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Abstract: This paper deals with the analysis of a metabolic network with feedback inhibition.
The considered system is an acyclic network of mono-molecular enzymatic reactions in
which metabolites can act as feedback regulators on “preceding” enzymes of their own
pathway, and in which one metabolite is the root of the whole network. We show, under mild
assumptions, the uniqueness of the equilibrium. In the simplified case where inhibition only
acts on the reactions having the root of the network as substrate, we show that the equilibrium
is globally attractive. This requires that we impose conditions on the kinetic parameters of
the metabolic reactions.
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1. INTRODUCTION

The cellular metabolism is defined as the (huge) set of
biochemical reactions that occur inside a living cell for
growth and reproduction. It is usually represented by
an intricate network connecting the involved biochem-
ical species (called ”metabolites”). The pathways of
the network are called ”metabolic pathways”. In the
metabolic engineering literature, it is widely accepted
that ”despite their immense complexity, metabolic
systems are characterized by their ability to reach sta-
ble steady states” (quoted from Stephanopoulos, Aris-
tidou & Nielsen (1997), Chapter 4). It should however
be fair to recognize that a mathematical analysis of this
fundamental stability property is a difficult question
which was not much investigated. We shall limit our-
selves to simple metabolic pathways which are made
up of sequences of mono-molecular enzyme-catalysed
reactions in the form Xs → Xp.

Those reactions can be inhibited by the presence of
other metabolites in the network. Without this inhi-
bition, the stability analysis is straightforward; we
will then concentrate on networks with inhibition, like
the one given by the aspartate amino-acid pathways
(Umbarger, 1978), see Figure 1. In this network, each
produced amino-acid inhibits an enzyme of its own
pathway. This action can be seen as a negative feed-
back, that regulates the behavior of the network. In-
deed, if we, for example, consider a large excess of
isoleucine (X20), the reaction X16 −→ X17 is shut
down, so that the concentration of isoleucine is pro-
gressively reduced.

In Section 2, a model of metabolic networks such as
the one of Figure 1 will be presented. The equilibria
of these models will then be studied in Section 3,
followed by a stability analysis in Section 4, where
global attractivity of a single equilibrium is shown.
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Fig. 1. Metabolic network representing the aspartate
amino-acid pathways: the solid lines represent
the reactions and the dash-dotted lines the inhi-
bition produced by the state at the start of the
arrow onto the reaction that lies at the end of the
arrow. The root of the metabolic pathway is x1

(aspartate), and the products are the correspond-
ing amino acids: lysine (x9), methionine (x14),
threonine(x16), and isoleucine (x20).

The non-genericity of the stability of the equilibrium
is then illustrated in Section 5.

2. MODEL OF A METABOLIC NETWORK

In our model of a metabolic network made of enzyme-
catalysed reactions in the form Xs → Xp which
are inhibited by other metabolites of the network, we
will denote the inhibition factor by x[p], a np dimen-
sional vector containing the molar fractions of all the
metabolites inhibiting the reaction Xs → Xp. This
reaction is characterized by a velocity ϕsp(xs, x

[p]).

On the other hand, some metabolites of the considered
network are used in stages of the metabolism that are
not modeled in the considered network. Therefore,
we must include consumption terms in the model
for those reactions in the form Xs → ... We will
generically denote those terms ϕs0(xs).

We impose that these reaction velocities satisfy the
following assumption:

Assumption 1. • For all s, p such that the reaction
Xs → Xp belongs to the metabolic network, the
function

ϕsp(xs, x
[p])

satisfies ϕsp(0) = 0, is non-decreasing in xs for

xs ≥ 0 and non-increasing in x
[p]
j . Note that this

must also be valid when the value of p is 0.

In order to define the class of metabolic networks that
we consider, we need the following definition from
graph theory:

Definition 1. A directed graph is called an arbores-
cence if, from a given node x, known as the root node,
there is exactly one elementary path from this node to
any other node y.

The metabolic networks that we consider in this paper
then satisfy the following assumption

Assumption 2. • the involved species are denoted
X1, X2, · · · , Xn

• the graphic representation of the network (with
the different metabolites as nodes and the dif-
ferent reactions as oriented edges) is an arbores-
cence with X1 as root

• the inhibition acting on a reaction Xs → Xp

only results from the action of metabolites from
the (sub)-arborescence rooted in Xp

Stemming from the definition and known properties
of arborescences, Assumption 2 has the following
consequence on the class of metabolic network that
we consider:

(i) Each metabolite is produced by a single other
metabolite;

(ii) There is no cycle of reactions;

With these definitions and notations, we shall now
define a mass-balance dynamical model in the form

ẋ = Φ(x) − µx + ce1

where x = (x1, · · · , xn)T ∈ IRn, and xi denotes
the molar fraction of the metabolite Xi inside the cell.
The factor µ ≥ 0 represents the specific growth rate
of the cell: we assume that the cell metabolism is
analyzed during a period of exponential cell growth
with a constant specific growth rate µ. The vector e1 =
(1, 0, · · · , 0)T and the scalar c denote the constant
supply rate of the metabolite X1 at the root of the
network. The function Φ includes all the reaction
velocities, whether they correspond to reactions inside
the network or reactions consuming the metabolites
of the network for use in subsequent stages of the
metabolism.

In order to specify Φ(x), we introduce the following
notations:

Notation 1. • P(j) = {k| the reaction Xj →
Xk belongs to the network }. P(j) defines the
set of all metabolites that are produced by reac-
tions having Xj as substrate. If there is a con-
sumption term in the form ϕj0(xj) in the deriva-
tive of xj , the index 0 is included in P(j).

• A(j) = {k|Xk belongs to the arborescence with
its root in Xj}. “0” is not included in A(j).



It can easily be seen that P(j) \ {0} is a subsets of
A(j) under Assumption 2.

From the arborescence structure, it is clear that we can
separate the metabolites into three different families:

• the root X1: we suppose that there is a constant
supply rate c of X1 so that the corresponding
mass-balance equation is the following:

ẋ1 = c −
∑

k ∈P(1)

ϕ1k(x1, x
[k]) − µx1 (1)

• the intermediate metabolite Xj , which is the
result of the reaction Xi → Xj :

ẋj = ϕij(xi, x
[j]) −

∑

k ∈P(j)

ϕjk(xj , x
[k]) − µxj (2)

• the boundary metabolite Xj (such that P(j) =
{0}), which is the product of a reaction Xi →
Xj :

ẋj = ϕij(xi, x
[j]) − ϕj0(xj) − µxj (3)

Under Assumption 2, we can only have x[j] = xj

or x[j] = ∅.

A particular case of this network is the metabolic
chain with sequential feedback inhibition (cf. Chitour,
Grognard & Bastin (2003))

X1 → X2 → · · · → Xn.

with the last metabolite Xn acting as an inhibitor of
the first reaction X1 −→ X2. In this case, all x[j] are
empty, except x[2] = xn.

3. EQUILIBRIUM OF A METABOLIC NETWORK

Based on equations (1)-(2)-(3), we can now compute
the mass-balance of the whole arborescence:

d

dt
(

n
∑

l=1

xl) = c − µ

n
∑

l=1

xl −
∑

{k|0∈P(k)}

ϕk0(xk) (4)

and of the arborescence that has its root in Xj

d

dt
(

∑

l∈A(j)

xl) = ϕij(xi, x
[j]) − µ

∑

l∈A(j)

xl

−
∑

{k|0∈P(k) and k ∈A(j)}

ϕk0(xk)
(5)

Those expressions will be critical in the proof of the
following proposition:

Proposition 1. If Assumptions 1 and 2 are satisfied,
then:

(A) the system (1)-(2)-(3) is positive;
(B) if all ϕs,p(xs, x

[p]) (where p can be 0) are in-
creasing in xs then there is at most one equilibrium
x̄ = (x̄1, · · · , x̄n) of (1)-(2)-(3) in IRn

+;

(C) if µ > 0, then system (1)-(2)-(3) has a unique
equilibrium x̄ = (x̄1, · · · , x̄n) in IRn

+. Moreover,
the solutions of (1)-(2)-(3) are bounded for any
initial condition in IRn

+.

Proof: (A) is easily seen by considering the system on
the boundaries of the positive orthant.

The proofs of (B) and (C) are very similar. We write
the proof for (B) and highlight the differences that
arise for the proof of (C) .

We will first consider system (2)-(3) with x1 = x̄1 as
constant input. For any value of x̄1, we will denote by
(x̄2, · · · , x̄n) the equilibrium of (2)-(3); this equilib-
rium is a function of x̄1, so that we will state that it
is (x̄2, · · · , x̄n)(x̄1). We will now show, by induction,
that every element x̄i is an increasing function of x̄1

(resp. non-decreasing in case (C)).

The initial step of the proof considers the equilibrium
of (3) with xi = x̄i as constant input

ϕij(x̄i, x̄
[j]) − ϕj0(x̄j) − µx̄j = 0

where x̄[j] = x̄j or x[j] = ∅. When x̄i = 0, x̄j = 0
is the only solution. Also, the left-hand side of this
equation is an increasing function of x̄i (resp. non-
decreasing in case (C)) and a decreasing function of
x̄j . It is then easily seen that, if we increase x̄i, x̄j

needs also to be increased (resp.increased or kept
constant) to keep this equality satisfied. We then have
that, in this case, x̄j(x̄i) is an increasing function such
that x̄j(0) = 0 (resp. non-decreasing function such
that x̄j(0) = 0). When µ = 0 (which can only happen
in case (B)), the definition of x̄j could be limited to an
interval [0, x̄m

i ).

Let us now make the following induction hypothesis:
for a given j, the functions x̄k(x̄j) are increasing
(resp. non-decreasing) functions for all k ∈ A(j) with
x̄k(0) = 0. We then study the equilibrium of the mass-
balance of the arborescence that has its root in Xj .
From (5):

ϕij(x̄i, x̄
[j](x̄j)) − µ

∑

l∈A(j)

x̄l(x̄j)

−
∑

{k|0∈P(k) and k ∈A(j)}

ϕk0(x̄k(x̄j)) = 0

With a similar argument to that of the initial step,
we see that x̄j is an increasing (resp. non-decreasing)
function of x̄i and that x̄j(0) = 0. The same can be
said for all x̄k with k ∈ Aj because they are already
increasing (resp. non-decreasing) functions of xj .

By induction, we then have that every x̄k(x̄1) is an in-
creasing function of x̄1 defined on the interval [0, x̄m

1 )
(resp. non decreasing function defined for all x̄1). An
equilibrium of the whole system then has to satisfy the
equilibrium of the total mass-balance. From (4), this
comes to:



µ

n
∑

l=1

x̄l(x̄1) +
∑

{k|0∈P(k)}

ϕk0(x̄k(x̄1)) = c

The system admits as many equilibria as this equation
has roots. In case (B), the left-hand side is increasing
from 0 when x̄1 increases from 0 to x̄m

1 (because of the
second term). Therefore, if there exists an equilibrium,
it is unique. In case (C), the left-hand side is strictly
increasing from 0 to +∞ when x̄1 increases from 0 to
+∞ (because of the µx̄1 term), so that the equilibrium
exists and it is unique.

The final point of (C) is a direct consequence of (4);
this implies

d

dt
(

n
∑

l=1

xl) ≤ c − µ

n
∑

l=1

xl

which clearly implies boundedness of the solutions
when µ > 0. 2

Uniqueness of the equilibrium, especially when it is
coupled with boundedness of solutions, gives hope of
the possibility of having some general result about the
structural global asymptotic stability of the equilib-
rium. In the next section, we study a special case of
feedback inhibition, in which we will be able to prove
global attractivity.

4. STABILITY OF A CLASS OF METABOLIC
NETWORKS

In this section, we will study the stability of the equi-
librium of a class of metabolic networks belonging to
the family that was described in Section 2. In order to
do that, we will first present a technical lemma.

4.1 Technical lemma

In order to analyze the stability of the considered
metabolic networks, we will use the small-gain the-
orem of De Leenheer, Angeli & Sontag (2003) for the
interconnection of monotone systems. Due to space
limitation, the details of this theory are omitted here,
and we only give two lemmas that we will use in the
following sections (and which are proven in Grognard,
Chitour & Bastin (2003). Let us consider the stability
of a system

ẋ = f(x) x ∈ IRn (6)

which is not cooperative, but which satisfies the fol-
lowing assumption:

Assumption 3. Each off-diagonal element of the Ja-
cobian J of f(x) is sign-definite (independent of x).

We then build a new system ẋ = F (x,−v) according
to the following construction: for all i, j with j 6=

i, if Jij < 0, then replace xj in fi(x) with the
constant −vj . Define u1 as the vector that contains all
the constants vj that are necessary for the preceding
construction (not necessarily all j have been required);
we denote those constants by vs1

, · · · , vsl
. From this

construction, it directly appears that the system

ẋ = F (x,−u1) (7)

is cooperative (in the sense defined in De Leenheer
et al. (2003)) We then define the output of (7) as
y1 = (xs1

, · · · , xsl
)T . The interconnection of system

(7) with the trivial system

y2 = u2 (8)

through the feedback connections u1 = −y2 and
u2 = y1 results in the original system (6). We can
then show the following lemma

Lemma 1. Suppose that the solutions of (6) are
bounded and that system (7) has a unique globally
attractive equilibrium for any constant input u1 (this
equilibrium defines an input output characteristic ȳ1 =
ky1

(u1) for system (7)). Suppose that the expression
of y1 = ky1

(u1) is unknown, but that it is known that
it satisfies equation

y1 = G(y1, u1)

then system (6) has a unique globally attractive equi-
librium if there exists a norm ‖.‖ such that

sup
u1, y1 ∈ IRm

‖
∂G

∂y1
‖ + ‖

∂G

∂u1
‖ < 1 (9)

and if the unique equilibrium of system (7) with u1

constant is globally attractive for any u1.

Proof: see Grognard et al. (2003)

4.2 Feedback inhibition

The metabolic networks that we will consider for
our stability study are made up of an arborescence
of mono-molecular enzyme-catalysed reactions which
satisfy the assumption that only one type of inhibition
is present: the inhibition of the reactions that use X1

as substrate. Also, a metabolite Xm can only inhibit
the reaction X1 −→ Xp, which is the first reaction of
the unique elementary path linking X1 to Xm (this is a
consequence of the third point of Assumption 2). This
translates into

Assumption 4. • For all k 6∈ P(1), x[k] = ∅.

For simplification of notations, we will denote the
elements of P(1) as {k1, · · · , kr}.



A mass-balance model for such a network fits in the
structure that was described in the previous section, so
that we know that there is a single equilibrium. The
model can be written as (1)- (2)-(3), but is particular-
ized due to the presence of Assumption 4:

ẋ1 = c −
r

∑

i=1

ϕ1ki
(x1, x

[ki]) − µx1 (10)

ẋki
= ϕ1ki

(x1, x
[ki]) −

∑

j ∈P(ki)

ϕkij(xki
) − µxki

(11)

ẋk = ϕlk(xl) −
∑

j ∈P(k)

ϕkj(xk) − µxk (12)

where xki
is a product of x1 and xk of xl 6= x1. We

impose the boundedness of the partial derivatives of
ϕij in the following assumption:

Assumption 5. There exist dij ≥ 0, α
[kj ]
b ≥ 0 such

that

0 ≤
∂ϕij

∂xi
≤ dij for all i, j

−α
[kj ]
b ≤

∂ϕ1kj

∂x
[kj ]
b

≤ 0 for all j ≤ r, b ≤ nj

We now define a new notation

Notation 2. From the arborescence structure, we know
that there exists a unique path from X1 to any metabo-
lite Xs. This path takes the form X1 → Xkj

→
· · ·Xk → Xl → · · · → Xw → Xs; if Xs is
an arbitrary metabolite, we will store the indices of
this path (without 1 and s) in Cs; alternatively, if xs

corresponds to some x
[kj ]
b , we will also denote this

path C
[kj ]
b . Similarly, we denote gs(k) or g

[kj ]
b (k) the

index of the metabolite that follows Xk in the path that
connects X1 to Xs.

This allows for the following theorem

Theorem 2. If Assumptions 1, 2, 4 and 5 are satisfied
and

r
∑

j=1

nkj
∑

b=1







(

d1,kj

µ
+ 1

)

∏

k ∈C
[kj ]

b

d
kg

[kj ]

b
(k)

µ + d
kg

[kj ]

b
(k)







<
µ

maxks,c α
[ks]
c

(13)

and ϕ1ki
is bounded for all i ∈ {1, · · · , r} (0 ≤

ϕ1ki
≤ Bki

), then the equilibrium of system (10)-
(11)-(12) is globally attractive in the positive orthant.

Proof: The proof of this Theorem is an application of
Lemma 1 (see Grognard et al. (2003)). The decompo-
sition of (10)-(11)-(12) as in (7) is done by replacing

all the inhibiting terms x[p] with the constant vector
−u1.

We see that, despite the fact that the inhibition is clas-
sically presented as a negative feedback that regulates
the system, we have only been able to prove global
attractivity under the restrictive condition (13), while
stability is easily seen in the absence of inhibition.
This condition is very strong, especially if the specific
growth rate is small. We will analyze this condition
further in the next section.

5. LIMIT CYCLES IN METABOLIC NETWORKS

Having obtained the sufficient result for global attrac-
tivity of Theorem 2, it is relevant to ask two ques-
tions: is condition (13) necessary and sufficient, on
the one hand, and is Theorem 2 still valid without
condition (13) on the other hand? The answer to the
first question is easily seen to be “no”: the stability
of the equilibrium is retained even if condition (13) is
slightly violated (a few simulations of simple systems
is already convincing). In this section, we will show
that the answer to the second question is also “no”:
without condition (13), the stability can be lost, so
that we see that the stability of the metabolic networks
is not a simple consequence of the structure of the
models. Indeed, in this section, we shall exhibit an
example where the equilibrium becomes unstable with
a limit cycle (Hopf bifurcation) when condition (13)
is not satisfied. We will concentrate on the stability
of the equilibrium of a simple sequential pathway of
four metabolites without branching and with sequen-
tial feedback inhibition (that was presented at the end
of Section 2). Each metabolite produces a single other
metabolite, and X1 −→ X2 is inhibited by the last
metabolite, X4. We can directly apply Theorem 2 to
this system:







































ẋ1 = 1.71 −
1

1 + (x4/19)p

3.2x1

1 + x1
− 0.01x1

ẋ2 =
1

1 + (x4/19)p

3.2x1

1 + x1
−

1.4x2

1 + x2
− 0.01x2

ẋ3 =
1.4x2

1 + x2
−

1.2x3

1 + x3
− 0.01x3

ẋ4 =
1.2x3

1 + x3
−

x4

1 + x4
− 0.01x4

(14)

where we take ϕ1(x1, x4) = 1
1+(x4/19)p

3.2x1

1+x1
. The

parameter p mainly influences the maximal slope of
the inhibiting factor 1

1+(x4/19)p (which takes place in
x4 = 19). Condition (13) becomes

α

µ

(

d1

µ
+ 1

)

d2

µ + d2

d3

µ + d3
< 1 ≡ p < 3.16 10−5

which is a condition very similar to what was obtained
in Chitour et al. (2003). This condition is very strong
because it is based on a small-gain analysis. System
(14) has a single equilibrium in x = (19, 19, 19, 19)T .



At the equilibrium, we can see that the characteristics
polynomial of the Jacobian matrix has the form

(s + 0.0140)(s + 0.0135)(s + 0.0130)(s + 0.0125)
+4.2 10−7p(s + 0.01)

which is Hurwitz for p < 56.4519, and is not Hurwitz
for p larger than that value. This transition from a sta-
ble to an unstable equilibrium is illustrated on Figure
2, where the time responses of the four states is illus-
trated for the value of p = 0 (no inhibition), p = 10
(weak inhibition), and p = 60 (strong inhibition). In
the latter case, oscillations appear. This corresponds to
a limit cycle in the state-space. A Hopf bifurcation has
taken place in p = 56.4519. Despite this oscillation,
the reaction rates for the three reactions X2 −→ X3,
X3 −→ X4, and X4 −→ ... are close to their maxi-
mum after the transient. The only limiting reaction is
X1 −→ X2 which, due to the inhibition is far from its
maximum reaction rate.
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Fig. 2. Evolution of the states of system (14) for p = 0
(dotted line), p=10 (dash-dotted line) and p = 60
(solid line).

6. CONCLUSION

In this paper, we have shown that a large class of
models of metabolic system only has a single equi-
librium. We then have proven that, under a small gain
condition, this equilibrium is globally attractive in the
particular case where inhibition only acts on reaction
having the root as substrate. Finally, we have shown
that stability of this equilibrium is not a generic prop-
erty of the metabolic systems: a condition needs to be
imposed on the parameters to have stability (similar to
the small gain condition that we found).
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