Manuscript submitted to Website: http://AIMsciences.org
AIMS’ Journals
Volume 00, Number0, Xxxx XXXX pp. 000-000

POLYTOPIC LYAPUNOV FUNCTIONS FOR
PERSISTENCE ANALYSIS OF COMPETING SPECIES

FREDERIC GROGNARD', FREDERIC MAZENC AND ALAIN RAPAPORT

TINRIA Sophia-Antipolis fINRA-INRIA, MERE Project-team
COMORE Project-team UMR Analyse des syses et bioratrie
2004 route des Lucioles, BP 93 2, place Viala
06902 Sophia-Antipolis Cedex, France 34060 MontpellieainEe

ABSTRACT. We show that stability of the equilibrium of a family of intemnected scalar
systems can be proved by using a sum of monot6fifunctions as Lyapunov function.
We prove this result in the general framework of nonlineatesys and then in the special
case of Kolmogorov systems. As an application, it is then usathow that intra-specific
competition can explain coexistence of several species remostat where they compete
for a single substrate. This invalidates the Competitivellision Principle, that states that
in the classical case (without this intra-specific compatiij it is indeed known that only
one of the species will survive.

1. INTRODUCTION. In this paper, we present a tool for the stability analysigter-
connected scalar systems. This tool is simply the construcif a polytopic Lyapunov
function, that is a Lyapunov function whose level sets anenolaries of polytopes (where
we simply define a polytope as a a bounded intersection ofta Bet of half-spaces). This
Lyapunov function is built as the sum of monotodftfunctions, that are not differentiable
everywhere; however, because these functions are sdadarse of advanced non-smooth
analysis for the study of our system is not required.

The analysis of interconnected systems arises in manycapipln fields because it often
is a practical approach for the study of large systems. Inrobtheory, the feedback or
parallel interconnection of twpassivesystems results in a passive system, so that only the
analysis of the smallest pieces of the puzzle is requiref] @80, a general approach for
the analysis of communication networks [9] and of metabotigenetic network [5, 14]
can be made by considering that the networks are made ofdmeected compartments.
One important step has been made in that line of work in [1pnehihe authors consider
the interconnection of monotone systems. In this paper, We@ncentrate on a system
made ofn scalar variables which are connected through a single link:

&y = fi(zi,u)
with z;,u € IR whereu = — 3", g;(x;) is the interconnection and is common to all

x; subsystems. In a more particular framework we show thattttislity result is retained
when the interconnected systems are of the Kolomogorov type

&y = x; fi(wi,u)

with z; € IR,
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The analysis of this family of systems is interesting in lftd®cause it shows how
stability of the interconnected system is retained despitemmon perturbation. However,
we have shown that we could use this result in the stabiliglyeis of the non-trivial
equilibrium that arises in some mixed culture in compatitior a single substrate.

It is well known that, when the growth rates of the differepesies only depend on the
substrate, the generic equilibrium state for a given dilutiate consists in the survival of
only one of the species [21], that is the species that regjtiiree smallest substrate concen-
tration to have a growth-rate equivalent to the dilutiorerat is the survival of the most
efficient species at this rate. This observation has bedaatat through laboratory exper-
iments [11], but it can also be seen that coexistence of theispis observed in real-world
applications (such as the chemostat). This coexistended®asexplained in different cases
by a time-varying nutrient feed [22, 12, 10], multi-resaairaodels [15, 13], non instan-
taneous growth [8], turbidity operating conditions [7], mwding effect [6] or variable
yield [18, 2]. In [4], the authors have shown that, in the esihiwhere the resource is
growing according to a logistic growth, they could exhibi¢ tstability of a single positive
equilibrium when the different species are all subject toaspecific competition (when
the consumers feed on the resource following specific fanatiresponses). It has been
first shown in [16] that the coexistence of the different $geand their convergence to-
wards a positive equilibrium can also simply be explaine@ibyntra-specific dependency
of the growth functions, which represents an intra-specifimpetition, in the chemostat
framework and without fixing a specific format for the grow#te. The approach that was
used for the proof made use of a multi-phase plane analysithid paper, we show that
the Lyapunov function that we propose can be used for thef proo

This paper is structured as follows. In Section 2, we predenaforementioned Lya-
punov function in a general nonlinear dynamical systemméssork; it is then particular-
ized to the Kolmogorov type positive systems in Section Seuation 4, we show how this
tool can be used for the proof of stability of a single positaquilibrium in the chemo-
stat framework that we just described. Finally, the existenf a single stable equilibrium
among the non-negative equilibria is proved in Section 5rwhe positive equilibrium
exists in the chemostat. We then state the conclusion inddegt

2. Interconnection of scalar systems through additive terms.In this section, we will
analyze the stability the interconnection of stable seafatems through a perturbation that
takes the form of a sum of increasing functions of the statswill later see that, with the
additional hypotheses, this could be interpreted as a ctitiopebetween the elements of
the system. However, we will not impose conditions on thesigf the partial derivatives
of the considered functions, as is usually done in competdontexts [20]; we will rather
constrain the signs of the functions in some points:

Theorem 1. Let the system of equations
&y = fi(ws,u)
with z;, v € IR and f;(., .) Lipschitz continuous in its arguments be such that

(A4) filzi,u) <0ifx; > 0andu <0
(B)  fi(zi,u) > 0if 2; < 0andu >0

and a set of bijective increasing Lipschitz functigns IR — IR such thaty;(0) = 0.
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Then the system afequations
= filwi— Y gi(x;)) )
j=1

has a unique equilibrium &0, - - - ,0), and it is globally asymptotically stable (GAS).

Proof. It is first clear thatf;(0,0) = 0 for all ;. Indeed, we havg;(x;,0) > 0 for z; <0
and f;(z;,0) < 0 for z; > 0, so thatf;(0,0) = 0 by continuity. System (1) then has an
equilibrium at(0, - - - ,0).

We can show that system (1) cannot have an equilibrium @?@1 gj(z;) > 0 (resp.
< 0) by noting that there must then existsuch thatgy (zx) > 0 (andz > 0), so that
ir = f(zk, — Z?Zl g;j(z;)) < 0 (because of assumption (B)). The same reasoning can
be held for a potential equilibriurma such thatZ;.‘:1 gj(z;) = 0 and someyy(xx) > 0.
The origin is therefore the unique equilibrium of system (1)

In order to show stability, we will build a polytopic Lyapundunction that is built on
theg;(.) functions. In order to do that, for any € IR", we define

S(x) = Zgj(xj)

and themax functions
S} (z5) = max(g;(x;),0) forj € {1,---,n}

Sf(%‘) = maX(_gj<.'L'j),O> forj € {1,---,n}

which allow for the definitions of

n

StH(z) = zn:sj(xj) >0 and S (z)= Zsj—(xj) >0

thenS(z) = S*(x) — S~ (z) and the function
V(x) = max(ST(x),S™ (z)) (2)

is positive definite, radially unbounded, has its uniqueimimm in V' (0) = 0, and is aC°
polytopic function (as the maximum of continuous functipriestead of checking’ < 0,
as is usually done, and which is not applicable here becHuisenon-differentiable, we
will verify, for each solutionz(.), that the composite map — V(x(t)) is decreasing
everywhere except at = 0, so that the equilibrium is attractive [3]. We then have two
cases for the analysis of the evolutionlofz(t)):

St (x) > S~ (x): In this region, our choice df" makes us consider the time evolution

of ST (x(t)). Itis easily seen that, when some > 0, we havet; < 0 because

g o= filzg, =35 a(@) = fi(z;, —S(x))
where
—S(z) = —-ST(z)+ S (z) <0

This implies that, as long & (z(t)) > S~ (z(¢)), the composite map— S;F(:cj () is
decreasing (becaugegis an increasing function af; andz; < 0). Inthe case where; =
0, a continuity argument applied to assumption (A) shows #hatl 0. The composite
mapt — S;F(xj(t)) is then non-increasing. Moreover, as longzds) # 0, there is
always at least oné such thatzy(t) > 0 (otherwise,S*(z(¢t)) = 0, which implies
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that S~ (z(¢)) = 0, and the considered(t) is the equilibrium). The composite map
t — S; (z(t)) is therefore decreasing so that the composite map

t— ST (x(t))
is decreasing.
St (z) < S~(=x): Through a similar reasoning, we can show that the compose
t— S5 (2(1)

is decreasing in this region.
If we now consider the composite map

t — V(z(t)) = max(ST(x(t)), S (x(t)))
we see that it is always decreasing whein) # 0 and St (z(t)) # S~ (x(t)) because,
in this case, it is equivalent to only one of the functic#ts or S~ at a time. Ifz # 0

andS*(z(t)) = S~ (z(t)), both composite functions decrease, so that V(z(t)) =
max(St(z(t)), S~ (z(t))) also decreases, which implies that the origin is GAS. O

Example: The shape of the level sets of this Lyapunov function is fitlied on Figure 1
in the case wherg;(z;) = x;: they are centered at the origin and have a polytopic form.
We have also added simulations of the system

{ 1 = —x1(1.01 —sin(10x1)) + u(1.01 — sin(7u)) 3)
iy = —29(1.01 —sin(1023)) + 2u(1.01 — sin(7u))

with uw = —x1 — x5 Which satisfies the hypotheses of Theorem 1, so that alorspthdons
of this system, the Lyapunov function decreases. This sydtees not satisfy monotonicity
hypotheses as classical models of competition do, butigfiest the sign hypothesis.
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FIGURE 1. Level sets of the polytopic Lyapunov functions for the 2D
system (1) (dashed lines) and simulations of system (3)d(kong&s)
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Counter-example:In our proof, we see the importance of the bijectivity of gefunc-
tions. This is the property that ensures the radial unbodmetes of the Lyapunov function,
so that global stability is proved. To underline this prapene will now show that, if it is
not satisfied, global stability is not always guaranteed.useconsider the system

i = —x+2i(—o(x1) — x2)

Ty = —@2
whereo(s) = m This system fits into the family of systems that are defined in
Theorem 1 by takingf; (z1,u) = —x1 + 22u, fa(we,u) = —x9, g1(z1) = o(xy), and

g2(x2) = zo, except thay, (z1) is bounded, and therefore not a bijection frd@®to IR.
For a given initial condition for the, state {2(0)), 21 then evolves according to

i = —x1 + 23(—0o(z1) — 22(0)e?)
We then see that, if2(0) was taken positive and very large, and0) negative large, this
systems presents a finite escape time, that {8) goes to—oc in finite time, because the
right-hand side of this equation is dominated by the,(0)e~'z? term. This shows that,

in the absence of the bijectivity assumption, the origin ¢ guaranteed to be globally
asymptotically stable.

3. Interconnection of positive Kolmogorov systems.We have stated, in the first part of
this paper, that the family of systems that we consider cdimked to competition between
different species (and we will further evidence that in 8ectl). Two key aspects of sys-
tems representing the evolution of living species are ti@astates need to be non-negative
and, if some species is not present in the considered systematter the resource feeding
the system is given, this species will not appear. The aaksgiay of representing this
property consists in writing the evolution of a single spsas a system of Kolmogorov:

& =z fi(x), ;=0
which satisfies both properties that we have just stated.rdardo simply consider sys-

tems that are linked to the ones that were presented in th@peesection, we will rather
consider that the evolution of a single species follows

& = xihi(w,uw), ;>0 4)
with u = — Z?:1 g;(z;). Obviously, the equilibrium that we will consider is not the
origin anymore, because it is of little interest in the fravoek of ecosystems. We will
therefore suppose that there exists an equilibriues (z1,--- ,Z,) > 0 to system (4).
The following theorem is then proven
Theorem 2. Let the system of equations

&y = xihi(zs,u)
with z; € IR,,u € IR and h;(.,.) Lipschitz continuous in its arguments and a set of
increasing Lipschitz functiong;; IR, — IR such thaflim,, ., gj(x;) = 4oc be such
that the system of equations

hi(zs, =Y gj(x5)) =0
j=1

has an equilibrium at = (z4,--- ,Z,) > 0. If, moreover,

(A) hi(xi,u) <0ifx; > z;andu < — Z?:l gj(.f‘j>
(B) hi(xi,u) >0if x; < z; andu > — Z?:l gj(.f‘j)
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Then the system ofequations
&y = wihi(zi,— Y g5(5)) (5)
j=1

has a unique positive equilibrium at, and it is asymptotically stable with the positive
orthant as its region of attraction.

Remark 1. The first temptation for proving this result consists in ahjiaig coordinates:
T

yi = In(—)

so that system (5) takes the form of (1):

i’- n
'i:Jihi zie¥i, — (7. oYi Yi y]
U xix (ze ;gj(zje ) = (z,€* Zg] Zje
The functionf;(y;, u) = ;h;(Z;e¥", u) indeed satisfies condltlons (A) and (B) of Theorem
1. However, the role of thg; functions of Theorem 1 is taken by(z ;¥ ) functions; those
are indeed increasing ig;, but they are not guaranteed to be bijective frd#to IR, so
that Theorem 1 cannot be directly applied.

Proof. The proof of stability that was used in Theorem 1 is adaptethéoconsidered
case. We first show uniqueness of the positive equilibritmaré are other equilibria were
somez; = 0): Itis first clear thath;(z;, — >_7_, g;(z;)) = 0 for all i. Indeed, we have
hl(lz, — Z?:l gj(i'j)) > 0forax; < andhi(ﬂi’i, — Z;L=1 gj(i’])) < 0 forx; > z;, sO
thath;(z;, — Z;Zl 9;(z;)) = 0 by continuity. System (1) then has an equilibriunzat

System (5) cannot have an equilibrium wih_, g;(z;) > >_7_, g,(z;) (resp. <)
because there would then existsuch thatgy(xzx) > gr(Zx) (@ndxy > zx), so that
T = xrhg(Tr, — Z;;l g;i(z;)) < 0 (because of assumption (A)). The same reasoning
can be held for a potential equilibriumsuch thab "7, g;(z;) = >~7_, ¢;(Z;) and some
g (z) > g1 (Zy). T is therefore the unique positive equilibrium of system (5).

In order to show stability, we will build a polytopic Lyapundéunction that is built on
theg;(.) functions. In order to do that, for any € IR, we define

Zgj z;) — g;(Z;)
and themax functions
S} (5) = max(g;(x;) — g;(2;),0) forj € {1,---,n}
S7 (z5) = max(—g;(x;) + g;(7;),0) for j € {1,--- ,n}
which allow for the definitions of

= En:S;“(xj) >0 and S (x)=

thenS(z) = ST (z) — S~ (z) and the function
V(z) = max($ (), 5 (x)) (6)

is positive definite, has its unique minimumn(z) = 0, and is aC° polytopic function
(as the maximum of continuous functions). It tends to infimhen|z| — +o00. We then

Sy (x5) =0
1

n

J
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have two cases for the analysis of the evolutioV@k(¢)) inside the positive orthant (all
xT; > O):

St (xz) > S~ (x): In this region, our choice of’ makes us consider the time evolution
of ST (x(t)). We have

iy = wihi(eg, =Y gr(xr)) = 25h(a;, —S(@) = Y gi(@r))
k=1 k=1
where
—S(x) =-ST(z) + S (x) <0

hj <i’j, - ng(ik)> =0
k=1

so that we can use Assumption (A) to see that foralt> z;

h; <xj, —S(z) — me) <0 @)
k=1

so thati; < 0.This implies that, as long aS* (x(¢)) > S~ (z(¢)) andz;(t) > z;,
the composite map — S;T(mj (t)) is decreasing (becaugg is an increasing function
of z; and#; < 0). In the case where;(t) = Z;, a continuity argument applied to
assumption (A) shows that; < 0. The composite map — S;F(zj(t)) is then non-
increasing everywhere (it stays constant wheft) < z,). Moreover, as long as(t) # z,
there is always at least oriesuch thatz,(t) > 7, (otherwise,S*(z(t)) = 0, which
implies thatS—(z(¢)) = 0, and the considered(¢) is the equilibrium). The composite
mapt — S, (zx(t)) is therefore decreasing so that the composite map

t— S*(a(t))

and the fact that

is decreasing.
S*(z) < S~(x): Through a similar reasoning, we can show that, in this megibe
composite map
t— S (z(t))
is decreasing through the use of
—S(z) =—-ST(z)+ S (z) >0
and the fact that

h; (i”ja - Z%(ﬂ)) =0
k=1

so that we can use Assumption (A) to see that foralk z;

h; <xj, —S(x) — ng(a"ck)> >0 (8)
k=1
Note, however, that troubles could arise when some oftt{seare equal to zero, so that

i; = 0.
If we now consider the composite map
t — V(x(t)) = max(S*(x(t)), S~ (z(t)))

we see that it is always decreasing when) # = andS*(z(t)) # S~ (x(t)) because,
in this case, it is equivalent to only one of the functidiis or S~ at a time. Ifz(t) # z
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andS*(x(t)) = S~ (z(t)), both composite functions decrease, so that V(z(t)) =
max(St(z(t)), S~ (x(t))) also decreases.

The analysis is not completed here yet. Indeed, we can wahcemvergence can take
place towards one of the faces B} (extinction of one or several of the species)? We
have indeed only shown thétis strictly decreasing inside the positive orthant, andamot
the border of the orthant. Moreover, the Lyapunov funct®nat radially unbounded in
the usual sense when considering positive systems; indesdisually considered that
grows unbounded asapproaches the boundary of the orthant, which is not theloase

Looking at Figure 2, we see that the solid level sets are withé positive orthant
and that the dash-dotted level set touches the border ofrthand. It is clear that the
level corresponding to the dash-dotted linelis= min;(g;(Z;) — ¢;(0)); indeed, as
long asV(z) < V, we can easily see that no; can be equal t® while, for z =
(Z1, -+ ,Zj—1,0,Zj11, - ,Zy) (for thej given by the minimum), we havié(z) = V.

X2

FIGURE 2. Level sets of the polytopic Lyapunov functions for a 2D-sys
tem having its equilibrium atz, z2) = (4,2), andg;(z;) = z;.

Any solution with initial condition satisfying/(z) < V then converges to the equi-
librium. On the other hand, the dotted level sets cross thddsmf the orthant, so that a
solution having its initial condition within them could wewell go to the border. A more
detailed analysis is necessary.

It can be shown that a solution with initial condition outsithe level set defined by
V(z) = V, and that is such that

liminf z;(¢) > 0

t——+o0
for all ¢ must reach the set in finite time. Indeed, there exists 0 such that, when
S(z(t)) > 0, there exists: such thay, (zx(t)) > gx(Z1) + % and, as long agy (zx(s)) >
gk(fk)—k% andS(z(s)) > 0 (for s > t), we haveyy (z(s)) — gk (2 (t)) < —d6(s—t). The
same thing can be written whest{z(t)) < 0: we havegy (2 (s)) — gr(@x(t)) > (s — 1)
for gi(inf, (zx(r))) < gr(zr(t)) < ge(Zk) — L and gy (inf, (zx(r)) < gr(zr(s)) <

g (ZTr) — 2=
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Even though the time-derivativE is not always defined, we deduce from this that
V(z(t)) decreases at a rate that is faster thanso that

V(z(t)) = V(2(0)) < —ot

The levelV(z(t)) = V is then reached in finite time, which implies convergencento t
equilibrium.
Let us now suppose that we have a solutigt) such that

liminf z;(¢t) =0
t—+o00

forsomei € {1,---,n}, so that it does not converge towards the equilibrium.
We can then build a sequentg,) ., such thafl; — +oo and

limg—yooi(Ty) =0

while z;(Ty) is a decreasing sequence, satisfyingl;,) < 0
Because every solution lies in a compact set, we can theacxtrsubsequencg —
+oo from theT, sequence such that

limg—yoox(ty) = z*

where, obviouslygz} = 0.

Wheng is large, we necessarily have tha(t,) < z;. Using hypothesis (B), we see
that the only way for having;(t,) < &; and;(t,) < 0 (so thath,(.,.) < 0) consists in
havingu < — ZZ:l 9x(Ty), that is— ZZ:l gr(zr(ty)) < — ZZ:l 9, (Zy), that is

S(a(ty)) > 0

We then conclude tha(z*) > 0, so thatV (z*) = S*(z*). Becauser* # z, we have
thatV (z*) > 0, so thatS*(z*) > 0. Therefore, there exists#  such that:; > 7;.

We will now show that we must havg(z*) > 0. First suppose that(z*) = 0. We
will then study what happens tg whenz; andS(x) both are small and positive.

Becausdim,_..xi(t;) = 0, there exists), large enough such thaf(t,) < e for
all ¢ > @, and a givere . From Hypothesis (B), it is clear that, whén< z; < ¢ and
S(z) = 0, we have thah; (x;, —S(z) — >, _, 9x(Zx)) > 0; in fact, on this compact set,
hi(zi, —S(x) — > p_, 91(Zx)) is lower bounded with a positive constafit Therefore,
there exists a small constahsuch thath; (z;, —S(z) — >_;_; g9x(Zx)) is lower-bounded
with % inside the compact set whebe< z; < e and0 < S(x) < 4. Moreover, because
limg—+00S(x(ty)) = 0, there existL), large enough such that(z(t,)) < ¢ for all
g > Q2. Therefore, whery > max(Q1,Q2), we have thati;(t,) > 0, which is in
contradiction with the construction of the sequengg,). This shows thas(z*) > 0.

We have shown earlier that there existg ¢ such that:; > z;. For Q large enough,
there must then exist > 0 such thatr; (¢,) > Z; + v for all ¢ > Q. We will then be able
to write

T = xlhl(zl, 75(17) — ng(jk)) < -z
k=1

at the timeg,, (with ¢ > Q). Indeedz;(¢,) is a bounded sequence staying in an interval
[Z1 + v, Tmae) @Nd —=S(2(t4)) — D_r—, 9x(Zx)) is @ bounded sequence staying in an
interval [-U, — > _, gx(Zx))] (for some positivé/). The continuous functioh;(z, u),
on the compact S&t; + v, Z1 maz] X [-U, — Y 1_; 9x(Zx))], has a maximum (which is
negative because of (A)), that we will denetg (with > 0).

BecauseS(z*) > 0, the functionS is uniformly continuous, and the application—
x(t) is uniformly continuous, there exisglarge enough and > 0 such thatS(z(¢)) > 0
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andz;(t) > z; forall ¢ € [ty,t, + 0] (for all ¢ > Q). We conclude from there that
V(z(t)) = St(z(t)) in those intervals.

Therefore, for allj that are such that;(¢t,) > z;, we have thaSj(mj (t)) is non-
increasing in the interval € [t,,t, + 3] (it is decreasing untit;(¢) reachesz, and then
stays constant &); for all thosej, we then have thaﬁ’j(z(t)) - S;T (x(tq)) < 0. We can
then write that

V(x(t)) = V(x(ty)) SH(a(t) = ST (2(ty))
S (@(t) = S} (wi(ty))
gi(zi(t)) = gi(1(tq))
Becauser(t) is C!, there existss, € [t,,t] such thatz;(t) = x;(ty) + (t — tg)d(s,)-
Also, because:(t) is bounded, and the Lipschitz functioh§, .) andg(.) only depend on
x(t), the application

Al

t— @y(t) =z () hi(2(t), —S(2(t)) — ng-(i‘k))
k=1
is globally Lipschitz with a Lipschitz consta@t, so that

B(sq) < du(tq) + (54 — tq)% <(ty) + (t— tq)g

We then have that

| Q

w(6) — lt) < (— ta)inlta) + (0 — 1025 < —(t —ty )+ (0 — 1)

We can then pick, = ¢, + min(3, ), so that

xy(rq) — x1(tg) < —min (67]JEZ (7];@1)20> =-T

2 7 2
We then have that
gi(xi(rq)) — qi(1(ty)) < gi(ai(ty) — T) — gi(w(ty)) = Gila(ty))

Becauseyg;(z;) is an increasing function(7;(z;) is a negative function defined on the
interval inside whichr;(¢,) can be, that igz;, g; ' (V (z(0) + ¢:()))]. ThereforeG; has
a maximum on this interval, that we will denote\/ (with M > 0). We then have that

Vix(rg)) < V(2(ty)) + 91(x1(rq)) — gi(2:(ty)) < V(x(tq)) — M

andV(z(t,)) goes to—oco, which is a contradiction.
The solutions do not go to the boundary of the positive otthemthat they reach the
level V(z) = V in finite time, before converging to the equilibriutn
O

In the following section, we will apply this result for theasility analysis of a model of
evolution of competing species for a single substrate.

4. Single-nutrient competition in the chemostat. The classical model of a mixed culture
in competition for a single substrate in a chemostat is gbsethe following equations:

{ § = = Z?Il MJI;(J-S)‘Tj + D(‘Sm - S) (9)

& zi(pi(s) — D)
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wheres € IR, represents the substratg, > 0 the substrate concentration in the input,
k; > 0the yield,z; € IR, a competing species (€ {1,---,n}), 1:(s) the growth-rate
of the species; on the substrateandD € IR, the constant dilution rate.

As stated in the introduction, when the growth-rates areifit, such that;(0) = 0,
non-decreasing and upper-bounded, the generic globaligstically stable equilibrium
of this system only presents one persisting species (therotheing washed-out). We
indeed see, from the analysis of the= 0 equation that, if two species;(andis) are to
be present at the same time at the equilibrium, the equations

iy (§) = D

Hig (§) = D
should both be satisfied. As we can see on Figure 3, this igigatig not the case for two
arbitrary Monod functions and an arbitrary dilution ratelosal stability analysis shows
that only one equilibrium where a singles species survigestable: the one having the
population that requires the smallest substrate valuegeiniy .;(s) = D.

1.2

FIGURE 3. Graphic representation of the(s) = D equations, with the
values of the substrate at the stable equilibrium

We have seen that this wash-out was not always observedlififeeand that several
explanations have been given for such a phenomenon: timygaganutrient feed, multi-
resource models, turbidity operating conditions or a ciagéffect. In this paper, we show
that intra-specific competition is sufficient for creatingce an equilibrium that presents
more than one subsisting species. In order to express tingssspecific competition, we
simply replace the;(.) functions with functions:; of s andz;:

$ = — Z?:l %fﬂxj —+ D(Sin — S) (10)
3'3@‘ = .’L‘i(hi(S, .’L'Z') — D)
whereh; satisfies

Assumption 1. The functionss; : IR2 — IR, of classC' satisfy

(i) h;(0,.) =0
(i) G4(.,.) >0 (forall s >0,z > 0)and g (.,.) <0 (forall s > 0,z > 0).
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(iii) The inequalityh;(s;»,0) > D holds and, for all fixed > 0, we have
limg, —yoohi(s,x;) =0

(iv) For the maximal valué of s such that there exists sorkesuch thath;(5,0) = D,
thez,; = 0 equations yield non-trivial solution®; > 0 (except fork) such that

Z ﬁ < Sin — S

. kj

j=1

J#k

Point (i) ensures that no growth can take place without satestpoint (ii) shows that

the growth of ther; species is improved by the increase of substrate concemti@td is
inhibited by its own concentration (intra-specific competi); h; (s, 0) > D is necessary
because, if it is not satisfied for one of the species, thisispas necessarily washed out;
with the addition of the rest of (iii) and (iv) the existendeaa equilibrium where all species
are present is guaranteed.

Remark 2. It might look difficult to check when Assumption (iv) is d&is However,
we can always make sure that it is the case by eliminating |paeies. Indeed, let us
suppose that (iv) is not satisfied for a given system. We kah teliminater; from the
system (wheré is defined as in (iv)). This will enable us to consider a smalidue of3,
which is now the largest value efsuch that there exists somasuch thath,;(5,0) = D.
Becauses is now smaller, the solution®; of thei; = 0 equations are now smaller also
(because of (ii)), so that

Z ﬂ < Sin — s
. kj

j=1

JEAN!
stands a better chance of being correct. Indeed, the lefdfsde has been reduced and
the right-hand-side has been increased. If it is not verjfied should keep apply this
procedure until the inequality is satisfied. In the worsteathe whole system will be
trimmed except one species. The left-hand-side then bedbamal the right hand side is
positive, so that the inequality is satisfied. The reducetiesy now has Assumption (iv)
satisfied.

The uniqueness of the equilibrium is shown as follows; firakethe following change
of coordinates:

n
T
(573717"' axn) - (2,331,"' axn) = (8+ 7]’-771’"' 7xn)
k.
j=1"7

so that the system (10) becomes

2 = D(sin—2)
{ T, = m (hi (Z - Z;L:1 Z—j,xl) - D) (11)

We directly see that = s;,,, SO that, at a positive equilibriung,; must satisfy

n
hi | sin — E
j=1

|
<

z | =D

o

I
J
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Let us now replac@;l:1 % with a constantu.. The equilibrium value ofc; is then a
function ofu that we will denotez; (u) and that satisfies
hi (Sin — u, &;(uw)) = D foru < s,
These functiong;(u) are identical to the “equilibrium characteristics of spsal’ that
were defined in [16]. Fot = 0, point (iii) of Assumption 1 ensures that, for eaglthere
exists a single valug;(0) > 0 such thath; (s;,,Z;(0)) = D; the sum of all thesé“L0
is then larger tham = 0. Differentiatingh; (s;, — u, &;(u)) — D = 0 with respect tOu
yields
Oh;  Oh; dx;
9s | Oy du

=0
so that point (ii) implies that
dz;
du
For increasing values of, the value of the sum_"_, 7(“ then decreases until =
sin — 8. At this moment, point (iv) shows that the sum is ‘smaller thaa Sin — 8. There

exists therefore a single valaeof « (that belongs to the open internvdl, s;,, — §)) such
that we have

There is therefore a single equillbrlum to system (11) ieghtk positive orthant, and it is
defined by:

<0

i*iz

(2,.%‘17 ce ajn) = (Simi‘l(a)’ T 757n<a))
We can then state the main theorem of this section:

Theorem 3. The single positive equilibrium of system (10) is asymgaditi stable with a
basin of attraction containing the positive orthant.

Proof. In order to prove the stability of this equilibrium, we wilrgt study the system
on the attractive manifold defined by = s;,. Indeed, we directly see from (11) that
z exponentially converges towards,. We will study the stability of the interconnected
system afterwards. The system that we need to analyze dheifgds the form

by =x; | hy J | =D 12
i = g R (12)
which is defined in the set
D={z € R'z;>0fori € {L,---,n},> 7 < s}
j=1"

We will also define
D, ={x € R"z; >0fori € {1,--- 7"}72% < Sin}
—1 i

The result of the previous section has been given for the ehsge the domain of
definition waslR’ . In order to be able to use it here, we first note that, on the fewere
S = S;n the dynamics are defined as

7 1k
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We simply use these dynamics inside the region w@fgl % > $;n, Which is equivalent
to stating thaj(s) = 0 for s < 0, and we analyze the full system. If we now put (12) into
the format of (5), we write the system

j,‘i =T (hz (Szn — u, J,‘Z) — D)
and it is easily seen, from hypothesis (i), that points (AJ éB) of Theorem 2 are satisfied
by these equations wity (x;) = i—j The unique equilibrium of (12) is therefore attractive
in the whole positive orthant (i®., in fact).

The analysis of the interconnected system is concluded tigghthat a solution of the
interconnected system (11) either goes to the equilibrigogs to the boundary of the
positive orthant or goes unbounded. This last option iglsieet possible because we can
easily see that(t) is upper-bounded witimax(s;,, z(0)) andZ;L:1 ;—j is upper-bounded
with z(t) because of the waywas defined through a change of coordinates. We will show
that no solution can go to the boundary of the positive otthan

In order to do that, it suffices to use a theorem that was giweitheme [23] and
Markus [17], in a version that can be found in [21] about tgalar systems

y = Ay y € D, € R
&t = f(r,y) =€ D, € R}

whereD, x D, is positively invariant for this system, which is dissipati(all solution
converge to a compact subsetlof x D,) and hasd Hurwitz. This theorem states that

(13)

Theorem 4(Thieme & Markus) If the reduced system

& = f(x,0)
(1): has isolated hyperbolic equilibria® (i € {1,---,p}) and all of its solutions
converge towards one of these equilibria.
(Il):  has the dimension of its stable manifold ™ (z*) equal ton fori € {1,---,r}
and lesstham fori € {r+1,--- ,p}.

(Iln): does not have a cycle of equilibria.
then every solution of (13) converges towards one of thdibrai (0, z*) and

dim(A*(0,2%)) = m + dim(M™* (z%))

where A (0,2") is the stable manifold of0, 2%). AlsoU!_  A*(z;,0) has Lebesgue
measure zero.

In our caseyn = 1,y = z — s;,, anda = f(z,0) represents system (12). We will
directly consider system (11) in our analysis instead ohgdhe (unnecessary) change of
coordinates from to y.

We will now check if Assumptions (1)-(lll) of Theorem 4 aretisdied for (12) inD.

We have seen that it has a single equilibriunDip. If we now consider faces @b, we
see that the same holds. Indeed, let us consider a face wheteO fori € 7 (Zis a
subset of 1, --- ,n}), that we will denote

DI ={z € Dy\Vi € T:x;=0andVi ¢ T :x,; # 0}

(we will also writeD? = {x € D, |Vi € T :z; = 0}).

We now see that the reduced syst&r (where we have eliminated the indices be-
longing toZ, which can be seen to correspond to locally unstable dyrgrimdicates the
behavior of (12) omi. Because:? satisfies Assumptions (i)-(iv), it has a single positive
equilibrium, so that (12) has a single equilibrium in thee‘at:{. System (12) then has a
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single equilibriumz” in each faceDZ, for all combinationsZ of indices of{1,--- ,n}.
Moreover, the satisfaction of Assumptions (i)-(iv) B implies that all solutions with
initial condition insideD_{ converge taz?Z, while they go elsewhere if they start outside
DZ. The stable manifold/ " (z7) therefore is equal t®Z, and its dimension is — #7.
Consequently, every solution of (12) converges towardgjaiiibrium, so that (1) and (ll)
are satisfied (withr = 1).

The absence of a cycle of equilibria is seen as follows. Letuppose that a cycle
of equilibria goes through an equilibriua? such thatz; = 0 for exactly ¢ indicesi.
Because the stable manifold of this equilibrium is the whpldimensional faceD? it
belongs to, the cycle arrives at the equilibrium through latemn belonging to that face.
While leavingzZ, the cycle then has to Iea@f, so that at least one of the, which was
equal to zero, becomes positive. The solution now belongsace where, at mosf,— 1
indices satisfyxr; = 0, and converges to the corresponding equilibrium where atmo
g — 1 indices satisfyr; = 0. Recursively applying this reasoning, we see that the cycle
of equilibria must eventually reach the region wheiadices are such that; = 0, that is
D, . Convergence then takes place towardehich cannot be part of a cycle because it is
asymptotically stable. No cycle of equilibria then existsd (iii) is satisfied.

We then conclude from Theorem 4 that all the solutions ofesygtL1) converge towards
one of its equilibria. Moreover, the set of initial condit®that do not converge towards
(0,z) has Lebesgue measure zero, so that it is already clear thasghll solutions with
initial condition in the setlR, x D will converge towards the interesting equilibrium.
Because any systel’ (which is defined by setting; = 0 and eliminating the:; equa-
tions in system (11) for all € 7) satisfies Assumptions (i)-(iv), we know that almost all
solutions of (11) with initial condition iR, x D converge tq0, z%). Therefore the di-
mension of the part of the stable manifold(6f z7) that is nested iz . x D isn—{Z +1
and is equal to almost the whole fafie, x DZ. Theorem 4 states that the dimension of
the whole stable manifold o0, z7) is also equal te» — #Z + 1, so that it cannot reach
out of R, x DZ. No stable manifold of the equilibria (other thé&h z)) can therefore go
into the positive orthant, so that all solutions of (11) withial condition insidelR x D
converge toward§), 7).

The equilibrium(z, x) = (s;n, ) is then asymptotically stable witlR , x D, as region
of attraction.

O

Remark 3. It is clear that Assumptions (i)-(iv) are tailored so thassym (12) satisfies
Assumptions (A) and (B) of Theorem 2. They are however ngtexaept maybe point
(iv)), as they ensure uniqueness of the positive equilibraind point (ii) and (iii) accu-
rately represent the intra-specific competition. Poin} ¢oncentrates on the sign of the
derivatives, while point (A) and (B) are only concerned wfita signs of the functions.

In this section, we have shown how intra-specific competittould prevent inter-
specific competition from resulting in extinction of all bome of the species competing
for the same nutrient. This idea is in fact quite intuitiveome of the species starts grow-
ing and eliminating the others, the intra-specific competitvill limit its growth rate, so
that the other species stand a chance of survival.

The polytopic Lyapunov function that has been used is alge éntuitive: while work-
ing on the manifold: = s;,,, the growth-rate is not limited by the actudt), but rather by
the crowding of the bioreactor: the crowding of the bioreat equivalent to the possibil-
ity of accessing the substrate for each species. If theor&cvery crowded, the species
that are above their target equilibrium have a limited gloveate because of this crowding
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that limit their access and by the intra-specific competitiso that their concentrations
are guaranteed to decrease; if the bioreactor is lightlyladed, the species that are under
their target equilibrium have an important growth-ratesduese they have an easy access to
the substrate and because they have little competitiontivitin own peers. The polytopic
Lyapunov function simply expresses this observation inhmatatical terms.

5. Competitive exclusion despite intra-specific competitionIn this section, we will
stick with the family of models (10), but we will check whatgpens when more species
are present than what the chemostat can sustain. This &dtad in mathematical term by
considering models where no positive equilibrium existsoider to do that, we consider
system (10) with points (i)-(iii) of Assumption 1, but withbpoint (iv). We remember that
point (iv) was crucial in proving the existence of an equilin in the positive orthant.
Without it, many equilibria still exist, but they are on thecés of the orthant, so that at
least one of the species will disappear if there is convergéman equilibrium point.

We will illustrate this on a simple case: let us assume thahase a system with
coexisting species, that feed on a single substrate. Lebwsimroduce a new species;
three things can occur:

1. The species can simply join the existing species, andybem®m can go to a new
positive equilibrium, where all species are present. Itmseen that the equilibrium
value of the substrate is reduced with respect to the preveéquilibrium, as well as
the equilibrium values of the early species. This is quitaitive.

2. There exists no equilibrium where all species are presadtthe new species is the
weakest of all (in a sense that will be evidenced later). Tbig species is eliminated
and the system goes back to its previous equilibrium.

3. There exists no equilibrium where all species are predmitthe new species is
fitter than previously present species. Some of the earlyispare eliminated (the
weakest), and the new species grows to an equilibrium.

In order to check what can happen in those scenarios, we nélyae the equilibria of
system (11) when Assumption (iv) is not satisfied:

2 = D(sin—2)
{ T, = x (h,- (2 — 2?21 %,xz) — D)

where the equilibrium value of is s;,,, so that an equilibrium of (14) must satisfy:

(14)

n —

Lzl -D|=0

Ti | hi| sin— D 7 T
j

j=1
Following the same procedure as in our proof of uniqueness pbsitive equilibrium
before Theorem 3, we replacgz?zl i—; with a constant:. To begin with, we will be
interested in an equilibrium where, if a given species cauid/ive for the given dilution
D and the given substrate levgl, — u, it is present in the system. The equilibrium value
of z; is then a function of; that we will denotez;(u), the largest value of; that satisfies

i(u)(hi (sin — u, #:(u)) — D) = 0foru < sy, (15)
This means that, if
hi, (Sin - u77~;7(u)) -D=0

has a solution, we take this solution. Otherwise, we fgke) = 0. We can easily see that
Z;(u) is a decreasing function afas long as; (u) > 0 (as we had shown before Theorem
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3), and that it is equal to zero far> u;, wherei; is the solution of
h; (8in, — U;,0) — D =0
Foru = 0, point (iii) of Assumption 1 ensures that, for eaghthere exists a single
valuez;(0) > 0 such thati; (s;n,2;(0)) = D; the sum of all thesé”'k(To) is then larger

thanu = 0. For increasing values af, the value of the sum_7_, i]'k@ then decreases
V]

until Z;.‘Zl i@fy@ = 0 (in fact, this happens at the value ®f= max;(@;)). There exists
therefore a single value of « (that belongs to the open interv@dl, max; (4, ))) such that
we have

i = xjk(u)
=1
We will denote this equilibriun® = Z(@); it is given by the solution of
hi(Sin—a,i‘i)—DZO if u<a
z; =0 if 4>

It is interesting to note that thg values are indicators of the ability of the species to resist
to competition at the dilution rat®: the largesti;, the stronger the species.
Because we set ourselves in the case where Assumption (it isatisfied, there is
somes such thatz > @;. We can now define two sets of indices:
I, = {ie{l,---,n}z; >0}
Io = {’L 6{1,,n}|§3120}
Our assumptions imply that neither is empty.
We can now show that this equilibrium is asymptotically &diecause the linearization
of thex; dynamics fori € Z; is in the form

X7 = (h1 (Sin - Zj€Z+ %7 ) - D) Xz
= (hi(8in —u,0) — D) X;
Because < 7, we have that, fofi; < u, h; (sin, — 4;,0) = D; this induces that
hi(sin 7’(76,0) -D<O0

so that theX; dynamics are stable. We can then focus on the stability aisabf the
reduced system (where we have eliminated adl Z, and replaced those; by 0 in the
rest of the system). This reduced system is exactly syst@mith Assumptions (i)-(iv)
satisfied, so that the positive equilibrium is stable. Thalysis of this reduced system also
shows that no other equilibriuai hasz; > 0foralli € Z, andx} = 0foralli € ;.

Other equilibria are then either characterizedhy> 0 for somei € Z, or z;; = 0 for
somei € Z.. We will detail those two cases in the following and analyzsirt stability.

e Let us first conside(s;,, z*), an equilibrium of (14) that is such that > 0 for
all i in K, a subset of,. We will first show that there exists somjec 7, that is such
thatz} = 0. Indeed, if it were not the case, the equilibrium would begbkition of the
equations

l_*
hi | sin— Y ?lmk -D=0 VkeZI, Uk (16)
l €I+UK:
We will redo the previous procedure, except that we will naWlyaconcentrate on those
equations. Replaciny;, .7« 7= with the constant, we now look at

hi (Sin —u,Zx(w)) — D=0 Vk € Z, UK a7
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This system has no solution as we have seen while looking.fdndeed, we have seen
that, beforeu reachess, all solutions of (15) go to zero fof € K, so that there exists
0 < @ < u such that the set of equations (17) has no solution.for @. At that point, we
havez(a) > z(u), so that
() 7(u)
> Tl h

1€ UK leTy

>

N

No solution of the set of equations (17) can then be found foside (0, ] because

Z .f;iu) > u

letuc

for all  inside this interval.
Therefore, we are in the presence of an equilibritifrihat is such thai} > 0 for all
i € K, asubsetof, andz; = 0foralli € J,asubsetof, . Letus now consider some
i € K. We have seen that
hi(sin — U, ;) = D
has no solution. Therefore, we see that< u, so that
hi(sin —u*,zf) =D
can have a solution. This solution is such that> z; foralli € 7, \ J ands* > 3.
e Let us now considefs;,, z*), an equilibrium of (14) that is such thaf = 0 for all
i € Iy (K is empty) and there exists a non-empty sulgéetf 7, that contains all indices
J of Z, that are such that; = 0. The equilibriumz* must then satisfy

i [sm— Y “Lap| -D=0 VkeI\J
l€I+\J

Letusreplace_, .7 \ ; %’l with a constant: and analyze the solutions of
hi (Sin, —u,Tp(uw)) — D=0 Vk e I, \J
The functionszy (u) still are decreasing functions af that start inz;(0) > 0 (so that

#1(0) _ _ .
Yier\g m- > u=0). Whenu reachesi, we obviously have
fi(w) z
Zl €EIN\T ki - El €TN\T lTZ
T
< El (S k7i
= a

The solutionu™ of the equation: = >, .7\ 7 5”,5;” therefore belongs to the interior of

the interval(0, @). For alll € Z, \ J, we therefore have
1’7 >
ands* > s. This is quite intuitive: if less species are present, theay grow more, while
keeping more substrate.
With that, we have covered all the possible equilibria. We waw study their stability

by noting what they have in common:* < @ and there exists some € Z, such that
x = 0. Let us concentrate on the dynamics of thisiearz*:
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The linearization of this equation near the equilibrictinyields

Xi = (m (sm—zﬁ(mj)wkﬁ,o) - D) X;
= (h; (sin —u*,0) — D)X,

Remembering that

we have that
h; (sin — U*,O) —D>0

becausés > 0 ands;, — u* > s;, — 4, while 2% < 0 with 0 < z;. TheX; dynamics
are unstable, so that every equilibriuth # z is unstable.
From this analysis, we can derive the following proposition

Proposition 1. The only stable equilibrium of system (14) satisfying o(it(iii) of As-
sumption 1 is the one with the minimal substrate level witipeet to all other equilibria

Indeed, we have seen that> v* for any equilibriumz* # z so that

T
TN (18)
, ; k;

n

j=1
Since we hav{:j 1 k’ +s* = s;, for all equilibria, we then have < s* for all equilibria
x* # z, and the proposmon follows. It is interesting to note ttias result is classically
also valid for the original competition model (9).

If we go back to the three scenarios that we described, abwewapecies ., invad-
ing an ecosystem wherespecies are already present (at the equilibrium valiié), we
have

1. If there exists a positive equilibrium{"“} all the species survive, and the value

n+1 w{ +1}

of Z — > P i=1 T
then + 1 d|men5|onal system so that (18) holds

2. If no positive equilibrium exists, and the arriving spgcis eliminated, this is be-
cause(z"™,0) is the equilibrium which maximizes the weighted sum. Thecsse
Tn+1 IS the weakest of the species, in the sense that it is theesp#git cannot sur-
vive for the largest value of the substrate concentration { is the minimum of all
species, so that;,, — i1 IS maximum)

3. If no positive equilibrium exists, and the equilibriy@™, 0) does not maximize the
weighted sum, some species are eliminated, butpot. A number of those, which
have the smallest value @f do not survive.

,0) is also an equilibriunx:* of

In all those cases, the transition is made to minimize thélibgjum substrate (or maxi-
mize the substrate consumption). In the slightly differeade wherg™ (the pre-existing
equilibrium) had some vanishing species, the conclusioasiachanged with respect to
the previous discussion: either all non-zero species wimwhile accepting or rejecting
Znt1, OF SOMe of them disappear (amg,; joins the equilibrium); no competitor medi-
ated coexistence, as presented in [2], can occur.

In this section, the analysis has solely concentrated orloited aspects in order to
infer global conclusions. However, our Lyapunov approafctne previous sections could
certainly be extended to encompass equilibria on the bafdbe orthant.
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6. Conclusion. In this paper, we have shown global stability of the equilibr of inter-
connected scalar systems through the use of a non-smoagpluhge function. This result
is valid in the general nonlinear case, and in the case of Kgbrov systems. We have then
used this result to show that persistence of all the spetiachemostat where all species
are in competition for the same nutrient, can be explainealtyh intra-specific competi-
tion. Finally, we have proved that, if all species cannot/iey, there still exists a single
stable equilibrium in the chemostat, the one that maxintizesotal weighted biomass and
minimizes the substrate; some exclusion is again preseatise of the competition.
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