Polytopic Lyapunov functions for the stability analysis of persistence of
competing species
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Abstract— We show that intra-specific competition can ex-
plain coexistence of several species in a chemostat where they
compete for a single substrate. It is indeed known that, without
such a competition, only one of the species will survive. The
proof technique, which is based on the construction of a
polytopic Lyapunov function, is then used to extend this result
to a more general class of systems.

I. INTRODUCTION

In this paper, we will analyze the stability of the non-trivial
equilibrium that arises in some mixed culture in competition
for a single substrate. It is well known that, when the growth
rate of the different species is Monod-like (strictly increasing
from zero and upper-bounded), the generic equilibrium state
for a given dilution rate consists in the survival of only one
of the species (competitive exclusion [12]), that is the species
that requires the smallest substrate concentration to have a
growth-rate equivalent to the dilution rate: it is the survival
of the most efficient species at this rate. This observation
has been validated through laboratory experiments [6], but it
can also be seen that coexistence of the species is observed
in real life. This coexistence has been explained in different
cases by a time-varying nutrient feed [13], [7], [5], [2], multi-
resource models [9], [8], turbidity operating conditions [4]
or a crowding effect [3]. It has been first shown in [10]
that the coexistence of the different species can simply be
explained by an intra-specific dependency of the growth
function, which represents an intra-specific competition; the
approach that was used for the proof made use of a multi-
phase plane analysis. it leads to a possible generalization
of the result to systems modeling competition in a culture,
where the competing aspect is not directly linked to the sum
of the concentrations of the competing species, but to a more
general monotonic function.

We will here present a Lyapunov strategy for the proof
of stability of the competition model. It will be based on
the construction of a non-smooth Lyapunov function that
explicitly takes into account the fact that the competition
is linked to the sum of the concentrations of the competing
species. It will then be generalized to more general kinds of
competition.
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Fig. 1. Graphic representation of the n;(s) = D equations, with the value
5 of the substrate at the stable equilibrium

1. SINGLE-NUTRIENT COMPETITION IN THE CHEMOSTAT

The classical model of a mixed culture in competition for
a single substrate in a chemostat is given by the following

equations:
i; = x(pi(s) — D)

where s € IR, represents the substrate, s;, the substrate

concentration in the input, x; € IR, a competing species

(@ € {1,---,n}), ui(s) the growth-rate of the species x; on

the substrate s and D € IR, the constant dilution rate.

As stated in the introduction, when the growth-rates are
different, such that 1;(0) = 0, non-decreasing and upper-
bounded, the generic globally asymptotically stable equilib-
rium of this system only presents one persisting species (the
others being washed-out). We indeed see, from the analysis
of the &; = 0 equation that, if two species (i; and i2) are to
be present at the same time at the equilibrium, the equations

iy (5) = D

iy (5) = D
should both be satisfied. As we can see on Figure 1, this is
generically not the case for two arbitrary Monod functions
and an arbitrary dilution rate. A local stability analysis shows
that only one equilibrium where a singles species survives
is stable: the one having the population that requires the
smallest substrate value for having p;(s) = D.

@)



We have seen that this wash-out was not always observed
in real-life, and that several explanations have been given
for such a phenomenon: time-varying nutrient feed, multi-
resource models, turbidity operating conditions or a crowding
effect. In this paper, we show that intra-specific competition
is sufficient for creating such an equilibrium that presents
more than one subsisting species. In order to express this
intra-specific competition, we simply replace the p;(---)
functions with functions h; of s and x;:

{s‘ =~ X MG + Disin —5)
i =

zi(hi(s,z;) — D)
where h; satisfies
Assumption 1: The Lipschitz functions h; : IR — R,
satisfy

@)

(i) hi(0,.) =
(i) Z4(.,.) >0 (forall s,z > 0) and Z2:(.,.) < 0 (for all
s> 0, z>0).

(iii) The inequality h;(s;n,0) > D holds and, for all fixed
s > 0, we have

limg, —yoohi(s, ;) =0

(iv) For the maximal value s of s such that there exists some
k such that hy(3,0) = D, the z; = 0 equations yield
non-trivial solutions z; > 0 (except for £, = 0) such

that
n ~
Z % < Sin — §
k m

Point (i) ensures that no growth can take place without
substrate; point (ii) shows that the growth of the =; species is
improved by the increase of substrate concentration and is in-
hibited by its own concentration (intra-specific competition);
h;(sin,0) > D is necessary because, if it is not satisfied for
one of the species, this species is necessarily washed out;
with the addition of the technical hypotheses (iii) and (iv),
the existence of an equilibrium where all species are present
is guaranteed.

This last point is shown as follows; first make the follow-
ing change of coordinates:

(579317"'71'77,) - (Zazla"'v

n
T
In) = (S+Z ﬁaxlv"’7xn,)
j=1"

so that the system (2) becomes

2 = D(sin—2)

x.i = <hz (Z o Z;L L §]7 ) _ D) (3)
We directly see that z = s;,,, so that, at a positive equilib-
rium, z; must satisfy

Let us now replace ZJ 1 k - with a constant u. The equilib-
rium value of z; is then a function of v that we will denote
Z;(u) and that satisfies

hi (Sin — u, &;(u)) = D for u < s;y,

For v = 0, point (ii) and (iii) of Assumption 1 ensures that,
for each 4, there exists a single value "%1(02 > 0 such that
h; (8in, Z;(0)) = D; the sum of all these ; is then larger
than v = 0. Differentiating h; (s;n, — u, Z;(u)) — D = 0 with
respect to v yields

_ Oh; | Oh; dz;
0s Ox; du

so that point (ii) implies that

dz;

du

=0

<0

7'1 (u)

For increasing values of u, the value of the sum Z
then decreases until v = s;,, — §. At this moment, pomt (|v)
shows that the sum is smaller than v = s;,, — 5. There exists
therefore a single value @ of u (that belongs to the open
interval (0, s;,, — §)) such that we have

S

There is therefore a single equilibrium to system (3) inside
the positive orthant, and it is defined by:

Hx

(2,%1,- - )

We can then state the main theorem of this section:
Theorem 1: The single positive equilibrium of system (2)

is asymptotically stable with a basin of attraction containing

the positive orthant.

Proof: In order to prove the stability of this equilibrium,
we will first study the system on the attractive manifold
defined by z = s;,. Indeed, we directly see from (3) that
z exponentially converges towards s;,. We will study the
stability of the interconnected system afterwards. The system
that we need to analyze therefore has the form

wffn) - (Sin,jl(ﬂ)’ e

L = &y i in 7] i 4
o Py z:: Ry 4
which is defined in the set

D={zx € R"|x; >0fori € {1,---

Z: kfj S zn

We will also define Dy = {z € R"|z; >
We will then introduce the following functions; for any

r € IR"™, define

n

S =% x.ik—jfj

j=1

and the max functions

S;r(xj) = max(%,O) forj € {1,---,n}

S;(xj) = max(jk;xﬂo) forj € {1,---,n}



which allow for the definitions of

=i}ﬁ@ﬂzo
T(@) =) S (x;) =0
j=1

then S(z) = S*(z) — S~ (z) and the function (when
considered in IR™)

V(z) = max(ST(x),S™ (z)) (5)

is positive definite, radially unbounded, has its unique min-
imum in V(z) = 0, and is a C° polytopic function (because
it is the maximum of continuous functions). We will use
V(z) as our Lyapunov function inside D and instead of
checking V < 0, as is usually done, and which is impossible
here because V' is non-differentiable, we will verify, for
each solution z(.), that the composite map ¢ — V(z(t))
is decreasing everywhere except at + = =z, so that the
equilibrium is attractive [1].

The stability analysis is then separated into two cases, the
one where S*(xz) > S~(z) and the opposite; in this first
part, we suppose that z; > 0 for all j € {1,---,n}

St (z) > S~ (=x): In this region, our choice of V' makes us
consider the time evolution of S*(x). It is easily seen that,
when some x; > ;, we have ; < 0 because

hj(sin — 21— 1kz x]) D)
hy(sin = iy # = S(x),;) = D)

T; = T

= z;
Noticing that

—S(z)=-ST(z)+ S (z) <0

and the fact that

h]’ Sin — ﬂ,fi‘j —-D=0
=

we can use Assumption (ii) to see that for all 2; > z;
"z
l

so that ; < 0. This implies that Sj(xj) < 0. In the case
where x; = Z;, we see, by continuity, that ©; < 0.

Therefore, as long as S*(z) > S~ (z), the composite
map ¢ — S;r(xj(t)) is non-increasing. Moreover, as long
as x # z, there is always at least one & such that x; > Zy,
(otherwise, ST (z) = 0, which implies that S~ (z) = 0, and
the considered x is the equilibrium). The composite map
t — S;F (1 (t)) is therefore decreasing so that the composite
map

$j>—D<O (6)

t— S*(a(t))

is decreasing (it is the sum of non-increasing maps, including
at least a decreasing one).

T2

Fig. 2.
having its equilibrium in (z1,z2) =

Level sets of the polytopic Lyapunov functions for a 2D system
(4,2).

St (x) < S~ (x): Through a similar reasoning, we can
show that, in this region, the composite map

t— 57 (x(t))

is decreasing with the use of

( Zf—s )—D>O @)

Note, however, that troubles could arise when some of the
x;s are equal to zero, so that &; = 0.
If we now consider the composite map

t— V(z(t)) = maX(S+($(t))7 S™(x(t)))

we see that it is always decreasing when z # z and S*(z) #
S~ (x) because, in this case, it is equivalent to only one of
the functions S* or S~ at a time. If x # z and S™(z(t)) =
S~ (x(t)), both composite functions decrease, so that ¢ —
V(x(t)) = max(ST(x(t)), S~ (x(t))) also decreases.

It is to be noted that the analysis is not completed here
yet. Indeed, we can wonder if convergence can take place
towards one of the axes or faces of D (extinction of one or
several of the species)? We have indeed only shown that V/
is strictly decreasing inside D, and not on the border of the

orthant. The face > " i1 ZJ = s;, IS not a problem because

h;(.,.) = 0 on that face, so that >-7_, if =-D>7 k :
and it is therefore repulsive towards the interior of D.

Looking at Figure 2, we see that the solid level sets
are within the positive orthant and that the dash-dotted
level set touches the boundary of the orthant. Any solution
initiated within this dash-dotted level set then converges to
the equilibrium. On the other hand, the dotted level sets cross
the border of the orthant, so that a solution having its initial
condition within them could very well go to the boundary
(e.g. towards one of the equilibria that can be found there).

Let us first note that S~ (z) can be rewritten as a max
function. Indeed, it is easily seen that

— ZSJ_(J’J) = Héax
j=1

p

Tj— X
Z Jk. J

jec,c{l,y-m}y 7




where the maximum is taken from the 2™ combinations C,
of arbitrary numbers of indices taken in {1,---,n}. We will
denote 3, o 1.} 2 7 a partial sum. We will now
order the partial sums accordmg to Z cc, "”J , that is their
value in 0 (which is, incidently, also thelr maX|maI value

within IR?); we will write
i“ — T
W, (x) = E =7
| (2) ' k;
JECH

with W (z) = 0 and Wy, _;(x) = —S(x) (corresponding
to the empty and full combinations of indices) and, if we
consider W (x) and W;_ (z), we will have

1 <lg if Wl:(O) < Wl; (O)

No ordering is specified when two partial sums have the
same value in 0. For convenience, we will define Wt (z) =
—W,” (z) and some W, (0) = +occ. We can rewrite

S~ = W~
(z) 16{0{?%(“—1} v (@)
ST = Wt
@)= (2%, W7 @)
so that
V(z) = ma | W, (2) |
le {0, 2" 1}

Going back to Figure 2, it is clear that the level cor-
responding to the dash-dotted line is W, (0) = min; %
indeed, as long as V'(x) < Wy (0), we can easily see that no
x; can be equal to 0: if such a case would occur, there would
be a term Z== > W, (0) in S (x;) so that S~ (=) (and
V'(z)) would be larger than 1 (0), which is a contradiction.
On the other hand, the border is touched by this level set
V(xz) = Wy (0); indeed, if we consider, for the correspond-
ing j, the element = = (i‘l, e Zio1,0, T4, ,.fn),
which belongs to the border of the orthant, we see that
S7(z) = S; (x) = W, (0) and that S*(z) = S;F(x) =
—W71 (0), so that V(z) = S~ (x) = Wy (0). As we have
seen, within {z € R%|V(zx) < W (0)}, the classical
Lyapunov approach applles (with the exception of the part
that touches the border).

We will now prove by induction that the set {z €
IR% |V () < W, (0)} is reached in finite time.

Let us suppose that there exists 1 < [ < 2"~! such that
W (0) < V(z(to)) < W;;,(0), where z(to) is the value
of x(t) at time ¢o. We will show that the level set V(x) =
W, (0) is reached in finite time. In order to do that, we
define the sets

0O =
Qf =
Q. =

{z € DIW,(0) < V(z) < V(x(to))}
Qn{z € DIV(z) = Wi (2)}
Qn{x € DIV(z) =W, (2)}
Each set Q.f and Q. can be rewritten as

Qf =Qn{z € DIWE(z) > max

W
1€ {0,227~ 1}\m o (@)}

and is therefore compact (the * notation is a short notation
to say that this is valid for + and ~).

Remembering that S(z) > 0 inside Q, the use of (6)
induces that 4 (W,f (z)) < 0 inside the compact set Q;\,, so

that there exists a positive constant o, such that, inside ;.

d +
- < gt
S(Wi (@) < o,

If we now consider a certain Q2 set with m <[, we see
that it is empty or only contains points that have z; = 0 for
the js belonging to the C, combination that helped define
W, (z). Indeed, the maximal value of some W, (x) within
D is W,,,(0), so that, if m <[, the maximal value of W, (z)
that can be reached is smaller or equal to W, (0). We will
not consider those degenerate 2. sets because they only
come into play after the level W,”(0) is reached.

In the case where m > [, we have W, (0) > V(x(to)), so
that all z;s that participate in the definition of W, (.) cannot
be equal to zero together in x € €. Using (7) and S(z) <
0, it is therefore straightforward to see that W, (z) < 0
inside the compact set €2 . There exists therefore a positive

constant o such that, |n5|de Q.

d _
%(Wm ($)> < —Om

m

If = belongs to a single Q V= 4(WE(x)), so that
it is upper-bounded with —c-. On the other hand, if z(¢)
belongs to several Q= LV mlght not be defined; two cases
occur at such an x(t):

« there exists a m; such that z(.) belongs to €% during
the small time interval [t —e, t+¢]; V (z(t)) is then WeII-
defined as V'V,i,( (t) and upper-bounded with —oZ ;

« there exists a m; such that z(.) belongs to during
the time interval [t — €,t] and a m; such that z(.)
belongs to Q7 during the time interval [t,t + €];
during the time interval [t—e, t]. The left time-derivative
of V is then defined as W (x(t)) and its right
derivative as V'V% (x(t)). Both are upper-bounded with
max(fo,ini, —Ufﬁj)

It is then easily understood that, inside €2, the rate of decrease
of V(z(t)) is upper-bounded with the maximum of the —c;},
and —o, of the considered Q; and Q. sets.

- +

e @m0 —om)

so that the level V' (x) = W, (0) is reached in finite time (at
z(t1)). Moreover, this level is not reached on the boundary of
the positive orthant because this boundary is invariant and
can therefore not be reached in finite time. We can then
conclude that ¢t — V(x(t)) is also decreasing for some time
after time ¢, because, as long as all «; > 0, and whether
we have to consider S~ or S*, ¢t — V(x(t)) is decreasing.
There exists therefore a small time e such that V(z(¢1+¢)) <
V(x(tr)) = W, (0).

The induction approach can therefore keep going until
we see that x(t) belongs to the interior of the set {z €
D|V(z) < Wy (0)}, where the equilibrium is attractive.

The analysis of the interconnected system is concluded by
noting that a solution of the interconnected system (3) either



goes to the equilibrium, goes to the boundary of the positive
orthant or goes unbounded. This last option is clearly not
possible because we can easily see that z(¢) is upper-bounded
with max(s;,, 2(0)) and E};l 7 is upper-bounded with
z(t) because of the way z was defined through a change of
coordinates. We will show that no solution can go to the
boundary of the positive orthant.

In order to do that, it suffices to use a theorem that was
given by Thieme [14] and Markus [11], in a version that can
be found in [12] about triangular systems

y € R™
x € IR}

y = Ay
z = f(z,z2)
where A is Hurwitz and & = f(z,0) has isolated equilibria.
Inourcase, m =1,y =z — s, and @ = f(x,0) represents
the &; equations with z = s;,; it has a single equilibrium
Z, which is asymptotically stable and attractive inside D,
and the other equilibria z7, which lie on faces of the orthant,
have their stable manifold nested in their own face, and of
dimension p7. The result states that the stable manifold of the
equilibrium (0, z7) for the (y, ) system is then of dimension
m+p?, from which we can conclude that this stable manifold
cannot go outside IR™ xthe considered face. The equilibrium
(z,x) = (sin, T) is then asymptotically stable with IR, x D
as region of attraction.
[ ]
In this section, we have shown how intra-specific competition
could prevent inter-specific competition from resulting in
extinction of all but one of the species competing for the
same nutrient. This idea is in fact quite intuitive: if one of
the species starts growing and eliminating the others, the
intra-specific competition will limit its growth rate, so that
the other species stand a chance of survival.

The polytopic Lyapunov function that has been used is also
quite intuitive: while working on the manifold z = s;,,, the
growth-rate is not limited by the actual s(¢), but rather by the
crowding of the bioreactor: the crowding of the bioreactor
is equivalent to the possibility of accessing the substrate for
each species. If the reactor is very crowded, the species that
are above their target equilibrium have a limited growth-
rate because of this crowding that limit their access and by
the intra-specific competition, so that their concentrations are
guaranteed to decrease; if the bioreactor is lightly populated,
the species that are under their target equilibrium have an
important growth-rate because they have an easy access to
the substrate and because they have little competition with
their own peers. The polytopic Lyapunov function simply
expresses this observation in mathematical terms.

I1l. GENERALIZATION TO SYSTEMS PRESENTING
ADDITIVE CONNECTIONS

The proof technique can be generalized to the intercon-
nection of stable scalar systems through a connection that
takes the form of a sum of increasing functions of the states.
This could again be interpreted as a competition between
the elements of the system; however, we will not impose
conditions on the signs of the partial derivatives of the

considered functions, but rather on the signs of the functions
in some points of the state-space. We will now work in IR™
(and not in the positive orthant):

Theorem 2: Let the system of n equations with input

&y = fi(ws,u)

with z;,u € IR and f;(.,.) Lipschitz continuous in its
arguments be such that

(A)  filzi,u) <0ifz; >0and u <0
(B)  fi(zj,u) >0ifx; <0and u >0

Then the autonomous system of n equations
;= fi(xi,— Y )) ®)
j=1

has a unique equilibrium in (0,---
asymptotically stable (GAS).

Proof: It is first clear that f;(0,0) = 0 for all ¢. Indeed,
we have f;(z;,0) > 0 for 2; < 0 and f;(x;,0) < 0 for
x; > 0, so that f;(0,0) = 0 by continuity. System (8) then
has an equilibrium in (0,---,0).

We can show that system (8) cannot have an equilibrium
with Z;’:l x; > 0 (resp < 0) by noting that there must then
exist k such that ), > 0, so that & = f(zg, — Y5, ;) <
0 (because of assumption (B)). The same reasoning can be
held for a potential equilibrium z such that 3°7_, z; = 0 and
some x > 0. The origin is therefore the unique equilibrium.

In order to show stability, we will build a polytopic
Lyapunov function similar to the one of the competition case.
For any € IR", define

S(x) = ij

,0), and it is globally

and the max functions
S;r(xj) = max(z;,0) for j € {1,---,n}
S;(xj) = max(—z;,0) for j € {1,---,n}
which allow for the definitions of

§H() = 3055 (@) 20

§7@) =255 (2;) 20

then S(z) = S*(x) — S~ (x) and the function
V(x) = max(ST(x),S™ (z)) 9)

is positive definite, radially unbounded, has its unique min-
imum in V(0) = 0, and is a C° polytopic function. We then
have two cases for the analysis of the evolution of V' (z(t)):

St (x) > S~ (x): In this region, our choice of V" makes us
consider the time evolution of St (z). It is easily seen that,
when some x; > 0, we have &; < 0 because

iy = fi(xg, =20 m) = fi(zy, —S(2))



where
—S(z)=-ST(z)+ S (z) <0

This implies that S;F(xj) < 0. In the case where z; = z;,
we can also show that ; < 0.

Therefore, as long as S*(x) > S~ (z), the composite
map t — Sf(a;j(t)) is non-increasing. Moreover, as long
as x # 0, there is always at least one % such that z; > 0
(otherwise, ST (z) = 0, which implies that S~ (z) = 0, and
the considered z is the equilibrium). The composite map
t — S (1 (t)) is therefore decreasing so that the composite
map

t— S*(a(1))

is decreasing.
St (z) < S~(x): Through a similar reasoning, we can
show that, in this region, the composite map

t— S (z(t))

is decreasing.
If we now consider the composite map

t — V(x(t)) = max(ST(x(t)), S (x(t)))

we see that it is always decreasing when z # 0 and S*(z) #
S~ (x) because, in this case, it is equivalent to only one of
the functions S* or S~ ata time. If x # z and S™(z(t)) =
S~ (x(t)), both composite functions decrease, so that ¢ —
V(z(t)) = max(S™(z(t)), S~ (x(t))) also decreases, which
implies that the origin is GAS. [ ]

Remark 1: Note that this can be extended to the same
family of systems where the family of feedbacks takes the

form N
uw=—>Yg;(z;)
j=1

where g% (x;) > 0, g;(0) = 0, and g; is bijective (IR — IR).
It then suffices to apply the change of coordinates y; =
g;j(z;) to be back in the previous case.

The shape of this Lyapunov function is the same as in the
previous case as can be seen on Figure 3, except that it is
now centered at the origin. We have also added simulations
of the system

{ b= —21(1.01 — sin(10z1)) + u(1.01 — sin(7u))

—22(1.01 — sin(10z3)) + 2u(1.01 — sin(?u())

10
with u = —xz1 — x5 which satisfies the hypotheses of the the-
orem. We see that this system does not satisfy monotonicity
hypotheses as the model of competition of Section Il did,
but it satisfies the sign hypothesis that was used in Theorem
2. This justifies that, along the solutions of this system, the
Lyapunov function decreases.

IV. CONCLUSION

In this paper, we have shown, through a non-smooth
Lyapunov approach, that persistence of all the species in a
chemostat where all species are in competition for the same
nutrient, can be explained through intra-specific competition.
We have then used this same Lyapunov function to show

Fig. 3. Level sets of the polytopic Lyapunov functions for the 2D system
(8): dashed lines; simulations of system (10): solid lines; 1 + z3 = 0:
dash-dotted line.

stability of the origin in a different system of interconnected
scalar differential equations.
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