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Summary. In this paper, we study the prophylactic biological control strategy for
greenhouse crops protection. The method consists in the preventive installation of
natural enemies to fight against an invading pest, using discrete augmentative (i.e.
inondative) releases of the natural enemies. We consider a simple non negative prey
(pest) - predator (natural enemy) model in ordinary differential equations together
with discrete augmentation of the predator population at constant frequency. As-
suming we have a fixed budget to spend in natural enemies releases per time unit,
we show the stability and efficiency of the prophylactic biological control strategy
(i.e. the pest is eradicated) if this budget is larger than some value. Then we show
that the optimal strategy to minimize worst case damage is to use the most frequent
(and thus smallest) releases.

1 Introduction

Due to the high costs induced by greenhouse crops production, a particular
attention must be given to reduce to the lowest the damage caused by pests.
Within this context, prophylatic methods (i.e. prevention), able to fight pests
at the time of their introduction (not after some delay) are more effective than
curative ones. Till now, these methods are most widely used for spraying of
chemicals; however, due to social (growers and consumers health), environ-
mental (water pollution) and ecological (development of resistance by pests)
considerations, chemical pesticides should be used with great care [3]. An al-
ternative strategy is to use biological control, i.e. to introduce natural enemies
to fight against pests, instead of chemicals.

Assuming that crop damage are low and then that crop is not limiting
for pest growth, we consider a prey (pest) - predator (natural enemy) system
modeled with two non negative ordinary differential equations. We consider
that the crop never ends and study on this horizon the augmentative biological
control method: the increase, at a fixed time period and with a fixed number,
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of the predator population. We consider that we have a constant budget (i.e.
number of natural enemies) to spend for biological control per time unit.

We show the existence and stability of a periodic pest-eradicated solution
(i.e. prophylactic solution) iff the budget is larger than a value determined
by the model parameters. Moreover, as the prophylactic solution runs, the
natural enemies are able to eradicate any level of unforeseen pest infestation.
It is to be noted that this first part uses a method quite similar to the one
proposed by [5] in the context of mathematical epidemiology and rephrased
by [4] in the context of mathematical modelling of crop protection.

We then suppose that the prophylactic solution runs while an infestation
occurs and look for the releasing period that minimizes the worst case (ac-
cording to the moment of infestation) crop damage due to the pest. We show
that most frequent releases is the more efficient strategy with respect to uncer-
tainties on the invading pest population level and on the model parameters.

2 Model Description and Analysis

2.1 Model Description

Since we consider the crop as non-limiting for pest growth, we simplify the
tri-trophic ecosystem ”crop - pest - natural enemies” as a bi-trophic one with
only a prey (pest) and a predator population (natural enemies). According to
classical population dynamics, we have the following non negative model:

{

ẋ = f(x) − g(x)y
ẏ = kg(x)y − my

x denoting the preys and y the predators. f(x) denotes the growth speed of the
preys, g(x) the predation rate, k the yield associated with the predation for the
predators and m the mortality rate of the predators. Since biological processes
are always difficult to model, we only assume weak qualitative hypotheses on
the (smooth enough) functions f(.) and g(.):

Hypotheses 1

• f(0) = 0, f ′(0) > 0 and ∀x ≥ 0, f ′′(x) ≤ 0
• g(0) = 0, g′(0) > 0 and ∀x ≥ 0, g′′(x) ≥ 0

We now model the periodic release of predators; let us suppose that we
have a fixed budget (i.e. fixed number of natural enemies) per time unit to
spend for crop protection with prophylactic biological control. Let µ be the
number of predators that can be released per time unit, then at each time
period T , µT predators are added to the predator population y; we have the
following non negative system of impulsive differential equations [1]:







ẋ = f(x) − g(x)y
ẏ = kg(x)y − my
∀n ∈ N, y(nT+) = y(nT ) + µT

(1)
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2.2 Model Analysis

Theorem 1. Under Hypotheses 1, model (1) possesses a prophylactic periodic
solution (corresponding to the pest eradication):

(xp(t), yp(t)) =

(

0,
µTe−m(t mod T )

1 − e−mT

)

(2)

which is (locally) stable iff:

µ >
mf ′(0)

g′(0)
(3)

Moreover, as the prophylactic solution runs and (3) holds, the natural enemies
are able to eradicate any level of unforeseen pest infestation and there exists
a release period Tmin under which the pest population is always decreasing.

Proof. We first focus on the existence and stability of the prophylactic solution
i.e. on the dynamics of y(t) as no prey is present; we get:







ẋ = 0
ẏ = −my
∀n ∈ N, y(nT+) = y(nT ) + µT

(4)

that yields: y((n + 1)T +) = y(nT+)e−mT + µT . It is clear that the sequence
(y(nT+))n∈N has a single and globally stable equilibrium y? = µT/(1−e−mT ).
Then, system (4) possesses the single globally stable periodic solution (2).

We now prove the (local) stability of the prophylactic solution for system
(1), that is to say with the presence of a prey population. We must then
consider small perturbations around the periodic solution (xp(t), yp(t)), i.e.
we consider (x(t), y(t)) = (xp(t), yp(t)) + (x̃(t), ỹ(t)). We get:

{

˙̃x = f(x̃) − g(x̃)(ỹ + yp(t))
˙̃y = kg(x̃)(yp(t) + ỹ) − mỹ

(5)

At first order in x̃ and ỹ, we have:

{

˙̃x = (f ′(0) − g′(0)yp(t))x̃
˙̃y = kg′(0)yp(t)x̃ − mỹ

(6)

which is a linear system (in x̃ and ỹ) with periodic coefficients. We then use
Floquet’s theory which ensures the local stability of (0, 0) for system (6) (and
thus of (xp(t), yp(t)) for (1)) iff the Floquet multipliers of the system have
their absolute values lower than one (see e.g. [2] for the theory). In our case,

the two Floquet multipliers are e−mT ∈ (0, 1) and e
R

T

0
(f ′(0)−g′(0)yp(τ))dτ > 0

that is lower than one iff µ > mf ′(0)/g′(0). Then (xp(t), yp(t)) is locally stable
iff (3) holds.

We now come back to system (5). From Hypotheses 1 and since yp(t) ≥ 0,
system (5) is non-negative. We now consider a forward trajectory of system
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(5) initiated at time t0 ≥ 0 at (x̃0, 0) ≥ 0. From ỹ ≥ 0 and Hypotheses 1, we
have:

˙̃x ≤ (f ′(0) − g′(0)yp(t))x̃ (7)

Thus, since yp(t) is T -periodic:

x̃(t) ≤ x0e
R

lT

t0
(f ′(0)−g′(0)yp(τ))dτ

e(k−l)
R

T

0
(f ′(0)−g′(0)yp(τ))dτe

R

t

kT
(f ′(0)−g′(0)yp(τ))dτ

with k the integer part of t/T and l the integer part of t0/T plus one. Suppose

(3) holds, then
∫ T

0
(f ′(0)−g′(0)yp(τ))dτ < 0. Since k goes to infinity as t does,

x̃(t) converges asymptotically to 0.
We come back to equation (7), we clearly have:

˙̃x ≤ (f ′(0) − g′(0) min
t

yp(t))x̃ (8)

yp reaches its minimum at t = T− mod T and is equal to µT/(emT − 1)
which is a decreasing function of T on (0, +∞) from +∞ to 0. Let us define
Tmin > 0 such that min yp(Tmin) = f ′(0)/g′(0); then ∀T < Tmin, the right
hand side of (8) is negative and x̃(t) is a decreasing function of t. ut

3 Optimization of the Release Policy

3.1 Statement of the Problem

From now on, we consider that the prophylactic solution (2) runs as a pest
population x0 invades the crop at a time t0 ∈ [0, T ) (without loss of gen-
erality). We consider that the invading population x0 is small so that the
linear system (6) is a good approximation of system (1). Moreover we assume
that we have chosen T so that the pest population is always decreasing i.e.
T ∈ (0, Tmin).

To evaluate crop damage due to the pest, we use the concept of ”Economic
Injury Level” (EIL) that has been introduced from the early bases of theo-
retical biological control [6]. EIL (denoted x̄ in the sequel) is defined as the
lowest (positive) pest population level that will cause economic losses on the
crop. For a fixed x0 > x̄, we claim that the lower the time the pest population
is above x̄ the lower are the crop damage. Then we look for the release period
T < Tmin that minimizes the time spent by x above x̄ (denoted Π in the
following) for its worst t0.

3.2 Main Result

We first look for the t0 that maximizes the damage time Π , we have:

Lemma 1. Suppose x0 > x̄ and T ∈ (0, Tmin) are fixed, then one of the
following holds:

i- ∃k ∈ N, x0 exp ((f ′(0) − µg′(0)
m

)kT ) = x̄ then Π = kT
ii- ∃k ∈ N, maxt0 Π(t0) = Π(t∗0) = (k + 1)T − t∗0 (i.e. x((k + 1)T ) = x̄)
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We will first show case (i-) and prove that, otherwise, either case (ii-) holds
or Π is maximum at t∗0 = 0, this latter case being impossible.

Proof. Suppose that Π(t0) is maximum for t∗0 ∈ (0, T ) and such that Π(t∗0) ∈
(kT, (k + 1)T ) for some integer k. Pick tm

0 < t∗0 < tM0 in (0, T ) such that
Π(t0) ∈ [kT, (k + 1)T ) for all t0 ∈ [tm0 , tM0 ]. Within this set, define τ(t0) as:

Π(t0) = kT − t0 + τ(t0) (9)

Integrating (6) between t0 and t0 + Π(t0), we get (with τ standing for τ(t0)):

x(t0+Π(t0)) = x0e
f ′(0)(kT−t0+τ)e

“

g′(0)µT

m(1−e−mT )
(−e−mt0+k(e−mT

−1)+e−mτ )
”

(10)

which is, from the definition of Π , equal to x̄.
To have a maximum of Π at t∗0, we need dΠ

dt0
(t∗0) = 0. Thus from (9) we

must have dτ
dt0

(t∗0) = 1. We differentiate (10) with respect to t0 and get:

dτ

dt0
(t0) =

(

g′(0)µT

1−e−mT

)

e−mt0 − f ′(0)
(

g′(0)µT

1−e−mT

)

e−mτ(t0) − f ′(0)
(11)

Clearly we must have τ(t∗0) = t∗0. Thus from (10) there must exist an integer
k such that:

x0e
(f ′(0)−µg′(0)

m
)kT = x̄

and Π = kT does not depend on t0 (case (i-)). Otherwise Π has no extremum
at t∗0 such that t∗0 ∈ (0, T ) and Π(t∗0) ∈ (kT, (k + 1)T ).

Two cases remain to be studied, either Π is maximum for t∗0 = 0 or t∗0 is
such that t∗0 + Π(t∗0) = (k + 1)T ; t∗0 = T or t∗0 + Π(t∗0) = kT might be studied
by k reparametrization.

Assume t∗0 = 0. Then from (11) and (9) the right derivative of Π at t∗0 is:

dΠ

dt0
(t∗0 = 0+) =

(

g′(0)µT

1−e−mT

)

− f ′(0)
(

g′(0)µT

1−e−mT

)

e−mτ(t∗0) − f ′(0)
− 1

Since T < Tmin, we have from (8) f ′(0) < g′(0)µTe−mT/(1 − e−mT ). Then
both the numerator and denominator are positive, the former being larger
than the latter. dΠ

dt0
(t∗0 = 0+) is then positive and Π is minimum at t0 = 0.

Assume now that t∗0 is such that t∗0 + Π(t∗0) = (k + 1)T . Then from (9)
τ(t∗0) = T and the left derivative of Π at t∗0 is:

dΠ

dt0
(t∗−0 ) =

(

g′(0)µT

1−e−mT

)

e−mt∗0 − f ′(0)
(

g′(0)µT

1−e−mT

)

e−mT − f ′(0)
− 1
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In a very same way as in the previous case, since T < TM we show that this
derivative is positive. Similarly one can show that the right derivative of Π
at t∗0 is negative. This can be performed through the reparametrization of
k as k + 1 while noticing that this corresponds to τ(t∗0) = 0. Then for the
considered x0 and T , Π is maximum for t∗0 s.t.: t∗0 + Π(t∗0) = (k + 1)T . ut

Lemma 1 is quite natural. Indeed, the decrease that takes place between
times T and kT is independent of t0. The worst case should then contain the
end of the first-time interval where the predators are scarce rather than the
beginning of the last interval where they are abundant.

We now focus on the evolution of the maximum of Π according to t0 as
the release period T varies in (0, Tmin).

Theorem 2. Suppose x0 is fixed. Let:

T1 =
m(ln (x0) − ln (x̄))

µg′(0) − mf ′(0)
(12)

Then the following hold:
i- there exists a n0 ∈ N

∗ such that minT<Tmin
maxt0 Π = T1 is reached at

T = Tn = T1

n
for all integer n > n0.

ii- ∀n ≥ n0, ∆Πn =
(

maxT∈[Tn+1,Tn] maxt0 Π − minT maxt0 Π
)

is a decreas-
ing function of n. Moreover it tends to 0 as n tends to infinity.

Proof. Consider T1; it is clear that there exists an integer n0 such that for all
integer n > n0, Tn < Tmin. Now consider a Tn with n > n0; using (12), we
have:

x0e
(f ′(0)−µg′(0)

m
)nTn = x0e

(f ′(0)−µg′(0)
m

)T1 = x̄

Such a Tn corresponds to case (i-) in Lemma 1, thus Π = T1.
Now we show that Π = T1 is the minimum (according to T ) of maxt0 Π .

Suppose that we have T 6= Tn (∀n ≥ n0). According to case (ii-) in Lemma 1,
∃k ∈ N such that maxt0Π = (k + 1)T − t∗0 and x((k + 1)T ) = x̄. Using (10)
we have:

x0e
f ′(0)((k+1)T−t∗0)e

g′(0)µT

m

„

1−e
−mt∗0

1−e−mT +(k+1)

«

= x̄

Which, with a little effort, yields:

(k + 1)T − t∗0 = T1 +
µg′(0)

µg′(0) − mf ′(0)

(

1 − e−mt∗0

1 − e−mT
T − t∗0

)

(13)

From (3), µg′(0) − mf ′(0) > 0 and since t∗0 < T it can easily be shown that:

(

1 − e−mt∗0

1 − e−mT
T − t∗0

)

≥ 0

Then, (k + 1)T − t∗0 = maxt0Π is larger than T1 which gives part (i-) of
Theorem 2.
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Now we prove part (ii-). From (i-) and (13) we have for the corresponding
t∗0 ∈ [0, Tn]:

∆Πn = maxT∈[Tn+1,Tn] maxt0 Π − minT maxt0 Π

= µg′(0)
µg′(0)−mf ′(0) maxT∈[Tn+1,Tn]

(

1−e−mt∗0

1−e−mT T − t∗0

)

(14)

We now look for disjoint sets, depending on n, that contain ∆Πn.

We first notice that 1−e−mt∗0

1−e−mT T belongs to
[

1−e−mt∗0

1−e−mTn+1
Tn+1,

1−e−mt∗0

1−e−mTn
Tn

]

for all T ∈ [Tn+1, Tn] and with t∗0, defined by case (ii-) of Lemma 1 for k = n,
depending on T . Since (n + 1)T − t∗0(T ) = T1 (case (i-)) at T = Tn+1 and
T = Tn, we have t∗0(Tn+1) = 0 and t∗0(Tn) = Tn. Then, for all s ∈ [0, Tn], ∃T ∈

[Tn+1, Tn] such that t∗0(T ) = s. Thus:

maxT∈[Tn+1,Tn]

(

1−e−mt∗0

1−e−mT T − t∗0

)

≤ maxT∈[Tn+1,Tn]

(

1−e−mt∗0

1−e−mTn
Tn − t∗0

)

= maxt∗0∈[0,Tn]

(

1−e−mt∗0

1−e−mTn
Tn − t∗0

)

Differentiating
(

1−e−mt∗0

1−e−mTn
Tn − t∗0

)

with respect to t∗0, we show that it reaches

its maximum for:

t∗0 =
1

m
ln

(

mTn

1 − e−mTn

)

Then:

maxT∈[Tn+1,Tn]

(

1−e−mt∗0

1−e−mT T − t∗0

)

≤ 1
m

(

mTn

1−e−mTn
− 1 − ln

(

mTn

1−e−mTn

))

, H(Tn)

Conversely, for the lower bound:

maxT

(

1−e−mt∗0

1−e
−mTn+1

Tn+1 − t∗0

)

= maxt∗0∈[0,Tn]

(

1−e−mt∗0

1−e
−mTn+1

Tn+1 − t∗0

)

= H(Tn+1)

This maximum is reached for T = T̃ ∈ [Tn+1, Tn]. Then:

maxT

(

1−e−mt∗0

1−e−mT T − t∗0

)

≥
(

1−e−mt∗0(T̃ )

1−e−mT̃
T̃ − t∗0(T̃ )

)

≥
(

1−e−mt∗0 (T̃ )

1−e−mTn+1
Tn+1 − t∗0(T̃ )

)

= H(Tn+1)

We have shown that:

H(Tn+1) ≤ max
T∈[Tn+1,Tn]

(

1 − e−mt∗0

1 − e−mT
T − t∗0

)

≤ H(Tn)

This, together with (14), implies that ∆Πn is a decreasing function of n.
Moreover H(0) = 0 and Tn tends to 0 as n tends to infinity. Then ∆Πn tends
to 0 as n tends to infinity. ut
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Fig. 1. Graphical illustration of Theorem 2: Π as a function of the release period
T ∈ (0, Tmin) for some n > n0 and with γ = µg′(0)/(µg′(0) − mf ′(0)).

3.3 Discussion

Our main result directly comes from the interpretation of Theorem 2. We have
found the values Tn of the release period T that solve our min max problem
through point (i-). However we use point (ii-) and a robustness argument to
chose a particular Tn.

Indeed, we would like the optimality property to be robust to the level of
invading pest population x0 (that we do not know in advance), as well as to
the model parameters. Our choice of T = Tn will be made on the basis of the
assumed nominal values of these parameters, but the uncertainties will make
that our choice will not be a true Tn. Most probably our choice of T will lie
strictly between two true values of Tk and then Π would not be minimum.
Therefore we should pick T so that, in its neighborhood, Π(T ) does not attain
too large values. We conclude from point (ii-) of Theorem 2 that we should
then choose T small (through n large).

To summarize our results, provided the budget spent by time unit is large
enough, prophylactic biological control is able to protect crops from invading
pests. Moreover the most frequent releases of natural enemies minimize the
worst case damage caused by pests on the crop, robustly to the initial pest
population level and to model parameters.
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