(a) for an illustration. For every x0 ∈ D,
there exists a solution ξt such that (ξt (x0))i converges monotonically towards the
projection of 	(D) onto �i , by Lemma 2.1. Hence all solutions starting in D will
reach the hyperplane {x ∈ � | xi = θ

qi

i }, and do so in finite time by Assumption 1.
Let I be the set of indices such that xi is switching in D′ but not in D. Then choose
x0 so that the solution ξt (x0) passes through

⋂

i∈I

{x ∈ � | xi = θ
qi

i } ∩ ∂D.
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Fig. 5. Typical phase portrait and subgraph of the state transition graph for Propositions 4.1
and 4.2. (a) For Proposition 4.1, order(D′) > order(D), xb is switching on D′ and the location
of 	(D) results in a transition from D to D′. (b) For Proposition 4.2, order(D′) < order(D),
xa is switching in D′, but both xa and xb are switching on D. The location of 	(D′) guaran-
tees a transition from D to D′. Regulatory and switching domains are indicated by unfilled
and filled dots, respectively.

According to Definition 12, this gives a transition from D to D′.
To prove necessity, we use a proof by contradiction. Assume conditions 1 or

2 are false and suppose there exists a transition from D to D′ ∈ A(D). Firstly, if
condition 1 is false then 	(D) is empty, no solutions stay in D, so no transition
from D to D′ ∈ A(D) is possible according to Definition 12. Secondly, if condition
2 is false then under Assumption 1, there exists i with xi switching in D′ but not in
D such that

(d ′
i − di)(φi − d ′

i ) < 0, ∀d ∈ D, ∀d ′ ∈ D′, ∀φ ∈ 	(D). (20)

Note that we can write (20) with a strict inequality since under Assumption 1,
	(D) ∩ D′ = {}, so φi 	= d ′

i . In addition, d ′
i 	= di by the definition of domains.

Assume that D′
i = {θqi

i }. Thus d ′
i = θ

qi

i . If d ′
i < di , then this implies φi > d ′

i .
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Similarly, if d ′
i > di then φi < d ′

i . From Lemma 2.1 we know that for all solu-
tions ξt in D, the i component (ξt )i converges monotonically to the projection of
	(D) onto �i . For both cases, it follows that no solution starting in D can reach
the threshold hyperplane {x ∈ � | xi = d ′

i}. Hence there cannot be a transition
from D to D′, which contradicts our assumption. ��
Proposition 4.2. Let D, D′ ∈ D be two contiguous domains such that D ∈ A(D′).
Under Assumption 1, there exists a transition from D to D′ iff

1. 	(D′) 	= {}.
2. For all i ∈ {1, . . . , n} such that xi is switching in D but not in D′,

(d ′
i − di)(φ

′
i − di) > 0, ∀d ∈ D, ∀d ′ ∈ D′, ∀φ′ ∈ 	(D′). (21)

Proof. Similar to the proof of Proposition 4.1. ��
Typical situations for Propositions 4.1 and 4.2 are illustrated in Figure 5. In

Figure 5(a), we have D′ ∈ A(D), order(D′) > order(D), xb is switching on D′
and the relative location of 	(D) leads to a transition from D to D′, as covered by
Proposition 4.1. In Figure 5(b), D ∈ A(D′), order(D′) < order(D), xb is switching
in D′, and both xa and xb are switching on D. The relative location of 	(D′) leads
to a transition from D to D′, as covered by Proposition 4.2.

4.2. State Transition Graph

A state transition graph (STG) is a directed graph whose vertices are the domains
of the system and whose edges are the transitions between these domains. The
state transition graph is a discrete representation of the qualitative dynamics of the
piecewise-linear system. Figure 6 shows the state transition graph for the example
two-gene network from Figure 1. The domains represented by the vertices in the
state transition graph can be thought of as qualitative states of the PL model. We
have the following definitions for paths in a state transition graph G.
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Fig. 6. Phase space and state transition graph for the PL model in Figure 1. Nodes associated
with regulatory and switching domains are indicated by unfilled and filled dots, respectively.
Domains containing equilibria are additionally circled.
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Definition 13. A path of length (k − 1) in G is a non-empty sequence of domains
〈D1, . . . , Dk〉 such that, for every i, 1 ≤ i < k, there exists a transition from Di

to Di+1.

Definition 14. A cycle in G is a path that begins and ends with the same domain
(i.e. the same vertex), but otherwise all the domains are different.

Recall that within each domain, i.e. for each vertex of the STG, the PL system (2)
behaves in a qualitatively homogeneous way. Hence many dynamical properties of
the full PL system can be analyzed simply by studying the STG. In the terminology
of Definitions 13 and 14, a solution to the PL system (2) corresponds to a path in
the STG and a cycle in the PL system will show up as a cycle in the STG. Since
the STG captures the essential qualitative dynamics of the PL system, it is useful to
prove results on stability of equilibria that can be inferred directly from the STG.
For example, for the two-gene network, the sequence 〈D21, D17, D18, D19〉 is a
path in the STG shown in Figure 6. This path corresponds to solutions with initial
conditions in domain D21 that reach a qualitative equilibrium state in D19, cor-
responding to a domain containing an equilibrium point. Whether such qualitative
equilibrium states represent equilibria that are stable, according to Definitions 6–9,
is investigated in the next section.

5. Criteria for Stability of Singular Equilibria

The purpose of this section is to set out and prove criteria for the stability of sin-
gular equilibria of the differential inclusion (9), based on properties of the state
transition graph. As discussed in Section 3, regular equilibrium points are known
to be asymptotically stable so we focus instead on the stability of equilibria located
in switching domains: singular equilibrium points and sets. We work under the
caveat that Assumption 1 from Section 2.3 holds for every domain D in our system.
In particular this excludes the situation when the focal set 	(D) is only partially
contained in D ∈ Ds and spills over into contiguous switching domains, or the
situation when 	(D) is contained in the supporting hyperplanes of the boundary of
D. The proof in R

2 is included since it gives a geometrical intuition for the general
proof in R

n.

5.1. Theorem on Stability

The following theorems allow us to link the rigorous concept of stability seen in
Definitions 6–9 with the qualitative dynamics of the system represented by the state
transition graph. Theorems 5.1 and 5.2 state that a switching domain D contains an
asymptotically stable equilibrium set if every contiguous regulatory domain has a
transition entering the domain D. The first theorem is stated and proved for � ⊂ R

2,
and the second is the general case for p switching variables in � ⊂ R

n.

Theorem 5.1. Assume � ⊂ R
2. Under Assumption 1, let D ∈ Ds be a switching

domain containing a singular equilibrium point 	(D). If for all D′ ∈ R(D) there
exists a transition from D′ to D in the state transition graph G, then 	(D) is
asymptotically stable.
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Proof. Let x = (x1, x2) ∈ D. In R
2 there are only two cases: one of the variables

is switching, or both are switching.

1. Assume x2 is a switching variable on D and x1 is not. The subgraph of G show-
ing D and R(D) can be seen in Figure 7. Assume without loss of generality
that D is defined by D = {x ∈ � | θ

q1
1 < x1 < θ

q1+1
1 , x2 = θ

q2
2 }. Let

D1 = {x ∈ � | θ
q1
1 < x1 < θ

q1+1
1 , θ

q2
2 < x2 < θ

q2+1
2 } and D2 = {x ∈ � |

θ
q1
1 < x1 < θ

q1+1
1 , θ

q2−1
2 < x2 < θ

q2
2 } be the regulatory domains in R(D) i.e.

D1 and D2 are the domains “above” and “below” D in the phase space. Since
there is a transition from D1 to D in the STG, it follows from Proposition 4.1
that

(d2 − d1
2 )(φ1

2 − d2) > 0, ∀d ∈ D, ∀d1 ∈ D1,

where φ1 = φ(D1). Since d2 < d1
2 , ∀d ∈ D, ∀d1 ∈ D1, we know that the focal

point φ(D1) lies somewhere in the half-space defined by {x ∈ � | x2 < θ
q2
2 }.

That is, φ(D1) lies “below” the threshold defined by x2 = θ
q2
2 . This means

that every solution ξt = (x1(t), x2(t)) starting in D1, has the property ẋ2 < 0.
Similarly, the transition from D2 to D in the STG and Proposition 4.1 imply
φ(D2) lies somewhere in the half-space defined by {x ∈ R

2 | x2 > θ
q2
2 }, so

every solution ξt = (x1(t), x2(t)) starting in D2 has ẋ2 > 0.
Moreover, we can always bound the non-switching component of the solutions,
x1(t), using bounds of order e−γ1t w.r.t. time. This means that given any neigh-
bourhood V of 	(D) ∈ D, we can choose another neighbourhood U of 	(D)

with U small enough such that ξt (x) ∈ V , ∀t > 0, ∀x ∈ U , and that all solutions
ξt starting in U reach D in finite time. More exactly, let 	(D) = {(c, θq2

2 )},
and choose U to be the neighbourhood

U = {x ∈ � | |x1 − c| < ε1, |x2 − θ
q2
2 | < ε2}, (22)

for some ε1, ε2 > 0. From Lemma 2.1, the monotonicity properties of the solu-
tions to (2) mean that given any neighbourhood V , we can always choose ε1, ε2
small enough so that U ⊂ V and ξt (x) ∈ V , ∀t > 0, ∀x ∈ U . (Briefly, the

D1

D2

D

	(D2)

	(D1)

UV 	(D)

D1

D

D2

Fig. 7. State transition graph and sketch of phase portrait for case 1 in the proof of Theo-
rem 5.1.
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appropriate values of ε1, ε2 can be chosen by computing the times t± to reach
x2 = θ

q2
2 from x2 = θ

q2
2 ± ε2 using the ẋ2 equation, calculating x1(t

±), and
choosing ε1, ε2 so that (x1(t

±), x2(t
±)) ∈ V for all initial conditions in U .)

Thus for small enough U , all solutions starting in U are guaranteed to reach
D (in finite time because of Assumption 1) and when in D, they are known to
converge asymptotically to 	(D) [GS02].

2. Assume both x1 and x2 are switching variables on D. Then there are four regu-
latory domains in R(D) and we have the situation shown in Figure 8. For each
regulatory domain D′ ∈ R(D) = {D1, D3, D7, D9}, we can extend the argu-
ments used in case 1 above to deduce that φ(Di) (i = 1, 3, 7, 9) lie in a specific
quadrant. For example, the transition from D3 to D and Proposition 4.1 imply
that φ(D3) lies in the quarter-space defined by {x ∈ � | x1 > θ

q1
1 , x2 < θ

q2
2 }.

This can be seen as follows. Let D = {x ∈ � | x1 = θ
q1
1 , x2 = θ

q2
2 },

D3 = {x ∈ � | θ
q1−1
1 < x1 < θ

q1
1 , θ

q2
2 < x2 < θ

q2+1
2 }, and D7 = {x ∈

� | θ
q1
1 < x1 < θ

q1+1
1 , θ

q2−1
2 < x2 < θ

q2
2 }. Then D3 and D7 are regulatory

domains as illustrated in Figure 8. By hypothesis, there is a transition from D3

to D in the STG, so it follows from Proposition 4.1 that

(d1 − d3
1 )(φ3

1 − d1) > 0, ∀d ∈ D, ∀d3 ∈ D3, (23)

(d2 − d3
2 )(φ3

2 − d2) > 0, ∀d ∈ D, ∀d3 ∈ D3, (24)

where φ3 = φ(D3). Since d2 < d3
2 , ∀d ∈ D, ∀d3 ∈ D3, (24) implies that the

focal point φ(D3) lies somewhere in the half-space defined by {x ∈ � | x2 <

θ
q2
2 }. Similarly, since d3

1 < d1, ∀d ∈ D, ∀d3 ∈ D3, (23) implies that the focal
point φ(D3) lies somewhere in the half-space defined by {x ∈ � | x1 > θ

q1
1 }.

Thus, (23) and (24) together imply that

φ(D3) ∈ {x ∈ � | x1 > θ
q1
1 } ∩ {x ∈ � | x2 < θ

q2
2 },

and every solution, ξt = (x1(t), x2(t)), starting in D3 has the property ẋ1 > 0
and ẋ2 < 0. Taking a sector U3 in D3 that will form part of a neighbourhood
of 	(D), all solutions starting in U3 will either reach one of the switching
domains D2 or D6 or go directly to D. The transition from D3 and D1 to
D2 in the STG result in sliding modes along D2, with focal set 	(D2) such

D2

D7

D9

D1

D9

D7D1

D3D3

D8

UV

D2

D6

D4

D8

D4

D6

	(D)D

Fig. 8. State transition graph and sketch of phase portrait for case 2 in the proof of Theo-
rem 5.1. Only transitions from D′ ∈ R(D) are shown.



Piecewise-linear Models of Genetic Regulatory Networks

that 	(D2) ⊆ {x ∈ � | x1 > θ
q1
1 }. This is because 	(D2) is defined using

a convex combination of φ(D1) and φ(D3), both of which lie in the region
{x ∈ � | x1 > θ

q1
1 }, hence 	(D2) will also lie in this region. It follows that

solutions starting in U3 that reach D2 will slide along D2 until they reach
D. Similarly, solutions starting in U3 that reach D6 will slide along D6 until
they reach D. Analogous regions can be constructed in the other regulatory
domains, {D1, D7, D9}. From these sectors, {U1, U3, U7, U9}, in the domains
{D1, D3, D7, D9}, we can construct a neighbourhood U of 	(D). Given any
neighbourhood V of 	(D), we can construct such a neighbourhood U ⊂ V .
From Lemma 2.1, the monotonic convergence of solutions means that all solu-
tions starting in a small enough U will remain in V . The above reasoning shows
that all these solutions eventually converge to D and hence to 	(D).

This completes the proof of Theorem 5.1. ��
Remark. The proof of Theorem 5.1 is essentially an application of Proposition 4.1
(under Assumption 1) and Lemma 2.1. We use Proposition 4.1 to deduce, from the
existence of a transition, the relative position of the focal points for each D′ ∈ R(D),
construct a suitable neighbourhood around 	(D) and then apply Lemma 2.1, on
the monotonic convergence of solutions in D′ towards 	(D′), to prove that 	(D)

is asymptotically stable according to Definition 8. Assumption 1 ensures that all
solutions starting in the neighbourhood will reach D in finite time, and is used
implicitly when Proposition 4.1 is applied.

Below we state and prove the general result in R
n for p switching variables. We

give the main lines, the details being similar to the two-dimensional case.

Theorem 5.2. Assume � ⊂ R
n. Let D ∈ Ds be a switching domain of order p ≥ 1

containing a singular equilibrium set 	(D) that satisfies Assumption 1. If for all
D′ ∈ R(D), there is a transition from D′ to D in the state transition graph, then
	(D) is weakly asymptotically stable and �(D) is asymptotically stable.

Proof. Assume without loss of generality that x1, . . . , xp are the switching vari-
ables on D and xp+1, . . . , xn are non-switching. Assume then that D is defined
by

D = {x ∈ � | x1 = θ
q1
1 , . . . , xp = θ

qp
p ,

θ
qp+1
p+1 < xp+1 < θ

qp+1+1
p+1 , . . . , θ

qn
n < xn < θ

qn+1
n }. (25)

Let D′ ∈ R(D) be a contiguous regulatory domain. Let i ∈ {1, . . . , p} index an
arbitrary variable that is switching in D but not in D′ (since D′ is a regulatory
domain). From the hypotheses of the theorem, there exists a transition from D′ to
D. Since D′ is a regulatory domain, we know

p = order(D) > order(D′) = 0, (26)

and that 	(D′) 	= {}. In fact, since D′ ∈ Dr , we can write 	(D′) = {φ(D′)}.
Hence from Proposition 4.1 on transitions, and under Assumption 1, for each i

with xi switching in D, we have

(di − d ′
i )(φ

′
i − di) > 0, ∀d ′ ∈ D′, ∀d ∈ D, (27)
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where φ′ = φ(D′). Hence either we have

0 ≤ d ′
i < di < φ′

i , ∀d ′ ∈ D′, ∀d ∈ D, (28)

which means φ(D′) lies somewhere in the region {x ∈ � | xi > θ
qi

i }, or we have

0 ≤ φ′
i < di < d ′

i , ∀d ′ ∈ D′, ∀d ∈ D, (29)

which means φ(D′) lies somewhere in the region {x ∈ � | xi < θ
qi

i }. If equa-
tion (28) is true for someD′∈R(D), then every solution ξt=(x1(t), x2(t), . . . , xn(t))

starting in D′ has the property ẋi > 0 in D′. Similarly, equation (29) means that for
every solution ξt = (x1(t), x2(t), . . . , xn(t)) starting in D′, we have the property
ẋi < 0 in D′. This is true for any i with xi switching in D′, thus for all switching
variables x1, . . . , xp. In addition, as seen in Theorem 5.1, case 1, we can always
bound the non-switching components of the solutions by bounds of order e−γj t w.r.t.
time, for each of the non-switching variables xp+1, . . . , xn. From Lemma 2.1, the
solutions ξi in D′ ∈ Dr converge monotonically towards φ(D′). Hence, given
any neighbourhood V of 	(D), we can bound the solutions by choosing another
neighbourhood U containing 	(D), with U small enough such that ξt (x) ∈ V ,
∀t > 0, ∀x ∈ U , and such that all solutions starting in U reach D in finite time.
This neighbourhood U can be constructed analogously to the neighbourhoods in the
proof of Theorem 5.1, being careful to include sectors on the contiguous switching
domains. The focal sets of these contiguous switching domains are derived from
convex combinations of the focal points in the neighbouring regulatory domains,
so the solutions in the switching domains have the same properties of monotonicity.
Once the solutions reach D they converge asymptotically to �(D) (Corollary 1),
and so �(D) is an asymptotically stable set.

Let us now consider the equilibrium set 	(D): every φ ∈ 	(D) is a singular
equilibrium for the system. There is, for an initial condition x(t0), a solution (among
all the solutions starting in x(t0)) in D verifying ẋ = γ (φ − x). This solution con-
verges towards φ. Now it is easy to construct a neighborhood of 	(D) having
the required properties for weak asymptotic stability: choosing a neighborhood V

of 	(D), we wish to construct a neighborhood U ⊆ V verifying Definition 9.
For every φ ∈ 	(D), choose a hyperrectangular neighborhood of φ contained in
V . Clearly this neighborhood is invariant for the solution converging towards φ.
Let us take the union of these neighborhoods for all φ ∈ 	(D), we obtain a a
neighborhood U of 	(D) proving the weak asymptotic stability. ��
Corollary 4. Under the conditions of Theorem 5.2, if, moreover, 	(D) is a single
point, it is asymptotically stable.

Remark. Because of the linearity of the differential system for a given φ ∈ 	(D),
it is also clear that the basins of attraction for 	(D) and �(D) include the whole
domain D.

There is no hope for proving more in the case when 	(D) is a set. To see that,
let us suppose that n = 4, under which condition 	(D) can be a segment when
D is of dimension 2. If this segment is not parallel to the axes, and if the γi are
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not all equal, then there exist solutions starting from one point φ1 of the segment
and leaving the segment (but staying in the rectangle �(D)) to converge towards
another point φ2 of the segment (Figure 9).

In the two-gene network of Figure 1, the switching domain D19 satisfies the cri-
teria of Theorems 5.1 or 5.2, since each domain D′ ∈ R(D)={D13, D15, D23, D25}
has a transition from D′ to D19. Hence Theorems 5.1 or 5.2 show that D19 contains
an asymptotically stable singular equilibrium point.

5.2. Theorem on Instability

The final theorem, Theorem 5.3, is a result for unstable singular equilibrium sets,
like the saddle-type behaviour of D7 in the example network, Figure 6. It states that
a domain D contains an unstable equilibrium set if there is at least one transition in
the state transition graph leaving D and entering a contiguous regulatory domain.

Theorem 5.3. Let � ⊂ R
n and D ∈ Ds be a switching domain containing a

singular equilibrium set 	(D) ⊆ D that satisfies Assumption 1. If there exists
D′ ∈ R(D) with a transition from D to D′, then 	(D) is unstable.

Proof. First consider the case n = 2. Since� ⊂ R
2, it follows that 	(D) is a single-

ton, 	(D) = {φ} with φ ∈ D. First suppose that x1 is switching on D, that the reg-
ulatory domain D′ ∈ R(D) is given by D′ = {x ∈ � | θ

q1
1 < x1 < θ

q1+1
1 , θ

q2
2 <

x2 < θ
q2+1
2 }, and that D is given by D = {x ∈ � | x1 = θ

q1
1 , θ

q2
2 < x2 < θ

q2+1
2 }.

Since there is a transition from D to D′, we can deduce from Proposition 4.2 that
the focal point 	(D′) lies in the region {x ∈ � | x1 > θ

q1
1 }. Choose a neighbour-

hood V of φ given by B(φ, r), where B(y, r) is the two-dimensional ball of radius
r > 0 and centre y. Then for any neighbourhood U of φ, with U ⊂ V , by the
monotonic convergence of the solutions in D′ towards 	(D′) (from Lemma 2.1),
we can always find some x0 ∈ U and a solution ξt such that ξτ (x0) 	∈ V for some
τ > 0. Indeed if V = B(φ, r) is chosen with r small enough then any x0 in (U ∩D′)
will work since ξt (x0) will converge towards 	(D′), away from D, and leave V .
The proof when both x1 and x2 are switching on D is similar, and this proof can be
easily generalized to R

n.

�(D)

	(D)

φ2

φ1

Fig. 9. Illustration of the fact that 	(D) is weakly asymptotically stable but not asymptoti-
cally stable in the sense of definition 6.
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The above proof works by taking a neighbourhood V around the equilibrium
set, and showing that for all other neighbourhoods contained in V , we have solu-
tions that leave V in finite time (cf. Figure 10). In fact, the transition from D to D′
and Proposition 4.2 mean that we can always take a solution starting in D′, which
will converge monotonically towards 	(D′) (Lemma 2.1), thus leaving V in finite
time. ��

For the example of Figure 1, the switching domain D7 satisfies the criteria
of Theorem 5.3, since there are transitions from D7 to the contiguous regulatory
domains D1 and D13. Hence Theorem 5.3 shows that D7 contains an unstable
singular equilibrium point.

Remark. An analogous theorem can be formulated for �(D).

5.3. Stronger Conjecture on Stability

The hypotheses of Theorems 5.1 and 5.2 are quite strong and there are many PL
models in which we suspect an equilibrium point to be stable even though it is
not covered by the criteria of Theorems 5.1 and 5.2. For example, consider the
two-gene network with equations:

ẋa = κa (1 − s+(xa, θa) s+(xb, θb)) − γa xa, (30)

ẋb = κb s+(xa, θa) s−(xb, θb) − γb xb. (31)

The phase space associated with the model consists of four regulatory domains
and five switching domains. It can be shown that, for a range of typical parameter
values, the phase portrait and state transition graph are as in Figure 11 and satisfy
Assumption 1 (for other parameters the graph could be different). Examination of
the phase portrait and the vector field near D5 shows that D5 clearly contains a
stable equilibrium point or set, but does not satisfy the hypotheses of Theorems 5.1
and 5.2 since there is no transition from the regulatory domains D1 and D7 to the
domain D5.

The following set of neighbouring domains of lower order is useful in formu-
lating a stronger conjecture. If D ∈ D is a domain, define N(D) to be the set of all
contiguous domains of D that have D in their boundary.

N(D) = {D′ ∈ D | D ⊆ ∂D′}. (32)

D′
V

	(D)

D

U

	(D′)

D D′

Fig. 10. State transition graph and sketch of phase portrait for the proof of Theorem 5.3.
Only the transition from D to D′ is shown.
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D4
D7

D3
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Fig. 11. (a) Phase space and (b) vector field for the genetic regulatory network described
by the PL model in Equations (30) and (31). (c) State transition graph for the model. The
switching domain D5 clearly contains a stable equilibrium point, but does not satisfy the
hypotheses of Theorems 5.1 and 5.2 since there is no transition from regulatory domains D1

and D7 to the domain D5.

This set has the property that order(D′) < order(D) for all D′ ∈ N(D). An
improved conjecture with relaxed hypotheses on the state transition graph is stated
below. Conjecture 5.4 states that a switching domain D contains an asymptotically
stable equilibrium set if the state transition graph contains no outgoing transitions
from D and no cycles (see Definition 14) in the neighbouring domains N(D).

Conjecture 5.4. Assume � ⊂ R
n. Let D ∈ D be a switching domain containing

a singular equilibrium set 	(D) that satisfies Assumption 1. Let G be the state
transition graph. 	(D) is weakly asymptotically stable if

1. G contains no outgoing transitions from D, and
2. there is no cycle in the restriction of G to N(D).

Although we do not prove Conjecture 5.4 here, it is clear from Figure 11 that this
example satisfies the criteria of the conjecture. Conjecture 5.4 would allow stability
of singular equilibria to be proven for a much wider class of PL models of genetic
regulatory networks and so a proof of this result is the subject of ongoing work.

6. Discussion

In this paper we have studied the stability of equilibria for piecewise-linear models
of genetic regulatory networks. We have focused on the characterization of equi-
libria on surfaces of discontinuity arising from the use of step functions employed
in the PL models. Equilibria that lie on the surfaces of discontinuity (so-called
threshold hyperplanes), are referred to as singular equilibria. In order to study
these singular equilibria, we use the approach of Filippov to define the solutions
on the threshold hyperplanes, leading to a piecewise-linear differential inclusion
(PLDI) model. While singular equilibria can sometimes be isolated points, in gen-
eral they are subsets of the threshold hyperplanes. Our main contributions are to
place the stability problem in the context of Filippov solutions, plus the formulation
and proof of stability criteria based on a qualitative representation of the dynamics
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of the system, the state transition graph (STG). Firstly, we feel that using differ-
ential inclusions and Filippov solutions clarifies the stability problem for singular
equilibria and places it on a firm mathematical footing. Secondly, our results on
stability and instability based on the qualitative abstraction of the STG are the most
useful in practice and are in keeping with the qualitative nature of the underlying
PL models. We also formulated a stronger conjecture on the stability of singular
equilibria that we have left unproven.

Assumption 1 is crucial to most of the results presented here. This assumption
is that for every domain D, either switching or regulatory, the focal set does not
intersect with the supporting hyperplane of any domain D′ that lies in the bound-
ary of D. Informally, for regulatory domains this implies that the focal point lies
strictly on one side or the other of the threshold hyperplanes in the boundary, thus
guaranteeing a transition in finite time. For switching domains it implies that the
focal set for D never intersects one of the hyperplanes that support the boundary
of D, and in particular, if D contains a singular equilibrium, this equilibrium is
strictly contained in D. Assumption 1 is generic if the focal set is a point (i.e. for
regulatory domains or for switching domains in R

2), in the sense that a specific
relationship between the independent parameters {θj

i }, {γi}, {κil} has to be spec-
ified for Assumption 1 to be violated. However, in the case when 	(D) is a set,
Assumption 1 is not generic anymore. If Assumption 1 is violated, then solutions
for D ∈ D can take infinite time to reach a domain in the boundary of D. Addi-
tionally, for switching domains, if Assumption 1 is violated then the focal set could
span several switching domains, which can sometimes give rise to equilibrium sets
that straddle more than one domain. In this case, for every φ ∈ 	(D), there exist
solutions of the PLDI that can transition from one switching domain to another,
while remaining inside the equilibrium set itself.

Within the hybrid systems literature, much has been written on the stabil-
ity of switching and hybrid systems (see, for example the review of Decarlo
et al [DBPL00]). One common approach is the use of Multiple Lyapunov Functions
to prove Lyapunov stability for switched system [JR98,Bra98]. Many results using
Multiple Lyapunov Functions are not directly applicable to systems with sliding
modes and/or cases when the domains do not have a common focal point, although
they might be extended [Bra98]. However, the structure of the PL system (2) is
particular and the problem we consider quite specific, which allows us to take a
different approach. Indeed, system (2) has a hyper-rectangular partitioning of a
high-dimensional phase space, there are powerful results on the monotonic con-
vergence properties of solutions towards the focal sets (Lemma 2.1), and only the
singular equilibria, arising from sliding modes on the threshold hyperplanes, are of
interest here. These three facts make a more tailored approach possible in this case.
However, an application of a generalized Lyapunov function approach to this PL
system may be a promising direction for future work and may help prove Conjec-
ture 5.4. Paden and Sastry, and Shevitz and Padden have used Filippov solutions
and Clarke’s generalized gradient to extend Lyapunov stability results to piecewise
smooth systems [PS87,SP94,Cla83], although [SP94] makes assumptions on the
uniqueness of solutions that do not hold in the PLDI models we consider here. There
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also exists other mathematical works on Filippov systems, mainly concentrating
on bifurcations [Fei95,dBBC98].

The analysis of PL models, in particular equilibria in threshold hyperplanes,
has also been the subject of much work in the mathematical biology community.
Often, however, the dynamics on the threshold hyperplanes are not defined and the
existence of singular equilibria is demonstrated by some other means. For example,
Mestl et al [MPO95a], use continuous functions called logoids in the model, then
take their limit to approach step functions and approximate the dynamics on the
threshold hyperplanes. Similarly, Plahte et al [PMO98,PK2005] use a more general
class of continuous functions in models with switch-like interactions to study the
dynamics on the threshold hyperplanes. The work of Snoussi and Thomas [ST93]
also does not define the dynamics on the threshold hyperplanes, but infers the
existence of singular equilibria based on the behaviour of the vector field around
the threshold hyperplanes and by analogy with continuous nonlinear systems. Our
approach differs, in that we use Filippov solutions to define the dynamics on the
threshold hyperplanes in a mathematically rigorous manner, which is also con-
structive and practical. Further, Filippov solutions can be used to define singular
equilibria that lie on the threshold hyperplanes, to study the stability of such equilib-
ria, and to develop criteria for their stability and instability. The Filippov approach
is a standard approach in control theory and has been used in several other prob-
lems in mathematical biology. Boukal and Křivan [BK99], for example, define
Filippov solutions for predator-prey models with optimal foraging behaviour and
demonstrate the existence of a global attractor using a Lyapunov function approach.

An initial aim of future work, from a mathematical perspective, would be to relax
Assumption 1, if possible, and extend our approach to study the resulting “weak
solutions” that stay within the equilibrium set itself, but can transition from one
switching domain to another. Based on the stability criteria proven in Theorems 5.1
and 5.2, we would also like to extend the approach of using Filippov solutions and
the state transition graph to develop similar criteria for limit cycles. This would
involve extending the work of Glass and Pasternack [GP78] on limit cycles in this
class of PL systems. Glass and Pasternack, see also [Edw00,ESAG01], define a
state transition graph and study limit cycles, but do not take sliding mode solutions
into account. Similarly, a characterization of invariant sets could be developed in
terms of criteria based on the state transition graph. It would also be interesting to
further explore the relations between the dynamical properties of PL systems and
those of related asynchronous or synchronous logical models of genetic regulatory
networks [Td90,Kau93,DAT+03].

The qualitative simulation of genetic regulatory networks, leading to the gener-
ation of the state transition graph for PL models, has been implemented in the soft-
ware tool Genetic Network Analyzer (GNA). GNA has been used in collaboration
with experimental biologists for the analysis of several genetic regulatory networks
of biological interest: the initiation of sporulation in Bacillus subtilis [dJGB+04],
quorum sensing in Pseudomonas aeruginosa [VF04], and the nutritional stress
response in Escherichia coli [RdJP+05]. Based on the work presented in this paper,
a module of GNA for identification of all regular and singular equilibria and deter-
mination of their stability could be developed. Recent work by Devloo et al, using
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constraint programming techniques to identify all equilibria in logical models of
large genetic regulatory networks, may aid in this [DHL03]. An equilibria and sta-
bility module for GNA could be exploited for rapid characterization of attractors
and steady state behaviour of large and complex genetic regulatory networks.
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