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Abstract:

This paper deals with the stability analysis of a simple metabolic system with feedback inhibition.

The system is a sequence of monomolecular enzymatic reactions. The last metabolite acts as a feedback

regulator for the �rst enzyme of the pathway. The enzymatic reactions of the pathway satisfy Michaelis-

Menten kinetics. The inhibition is described by an hyperbolic model. Without inhibition, it is clear

that the system is cooperative and has a single globally asymptotically stable equilibrium. But, in

the common situation where there is inhibition, the system is no longer cooperative and the stability

analysis is more intricate. In this paper we exhibit su�cient conditions on the kinetic parameters

in order to guarantee that this simple metabolic system with inhibition still has a single globally

asymptotically stable equilibrium.
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1 Introduction

The huge set of biochemical reactions which occur inside living cells is called the Cellular Metabolism.

It is usually represented by an intricate network connecting the involved biochemical species (called

"metabolites"). The pathways of the network are called "metabolic pathways". In the metabolic

engineering literature, it is widely accepted that "despite their immense complexity, metabolic systems

are characterized by their ability to reach stable steady states" (quoted from [6], Chapter 4). It should

however be fair torecognize that a mathematical analysis of this fundamental stability property is a

di�cult question which was not much investigated. Our objective in this paper is to provide a modest

contribution to this question. We shall limit ourselves to simple metabolic pathways which are made

up of a sequence of mono-molecular enzyme-catalysed reactions as where Xi (i = 1; � � � ; n) represent

the successive metabolites of the pathway:

X1 ! X2 ! � � � ! Xn:

A typical situation is when such a simple pathway is located between two branch points of a complex

metabolic network. We shall consider the case of a so-called sequential feedback inhibition (cf. [6])

where the last metabolite Xn acts as an inhibitor of the �rst reaction X1 �! X2. This inhibition is

represented by the dotted feedback arrow in Fig.1. The velocity of each enzymatic reaction Xi �!

Xi+1 is represented by a Michaelis-Menten kinetic function :

'i(xi) =
aixi

ki + xi
; (1. 1)

where xi denotes the intracellular molar fraction of the metabolite Xi, ai is the maximal velocity and

ki the so-called half-saturation constant. It is assumed that the velocity of the �rst reaction X1 �! X2

is inhibited by the last metabolite with a multiplicative hyperbolic inhibition function of the form:

 �(xn) =
1

1 + �xn
(1. 2)

In addition, it is assumed that the cell metabolism is analysed during a period of exponential cell

growth with a constant speci�c growth rate �. Under these assumptions and notations, a mass

balance dynamical model is formulated as:

(�)

8>>>><
>>>>:

_x1 = �
a1x1

(k1+x1)(1+�xn)
� �x1 + c;

_x2 =
a1x1

(k1+x1)(1+�xn)
�

a2x2
(k2+x2)

� �x2;

_xi =
ai�1xi�1

(ki�1+xi�1)
�

aixi
(ki+xi)

� �xi; 3 � i � n;

(1. 3)
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where n � 3 is a positive integer, x = (x1; � � � ; xn)
T
2 IRn, and all the ai; ki's, c; �; � are positive

constants.

In this model c denotes the in
ow rate of the �rst metabolite X1 of the sequence and is assumed to

be constant. Without inhibition (i.e. � = 0), the system � is clearly compartmental and cooperative

which implies that it has a single globally asymptotically stable equilibrium. But if there is inhibition,

the system is no longer cooperative and the stability analysis is more di�cult. Our contribution in

this paper will be to exhibit su�cient conditions on the kinetic parameters that guarantee that the

simple metabolic system � with feedback inhibition still has a single globally asymptotically stable

equilibrium.

2 Notations and statement of the theorem

2.1 Notations

Consider the metabolic system (�) with feedback inhibition (1. 3). Up to a change of variable (the

xi's are multiplied by �) and a time reparameterization (the time is multiplied by �), we may assume

that � = � = 1 and the model is rewritten:

(�)

8>>>><
>>>>:

_x1 = �'1(x1) (xn)� x1 + c;

_x2 = '1(x1) (xn)� '2(x2)� x2;

_xi = 'i�1(xi�1)� 'i(xi)� xi; 3 � i � n;

(2. 1)

where 'i is de�ned in (1. 1) and  :=  1 in (1. 2). In this model, c stands for �c
�

(with the original c

in that last formula) and similarly, for 1 � i � n, ai stands for
�ai
�

and ki for �ki.

We introduce some notations: for 2 � i � n, fi(x) = x + 'i(x) and f1;xn(x) = x +  (xn)'1(x).

It is clear that the 'i's, 1 � i � n, are strictly monotone functions on IR+ and realize bijections

between IR+ and [0; ai). We use '�1i to denote the inverse function. For 2 � i � n, the fi's are strictly

monotone functions on IR+ and realize bijections from IR+ to IR+; f
�1
i denotes the inverse function

of fi and gi = 'i � f
�1
i . Let M : IR+ ! IR+ by M = f�1n � gn�1 � � � � � g2.

For every x � 0 and 2 � i � n, we have

1 < f 0i(x) = 1 + '0i(x) � 1 +
ai

ki
;

ki

ai + ki
� (f�1i )0(x) =

1

1 + '0i(f
�1
i (x))

< 1: (2. 2)

Note that the fi's, the 'i's are concave functions on IR+ (negative second derivative) for 2 � i � n.
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This implies that the gi's are also concave. Therefore, we have for 2 � i � n and every x � 0

0 < g0i(x) =
'0i(f

�1
i (x))

1 + '0i(f
�1
i (x))

� g0i(0) =
ai

ki + ai
; (2. 3)

and since

M 0(x) = (f�1i )0 (gn�1 � � � � � g2(x))

"
n�1Y
i=3

g0i (gi�1 � � � � � g2(x))

#
g02(x);

we can then conclude from (2. 2) and (2. 3) that, for every x � 0

0 < M 0(x) <
n�1Y
i=2

ai

ki + ai
: (2. 4)

As for f1;xn , for every xn 2 IR+, it behaves like any fi, 2 � i � n. De�ne z : IR+ ! [0; c) by

z(b) = f�11;b (c). Later we will study in more details that application. Let F be the vector �eld on

IRn simply de�ned by the right-hand side of (�). Let K = IRn
+ the non-negative orthant and K+ the

positive orthant. The positive cone K de�nes a closed partial order relation � on IRn de�ned by x � y

if and only if y � x 2 K. It means that xi � yi holds for every 1 � i � n. We write x < y if x � y

and x 6= y, and x� y whenever y � x 2 Int(K) = K+. This notation extends trivially to subsets of

IRn. Moreover, if x � y, then the set Px;y = fz 2 IRn; x � z � yg is a parallellepiped. Let v 2 K+

de�ned by v = (1; � � � ; 1).

If f : IR+ ! IR, set limf = lim supt!1 f and limf = lim inf t!1 f . This notation is naturally

extended to the vectorial case using the partial order de�ned previously. We will also consider some-

times the function V : IRn
! IR de�ned by V (x) =

Pn
i=1 xi. Let Td, d > 0, be the simplex of K

de�ned as the the set of x 2 K so that V (x) � d.

If x; y 2 X , then [x; y] denotes the segment with extremities x and y, i.e. the set of points

tx + (1 � t)y for t 2 [0; 1]. A set X � IRn is said to be p-convex if for every x; y 2 X with x � y

then [x; y] � X . Let m be a positive integer. An m �m matrix A = (aij) is said to be irreductible

if for every nonempty, proper subset I � f1; � � � ; ng, there is an i 2 I and j 2 f1; � � � ; ng=I such that

aij 6= 0. There is a graph-theoretic formulation of irreducibility (cf. [5]): consider the directed graph

G whose set of vertices is f1; � � � ; ng; two vertices i; j have a directed edge from i to j if aij 6= 0. Then

A is irreducible if its directed graph G is connected.

A dynamical system (G) given by _x = G(x), x 2 D with D open, G : D ! IRn of class C1 is said

to be cooperative (see [5]) if, for every x 2 D, 1 � i; j � n and i 6= j,

@Gi

@xj
� 0:
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If in addition the jacobian matrix DG(x) is irreducible for every x 2 D, then (G) is said to be

irreducible cooperative.

Remark 2. 1 It is worth noticing that (�) is not cooperative with respect to the partial order

de�ned by K. It should be pointed out that the coe�cient in the jacobian DF (x) that renders (�)

non cooperative is @f2
@xn

, which is indeed negative.

We will consider auxiliary systems (�)b, b � 0, given by

(�)b

8>>>><
>>>>:

_x1 = �'1(x1) (xn)� x1 + c;

_x2 = '1(x1) (b)� '2(x2)� x2;

_xk = 'k�1(xk�1)� 'k(xk)� xk ; 3 � k � n;

(2. 5)

where the di�erence with (�) lies in the equation de�ning _x2: the variable xn is frozen at the constant

value b. We use Fb(x) to denote the right-hand side of (�)b. Now, the (2; n)-coe�cient in DFb(x) is

identically equal to zero. If x 2 K, we use 
x, 

b
x respectively, to denote the trajectory of (�), (�)b

respectively, which starts at x.

2.2 Preliminary results and statement of the theorem

Proposition 2. 2 The system (�) has the following properties:

(1) (�) has a unique equilibrium point �x 2 K+;

(2) For every x 2 K and every t > 0, 
x(t) 2 K+ i.e. K is a positively invariant set for (�);

(3) For every x 2 K, lim V (
x) � c; i.e. Tc is a global attractor of all the trajectories starting in K.

Remark 2. 3 Eventhough (�) is not cooperative, it has some of the basic features that are

required for the investigation of the !-limit sets of cooperative systems: an invariant cone with a

repelling boundary, a bounded attractor and a unique equilibrium point.

Proof of Proposition 2. 2: we start with the argument of (1). Let �x 2 K an equilibrium point of

(�), i.e. F (�x) = 0. For 3 � k � n, we have �xk = f�1k � 'k�1(�xk�1). In addition, we deduce from

c� �x1 = '(�x1) (�xn) = f2(�x2);
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that �x2 = f�12 (c� �x1). Then �xn =M(c� �x1). Therefore, since M is strictly increasing, (�) admits as

many equilibrium points in K as solutions in [0; c] of the equation

c = x+ '1(x) (M(c� x)): (2. 6)

De�ne J : [0; c] ! IR+ by J(x) = x + '1(x) (M(c � x)). Since  is strictly decreasing, so is J .

Moreover J(0) = 0 and J(c) = c + '1(c) > c. Then J takes the value c exactly once, which implies

that equation (2. 6) has exactly one solution in (0; c). Claim (1) is proved.

To establish (2), it is enough to show that @K, the boundary of K is repelling for (�). Let

y = (y1; � � � ; yn)
T
2 @K and x = 
y. Let i0 = maxfi; yi = 0g. If i0 = 1, then _x1(0) > 0 and x1 > 0

in a neighborhood of t = 0 and we are done.

Assume now that i0 > 1. If yi0�1 > 0, then _xi0(0) > 0 and the result follows. If not, then

yi0�1 = _xi0(0) = 0. The next alternative is whether i0� 1 = 1 or not. If i0 � 1 = 1, then _xi0�1(0) > 0

and �xi0(0) > 0; again the conclusion holds in this case. If i0 � 1 > 1, we have a new alternative,

whether yi0�2 > 0 or not. If yi0�2 > 0, then _xi0�1(0) > 0, case already studied. If yi0�2 = 0, then

yi0�l = 0 for l = 0; 1; 2. Proceeding in a similar manner, one can show that the last case to be treated

corresponds to yi0�l = 0 for l = 0; � � � ; i0. It implies that x
(l)
i0

= 0 for l = 0; � � � ; i0 � 1. Since, anyhow

_x1(0) > 0, we must have _x
(i0)
i0

> 0 and we are done.

Along trajectories of (�), the derivative of V veri�es

_V = c� V � 'n(xn): (2. 7)

Therefore, if x = 
x(0) 2 K and taking into account (2), then 'n(
x;n(t)) � 0. Then, _V � c � V ,

which clearly implies (3).

Remark 2. 4 At the light of Proposition 2. 2, the relevance of the auxiliary systems (�)b for

understanding the dynamics of (�) can be put forward. It is based on the two following remarks:

(a) for every b � 0, (�)b is an irreducible cooperative system (use the graph-theoretic formulation of

irreducibility). This easily implies that (�)b veri�es (2) (cf. Theorem 1:1 p.56 of [5]) and (3)

(with possibly another positive constant instead of c). In fact (�)b is a hypercycle for which a

Poincar�e-Bendixon theory was developped for the compact !-limit sets of (�)b, regardless of the

dimension of the system(cf. [4]). Then, we expect taking advantage of the many deep results

relative to that class of irreducible cooperative systems (for an excellent reference, cf [5]).
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(b) for every x 2 K and 0 � b0 < b1, we have

b0 � xn � b1 ) Fb1(x) � F (x) � Fb0(x); (2. 8)

and, if x1 > 0, then � can be replaced everywhere by < in the above equation. The monotonicity

property expressed in (2. 8) translates to the trajectories of F and Fb as explained next. Assume

that we have shown the existence of 0 � b0 < b1 such that for every x 2 K, there is some tx > 0

for which

b0 � xn(t) � b1; if t � tx: (2. 9)

(This is clearly the case by (3) of Proposition 2. 2.) Using (2. 8), we have, for t � tx,

Fb1(
x(t)) � F (
x(t)) � Fb0(
x(t)):

Set yx = 
x(tx). Since Fb is a function of type K, we can apply a standard theorem of comparaison

for di�erential inequalities (cf. for instance Theorem 10 p.29 of [2]): for t � tx,


b1yx(t� tx) � 
x(t) � 
b0yx(t� tx): (2. 10)

Assume now that, according to Part (a), the !-limit sets of (�)b0 and (�)b1 are investigated in details

and one is able to show e.g. that every trajectory of (�)b0 ((�)b1 respectively) starting in K converges

to xb0 (xb1 respectively). In addition, assume that b0 � xb0 and xb1 � b1. Then the pair (xb0n ; x
b1
n )

can be used in (2. 9) instead of (b0; b1) in the bounding process for 
x(t) described above. If that

procedure can be reproduced, one may hope to get more and more precise information on the !-limit

sets of (�). It is even tempting to conjecture that every trajectory of (�) starting in K converges to

�x. We prove it but for a restricted set of the problem's parameters.

Theorem 2. 5 Under the following condition (C),

(C) (a1 + c)
n�1Y
i=2

ai

ki + ai
� 1 (2. 11)

the system (�) is globally asymptotically stable in K with respect to �x.

Remark 2. 6 We may express condition (C) in terms of the original parameters, i.e. with � and

�. Equation (2. 11) becomes

�

�
(a1 + c)

n�1Y
i=2

ai

�ki + ai
� 1: (2. 12)

It is not surprising that if � = 0 (i.e. no inhibition) or if � is large enough then the condition expressed

in (2. 12) holds true.
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3 Proof of Theorem 2. 5

3.1 Technical lemmas

Before starting the proof of the theorem, we establish a series of useful lemmas. We �rst study the

application z : IR+ ! [0; c) by z(b) = f�11;b (c). We have

Lemma 3. 1

(i) The application z is strictly increasing from IR+ to [0; c);

(ii) The application '1 � z is strictly increasing from IR+ to [0; '1(c)) and is concave.

Proof of Lemma 3. 1: The expression of z(y) comes from the equation _x1 = 0. Di�erentiating this

equation with respect to y results in an expression z0(y) = l(z(y); 1
1+y

) for some function l. We then

isolate 1
1+y

in the equation _x1 = 0 and substitute the resulting expression into l, so that

z0(y) =
(c� z(y))2(z(y) + k1)

2

a1(z(y)2 + ck1)
(3. 1)

and z0(y) > 0 for all y � 0 because z(y) < c for all y � 0. Item (i) is proved.

The expressions of
d'1(z(y))

dy
and

d2'1(z(y))

dy2
result from straightforward computations:

d'1(z(y))

dy
= '01(z)z

0(y) =
k1(c� z(y))

2

z(y)2 + ck1
(3. 2)

d2'1(z(y))

dy2
=

d

dz

�
d'1(z(y))

dy

�
z0(y) = �

2k1c(c� z(y))3(z(y) + k1)
3

(z(y)2+ ck1)3
(3. 3)

so that
d'1(z(y))

dy
> 0 and

d2'1(z(y))

dy2
< 0 because z(y) < c.

Next, we determine, for b 2 [0; c], the equilibrium set Eb of (�)b, i.e. the set of the equilibrium

points of (�)b.

Lemma 3. 2 A point e 2 K is an element of Eb if and only if its n-th coordinate en is solution in

IR+ of the following equation in the unknown y

y =M
�
'1(z(y)) (b)

�
: (3. 4)

Moreover the previous equation has always solutions and it has exactly one if condition (C) holds.

Remark 3. 3 We chose in this paper to investigate the sets Eb's in an elementary way rather than

using the deep work of [4] and [3]. Doing so leads to obtain results on Eb which are only valid under
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condition (C) eventhough they are more general. The more complete characterization of the Eb's will

appear in the �nal version of the paper, see [1].

Proof of Lemma 3. 2: if e 2 Eb, then en =M('1(e1) (b)). Then (3. 4) follows by de�nition of z.

When considering the solutions of (3. 4), we are looking for the zeros of the function hb : IR+ ! IR,

de�ned by

hb(y) = y �M
�
'1(z(y)) (b)

�
:

Note that hb(0) < 0 and hb tends to +1 if y tends to +1 (indeed, '1(z(y)) (b) is bounded).

Therefore, if hb is strictly increasing, then Eb will have a unique equilibrium point. We show next that

this holds true under condition (C).

The derivative of hb is

h0b(y) = 1�M 0

�
'1(z(y)) (b)

�d'1(z(y))
dy

 (b); (3. 5)

Equation (2. 4) gives an upper bound on M 0 and concavity of '1(z(y)) implies that

d'1(z(y))

dy
(y) (b)�

d'1(z(y))

dy
(0) (b):

We also see from (3. 1) and (3. 3) that d
dz

�
d'1(z(y))

dy

�
< 0 so that

d'1(z(y))

dy
jz=z(0)

<
d'1(z(y))

dy
jz=0

= c:

We then have a unique zero to hb if

1�
n�1Y
i=2

ai

ki + ai
c > 0

which is satis�ed if condition (C) holds. The lemma is proved.

From now on, assume that condition (C) holds. Then, for every b � 0, (�)b has a unique equilibrium

point e(b) in K+. All the assumptions of Theorem 3:1 of [5] are satis�ed. Therefore, (�)b is globally

(with respect to initial states in K) asymptotically stable with respect to e(b).

The next lemma studies the application e : [0; c] ! K+ that associates to b 2 [0; c], e(b). Set

en : [0; c]! IR+ for the application that associates to b the n-th coordinate of e(b). Note that �xn is a

�xed point of en.

Lemma 3. 4 Assume that condition (C) holds. Then

(1) en is a strictly decreasing function and �xn is its unique �xed point;
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(2) if b1 < b2, then e(b2)� e(b1);

(3) if b < �xn, then b < �xn < en(b) and �x� e(b); similarly if �xn < b, then en(b) < �xn < b and e(b)� �x.

Proof of Lemma 3. 4: De�ne H(w; b) := hb(w) for (y; b) 2 IR
2
+. The di�erentiation of H(en(b); b) =

0 yields

den

db
= �

@bH

@yH
=
M 0

�
'1(z(en(b))) (b)

�
'1(z(en(b))) 

0(b)

h0b(en(b))
< 0; (3. 6)

since  is strictly decreasing. In addition, recall that e1(b) = z(en(b)) and ek(b) = '�1k (fk+1(ek+1(b)))

for 2 � k � n� 1. Then (2) holds since z and the '�1k � fk+1's are strictly increasing functions.

Part (3) is immediate by taking into account the facts that the function en is strictly decreasing,

�xn is its unique �xed point and (2).

Lemma 3. 5 Consider (I l) and (Sl) the sequences of points of K de�ned inductively as follows8><
>:
I l+1 = e(Sl

n);

Sl+1 = e(I ln);
(3. 7)

with I0 = 0 and S0 so that e(0) � S0 and, for every x 2 Tc, x � S0. Here e(0) is the equilibrium

point of (�)0. Then, for every l � 0, we have I l � �x� Sl and

lim
l!1

I l = lim
l!1

Sl = �x; (3. 8)

where �x is the equilibrium point of (�).

Proof of Lemma 3. 5: we �rst prove that for every l � 0, I l � �x� Sl, (I l) is increasing and (Sl)

is decreasing with respect to the partial order �. The argument goes by induction. More precisely,

we show by induction that, for every l � 0, the next proposition (Pl) holds,

(Pl) I
l
� �x� Sl; I l � I l+1; Sl+1

� Sl: (3. 9)

Clearly (P0) holds. Assume now that (Pl), l � 0 is true. Then �xn < Sl
n. By Lemma 3. 4, (3) we have

I l+1 = e(Sl
n)� e(�xn) = �x:

Similarly, we have �x� Sl+1. Since I l � I l+1, then I ln < I l+1n and �nally

Sl+2 = e(I l+1n )� e(I ln) = Sl+1:

Similarly, I l+1 � I l+2.
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Since the sequences (I l) and (Sl) are monotone (componentwise) they converge to I and S with

I � �x � S. By passing to the limit in (3. 7), we have

I = e(Sn); S = e(In); (3. 10)

which implies that In = en(Sn) and Sn = en(In), i.e. In and Sn are �xed points of en � en. The

derivative of that function is den
db

(en)
den
db

� 0. If it is smaller than one then �xn is the unique �xed point

of en � en on IR+ and (3. 8) is proved.

Finally to get den
db

(en)
den
db

� 1, it is enough to have jden
db
j � 1. Taking into account (3. 6), it is

enough that, for every b 2 [0; c)

M 0

�
'1(z(en(b))) (b)

�
'1(z(en(b)))j 

0(b)j � h0b(en(b));

which in turn follows from the next inequality

M 0

�
'1(z(en(b))) (b)

�
('1(z(en(b))) +

d'(z(y))

dy
(en(b)) � 1: (3. 11)

Because an upper bound of M 0 is given in equation (2. 4), '1 is bounded above by a1, and
d'(z(y))

dy
by

c, then (3. 11) is implied by condition (C). Since the latter already holds true, the proof of the lemma

is �nished.

Lemma 3. 6 Let x 2 K. Then 0� lim
x

Proof of Lemma 3. 6: Without loss of generality, we take 0 � x (cf. Proposition 2. 2, (2)) and

argue by contradiction. Then there exists 1 � i � n so that Pi holds:

(Pi) : 8" > 0; 8t > 0; 9t0 > t; xi(t
0) < "; (3. 12)

where xj := (
x)j , 1 � j � n.

Consider the largest interval I containing t0 so that xi(s) � " for s 2 I . By taking " small enough,

the interval I is of the type [t0; � � � with t0 > 0. By continuity, xi(t0) = " and _xi(t0) � 0. Clearly, i

cannot be equal to 1, otherwise, from _xi(t0) � 0, we would deduce that c � a1", which is impossible

for " small enough.

If (P2) holds, then x2(t0) = " and _x2(t0) � 0 imply that x1(t0) � C1", with C1 only depending on

the positive parameters a1; a2; k2; k1. This means that (P1) holds and we have a contradiction.

Replacing 2 by any index i � 3 in the previous sentence indicates that if (Pi) holds, then the same

is true for (Pi�1) and by a trivial induction we again have (P1). Therefore, if any (Pi) holds, we get a

contradiction. The proof of Lemma 3. 6 is complete.
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3.2 Final part of the proof of Theorem 2. 5

We are now ready to establish Theorem 2. 5. From what precedes, the conclusion is the consequence

of the next statement: for every x 2 K and for every l � 0

(Ql) I l � lim
x � lim
x � Sl: (3. 13)

Fix x 2 K. Proposition (Ql) is proved inductively. For l = 0, this is a consequence of Proposition 2.

2, (3). Applying Lemma 3. 6, there exists " > 0 and t0(") > 0 such that for every t � t0("),

"v � 
x(t) � S0 � "v: (3. 14)

Then, passing to the limit we have

e(S0n � ") � lim
x � lim
x � e("): (3. 15)

Note that, in equation (3. 14), " may be replaced by any 0 < � � ". Since e is globally Lipschitz over

IR+, equation (3. 15) implies (Q1) but also the existence of t1(") > 0 such that for every t � t1("),

I1 + C1"v � 
x(t) � S1 � C1"v; (3. 16)

for some 0 < C1 � 1 independant of ". Notice that equation (3. 16) is of the same type as equation

(3. 14) and then leads to equations similar to (3. 15) and again (3. 16). In that way, we obtain, for

every l � 2,

e(Sl
n � Cl") � lim
x � lim
x � e(I ln + Cl"); (3. 17)

and the existence of tl(") such that, for every t � tl("),

I l + Cl+1"v � 
x(t) � Sl
� Cl+1"v;

with Cl+1 � Cl � 1 independant of ". Letting " tend to zero in (3. 17), we get (Ql).
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