ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 38, Number 5, 2008

THE EFFECT OF PARTIAL CROP HARVEST
ON BIOLOGICAL PEST CONTROL

S. NUNDLOLL, L. MAILLERET AND F. GROGNARD

ABSTRACT. In this paper, the effects of periodic partial
harvesting of a continuously grown crop on augmentative bio-
logical control are analyzed. Partial harvesting can remove a
proportion of both pests and biological control agents, so its
influence on control efficiency cannot be a priori neglected.
An impulsive model consisting of a general predator-prey
model in ODE, augmented by a discrete component to de-
pict releases of biological control agents and periodic partial
harvesting is used. The periods are taken as integer multiples
of each other. A stability condition for pest eradication is ex-
pressed as the minimal value of the budget per unit time to
spend on predators. We consider the partial harvesting period
to be fixed by both the plant’s physiology and market forces
so that the only manipulated variable is the release period. It
is shown that varying the release period with respect to the
harvest period influences the minimal budget value when the
former is carried out more often than the latter and has no
effect when releases take place as often as or less frequently
than partial harvests.

1. Introduction. Biological control is the reduction of pest
populations to harmless levels through the release of their natural
enemies. The latter can include both parasitic and predatory species,
which are deployed at selected locations throughout the crop and,
wherever possible, to specific parts of individual plants where the pest
is likely to attack. Successful control projects in the field have involved
the use of only one predatory species such as in [3, 9], as well as more
complex biodiverse schemes such as those suggested by [8, 14, 17|
and the references therein. The target pest species and the setting,
i.e., where the crop is grown, usually determine the type of control
required, namely whether pest eradication is necessary or not. For an
exhaustive list of definitions and applications, we refer the reader to [2,
5, 16].

This research was supported by the Lutins & Co. COLOR project of INRIA

Sophia Antipolis-Méditerranée, the IA2L project of the SPE department of INRA

and the ECOGER project of INRA.
Received by the editors on August 30, 2007, and in revised form on December 8,

2007.
DOI:10.1216/RMJ-2008-38-5-1633 Copyright ©2008 Rocky Mountain Mathematics Consortium

1633




1634 S. NUNDLOLL, L. MAILLERET AND F. GROGNARD

In this contribution, we consider the protection of continuously grown
crops which have zero tolerance to pest invasions. There are two aspects
in this type of culture.

e Firstly, inundative control which is a prophylactic method of pest
control yields the most satisfactory results when implemented (see [6,
7, 13, 20] for theoretical /simulatory studies and [1, 4, 8, 9] for real life
experiments). A calculated number of predators are repeatedly injected
into the ecosystem, independently of the detection of pest insects. Such
populations are not allowed to thrive and consist only of individuals
whose main source of subsistence is the pest insect, in the absence of
which, they (the predator insects) rapidly die out. The frequency of the
releases and the number of predators injected each time ensures that a
minimal ‘sentry’ population is present to reduce the damage caused by
the pests on their attack.

e Secondly, over their growing period, these crops are partially
harvested on a regular basis. Since it is known that harvests are likely
to influence, even counterintuitively, predator-prey dynamics [15, 18],
it has to be taken into account in the formulation of the problem.

We consider the simplest ditrophic case whereby one predatory
species is used to eradicate a pest population. Our model consists
of ODEs augmented by a discrete component to incorporate the effect
of partial harvest and releases that by their very nature are discrete
phenomena. This is a classical formulation that is used widely in the
literature where impulsive dynamics are studied. Examples are [12,
15] in the context of agricultural ecosystems, [19] in epidemiology and
[10] in pulsed chemotherapy to cite some. Few papers in the literature
on impulsive crop protection, however, seem to focus on stability of the
pest-free state: yet this is of practical importance especially for highly
valued crop cultures.

In our work, we attempt to give an economic dimension to the solution
of our problem by defining the releases in terms of the number of
predators to invest in over a budget period. Using Floquet theory as
presented in [19], we are able to express the stability condition as the
minimal number of predators per budget period required to drive the
pests to zero at a given release frequency. Mailleret and Grognard [13]
showed how this number varied with the release period chosen. The
worst case scenario of pest attack occurring at an intermediate stage
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between two predator releases was considered, and the optimal release
policy which would guarantee the most efficient protection against
surges in the pest population was calculated. In particular, it is shown
that the higher the frequencies of predator release, the smaller the
time interval over which the pest population was above a threshold
commonly referred to as the Economic Injury Level [21]-and hence the
lower the damage incurred by the crops.

In line with the work of [13], we investigate how the frequency of
releases is to be varied with respect to the (fixed) harvesting frequency
to minimize the minimal budget value. We consider the harvest period
as a reference since it is set by crop growth and market constraints. The
effect of partial harvesting is similar to that of pesticide usage proposed
by Liu et al. [12] in their Integrated Pest Management (IPM) strategy.
Our model departs from the latter’s in three ways. Firstly, both the
predator and pest populations are subjected to partial harvesting when
this occurs. Secondly, hypotheses made on the functions governing the
population changes are weak and can encompass most of the density-
dependent functions proposed in the literature. Finally, one period
is taken as the integer multiple of the other. This feature is key in
solving for the stability condition to obtain the minimal budget value
and include the case where the frequencies are not the same.

It is shown that, for a given harvest period, when releases take
place less often or as often as harvests, the minimal budget is at a
calculated value which is independent of the release period. However,
when releases take place more often than harvests, the minimal budget
required always exceeds this value. This result runs counter with that
obtained by [13]: merging the two seems to indicate that the harvest
frequency is a threshold that should not be exceeded when releasing
predators for efficient biological control.

In the first section of this article the system model is presented. The
mathematical analysis of the system’s stability and the formulation of
the stability condition in terms of the minimal budget are presented
in the next section. A brief interpretation of the mathematical results
follows. Finally, we conclude with a discussion on their implications.
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2. Model description. The model we present consists of a
continuous part to depict the predator-prey interaction. We consider
the case at the onset of pest invasion where the crop—the pest food
supply—is in abundance. Because of this, at this stage, it is sufficient
to model only the pest z and predator y species.

(1)
&= f(z) —g(x)y
y=h(z)y—dy
z(nTy) = (1 — agp)z(nTh) foralln e N
y(nTF) = (1 — ay)y(nTh) + 6(nTy, mod T, )uT,  for allm € N
y(mTF) = (1 — §(mT» mod Ty) e )y(mT,) + uT, for all m € N.

The first two equations govern the intrinsic predator-prey interaction
occurring in the system. The three other ones depict the impulsive
phenomena that we consider with harvest taking place at n7} and
releases at m7T,..

In the continuous part, the functions discussed are not specified so
they are representative of as many systems as possible. Only the
following hypotheses are made.

Hypothesis 1. Let f(z), g(x) and h(z) be locally Lipschitz contin-
uous in RT such that

. 1(0) =0,
g(0) =0, ¢g'(0) > 0 and g(z) > 0 for all z > 0,

h(0) =0 and h(z) > 0 for all z > 0,
f(z)/g(z) and g(z)/x are upper bounded for x > 0.

f(z) is the growth velocity or feeding input of the pests. It represents
the growth function of the pest species and, in our model, it also
encompasses any nonpredatory losses of the pest population (e.g.,
logistic growth). We assume that the predator population is never large
enough for intra-predator interaction to take place so the functional
and numerical responses can be expressed solely in terms of the prey
numbers, i.e, as g(z) and h(z), respectively.

We assume that pest growth rate, the functional and numerical
responses are all nil when the ecosystem is pest-free.
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The functional response is increasing for small pest population levels.
We also consider that, in the presence of pests, predation always takes
place with a negative impact on z, g(z) > 0, and a positive impact
on y, h(xz) > 0. Note that conditions can be induced as much by the
predator insect foraging abilities per se as they can be facilitated by
placing the predator insects at known locations on the plant where the
pests are most likely to attack. In classical density dependent models,
g(z) is bounded or linear, so that g(z)/x is always bounded. The
boundedness of f(z)/g(z) means that there is no value of  where the
pest growth f(z) overwhelmingly dominates the predation g(z), which
would render the biological control impossible.

Partial crop harvests and predator releases occur respectively every
Ty and T;. o, and «a, represent the respective proportions of the prey
and predator populations affected at each harvest. These parameters
are allowed to be different since, in reality, it is very likely that each
species tends to occupy different parts of the plant. We also assume that
the insects are uniformly distributed throughout our plantation so that
the effect of partial harvesting is directly correlated with the number
of plants harvested. We assume linear maturation of the crop so the
proportion of crops harvested each time and hence insects removed is
considered as fixed. The §-function is defined thus to identify instants
of simultaneous partial harvest and predator release.

2) 6(9):{1 ifd=0

0 otherwise.

Finally, we presume that we have a fixed budget of predators over
a designated time period that is distributed evenly among the releases
that are carried out. p refers to the total number of predators purchased
per time unit. Expressing 7, in the same units as the budget period
gives the control uT). as the number of predators released every 7.

3. Mathematical analysis. In our analysis, we restrict ourselves
to the case where either one of the periods (release or partial harvests)
is the integer multiple of the other. Note however that the model (1)
formalism is more general. We study the system in the absence of
pests, i.e., when x = 0. In addition to being invariant, it is the target
state of our system. The stability of the system around that state is
therefore of interest. Our analysis takes place separately for the case
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when releases are more frequent than harvests, and when they are less
frequent.

We show that in the absence of pests at the initial time, the preda-
tor population converges towards a positive periodic solution. We then
demonstrate that when preys are present at the initial time, conver-
gence of the predator population also takes place to that same periodic
solution, while the preys go extinct provided some condition on the
parameters is verified.

3.1. Pest-free stability analysis.
Releases more frequent than harvests.

Proposition 1. Let T}, = kT, where k € N* and Hypotheses 1 be
satisfied. Then, in the absence of pests, model (1) possesses a globally
stable pertodic solution

(3)  (zph (t)  ypn (1))
[(tmodT)/Tr| -1
— <0,y*€d(tmodTh) + MTTefd(tmodTr) Z ede,«)
=0
where

1—e @ r) /(1 —e ")) (1 — o) + oy
(4) yr = ( 1)/_((1 - ay)e))é:rh M T

Proof. When Ty, = kT, in the absence of pests and using Hypothe-
ses 1, the system is simplified to
=0
(5) y=—dy
z(mTF) = (1 — §(m mod k)ay)z(mT,)
y(mT,") = (1 — 6(m mod k)ay)y(mT,) + pT, for all m € N.

The pest population stays nil since, in the absence of pests, their
population does not change either. The solution
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xph (t) = 0
is trivial.

On the other hand, the predator population will vary according to
the number of predators manually injected into the system and, since
the population is nonzero, according to the partial harvest effect. The
absence of their source of food will cause an exponential decay of the
population. We demonstrate that these forces will provoke the predator
population to reach a periodic pattern of period equal to T}, which
we shall refer to as the period of reference. The instant following a
coinciding partial harvest and release is taken as the point of reference.

To prove Proposition 1, we first show by induction that the predator
population right after a release can be expressed in terms of the point
of reference as follows

i—1
(6) y(nTy +iT") = y(n T )e™ T + T, Y =340
=0
where 7 € [0,1,...,(k—1)].
It is seen that (6) is valid for 4 = 0 since it is equal to
—1
y(nT;") = y(nT;H)e® + uT, Ze 34T — y(nT;h).
7=0
Now suppose that (6) holds for i = g where ¢ € [0,1,... ,k — 2], i.e.,
g—1

(7) y(nTh + qu‘) = y(nT;')e—dar + uT, Z e—JdTy
j=0

We will now show that (6) is valid for ¢ = ¢ + 1. We calculate
y(nTy + (¢ + 1)T,7) from y(nTy + ¢T,+) using (5), and get

y(nTh + (q + l)Tr ) y nTh + qTJr) —dT + pT

g—1
— ( nT+ —qdT, + MTT Zeder>€dTT + )U/TT
=0
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q
= y(nTh*)e_(q“)dT* + uT, Z e~ 4T L T,
j=1

q
= y(nTyf e~ @Dy g, 7 i
j=0

so that (6) holds true for i € [0,1,... ,k —1].

To evaluate the evolution of y according to the period of reference
Ty, we need to calculate the value of y((n + 1)T}"), which is equivalent
to y(nTy, + kT,F), in terms of y(nT} ). At this point however, partial
harvesting takes place before predator release; so we first express it in
terms of y(nT} + (k — 1)T,"), then expand the expression using (6) as
follows

y((n+VT) =y (0T + (k = DT, ) e (1 — o) + pT

— < (nT+) —d(k—1)T, +,U.,T Ze—]dTT>e—dT y) +,U/TT
k—1
+\ _—dTh o o —3dT,
=y(nT} e (1 - ay) + pTr(1 — ay) € + T
j=1
k—1

YT e (1 )+, (1~ 0

Ze ]dTT—{—a)

Jj=

Note that the summation term can also be evaluated so the sequence
is expressible as

y((n+DT,) = (1= ay)y(nT;)e ™

(8) 1—e 9Tk
+ ,UTT- <(1 — ay)l_ei—dTr + Oly> .

In this linear dynamical system, the coefficient of y(nT}"), (1—ay)e~4Tn

is less than one in magnitude, so the sequence will converge to a limit,
the equilibrium of (8). This equilibrium yields (4) and the convergence
of y(t) to a periodic solution y,(¢) based on y*.

Now that we have established the existence of the periodic solution
Ypn(t), we seek to formulate it. We focus on a reference period over
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nI, < t < (n+ 1)T} during which y,4(t) is piecewise continuous,
with the continuous components separated by predator releases. The
continuous intervals are defined over nTj, + T, < t < nTp + (i + 1)T,
where i € [0,1,...,k—1]. For a given value of ¢, the value of i is easily
identified as being ¢ = [(¢ mod T})/Ty|. The value of y,x(t) is then of
the form

Yph (1) = Ypn (nTh + iT;F)emdmedTr)

and, from (6) with y(nT}") = y*, we have that
i1

8T+ T) = e 4 7, §° e
§=0

so that

i—1
yph(t) = (y*e_idT" + uT Ze—der>€—d(t mod T7.)

Jj=0
i—1
— y*e—d(tmodTh) + uTre—d(tmodTr) 2 C_JdTT
Jj=0

[(tmodTy)/Tyr|—1
— y*efd(tmodTh) + “Trefd(tmodTr) Z e*der‘
=0

This is the form proposed in (3), thereby completing our proof. a
The form of the y,;, function is illustrated in Figure 1.

Releases less frequent than harvests. When harvesting is more
frequent than the release of predators, we have a similar result about
the existence of a periodic solution.

Proposition 2. Let T, = kT, where k € N* and Hypotheses 1 be
satisfied. Then, in the absence of pests, model (1) possesses a globally
stable periodic solution

(9) (wpr (t)  Ypr (t)) _ (0’ y*e—d(tmodTr)(l _ O[y)\_(tmodTr)/ThJ>
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Yph(t)

0 T, oL T,=3T, 21T,f, 50 2T, 7L 8L 3T

FIGURE 1. Form of the periodic solution y,, (t) in the case where k = 3. Releases of
predators are apparent at every mT). instant, while the cumulative effect of harvest
and release leads to an apparent smaller release at every n7T} instant. Between
those instants, the population decays exponentially since it has no prey to feed on.

where

w1y

1 * = .
(10) Y 1—(1—oy)kedTr

Proof. When T, = kT},, in the absence of pests and using Hypothe-
ses 1, the system is simplified to
=0
y=—dy
z(nT) = (1 — ag)z(nTh)
y(nT;") = (1 — a)y(nTh) + pT-0 (n mod k)  for all n € N.

(11)

As previously explained, x,,(t) is solved for trivially as being
Zpr(t) =0

We prove that the predator population again reaches a periodic
solution. This time, however, the period of reference is T,.. The point
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of reference is the instant after a coinciding harvest and release. We
show by induction that the population after a harvest can be expressed
as

(12) y(mT, +iT,) = y(mT,)e T (1 — )’

where 7 € [0,1,...,(k—1)].

It is seen that (12) is valid for ¢ = 0 since it resumes to
y(mI") = y(mI")e(1 - oy)".
Suppose (12) holds for i = ¢ where ¢ € [0,1,...k — 2], i.e

(13) y(mT, + qT;") = y(mT,")e 147 (1 — )%

We will now show that (12) is valid for ¢ = ¢ + 1. We calculate the
value of y when ¢ = ¢ + 1 in terms of y(nT}, + ¢T.F), knowing from
y = —dy in (11) that it will be an exponential decay with the added
component for the harvest. We then get
(14)

y(mT, + (¢ + 1)T,j') =y(mT, + qT+) —aTh (1 — ay)
= (y(mT;)e T (1 - ,)7) T (1 — o)

ay )
y(nT+) 7d(q+1)Th(1 ay)qul

This is clearly the same form given from the expression in (12), thereby
validating it.

y* is given as the fixed point of the sequence representing post-release
instants. Therefore, using (12) for ¢ = k and model (11), we next
calculate y((m + 1)T,F) as

(15) y((m+)TF) = y(mT, + kT,)

y(mT)e M (1 - ay)" + pT,
y(mT e T (1 — ay)* + uT,.

In this linear dynamical system, the coefficient of y(mT,), e~ (1 —
ay)* is less than one in magnitude, which confirms the existence of the
fixed point ¥* to which the sequence converges. This equilibrium yields
(10) and the convergence of y(t) to a periodic solution y,,(t).
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Now that we have established the existence of the periodic solution
Ypr(t), we seek to formulate it. We focus on a reference period over
mT, < t < (m + 1)T, during which y,,(t) is piecewise continuous,
with the continuous components separated by harvests. The intervals
of continuity span mT, + iT, < t < mT, + (i + 1)T, where ¢ €
[0,1,...,k—1]. For a given value of ¢, the value of 7 is easily identified
as being ¢ = | (¢t mod 7}.)/T}]. The value of yp,(t) is then of the form

ypr(t) = Ypr (mT, + iT;r)e—d(tmodTh)
and, from (12) with y(mT.") = y*, we have that
yp”’(mTr + ZT;) = y*e_ZdTh(l _ Oéy)i

so that

* _—1idT) —d(tmodT,;
Ypr (£ ( (1 — ) ( )
—

* 7d(tmodT )( )L(t mod Tr)/ThJ’

lﬁ

which is exactly the expression given in (9) and completes the proof. O
The form of the y,, function is illustrated in Figure 2.

3.2. Global stability analysis. Since we will study the conver-
gence of the solutions to (0,y,(t)) (where the p subscript stands as well
for ph or pr), it will be convenient to describe the system in terms of the
deviation coordinates with respect to the reference periodic solution:

N

(t) = a(t) - 2, (1)
() = u(t) - ().

<

This yields

(16) z = f(z) = g(2)y = f(%) — 9(&)(§ + yp(t))

and

(17§ =h@)y — dy — h(zp)yp + dyp = h(Z)(F + yp(t)) — df.
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Ypr (1)

To oL, T,=3T, 4T, 5T, 2L 70, 8T 37T,
t

FIGURE 2. Form of the periodic solution ypr(t) in the case where k = 3. Harvests
are apparent at every nT} instant, while the release of predators dominates the
harvest at every m7T, instant. Between those instants, the population decays
exponentially since it has no prey to feed on.

The impulsive effects on Z are obviously unchanged compared to those
on z. On the other hand, the release effects on y disappear in y; indeed,
we have

§(mTF) = y(mT,") — yp(mT,")
=y(mT;) + pT; — (yp(mT:) + pT)
= g(mT;).
The harvesting impulses are preserved in the expression of §
§(nTy) = y(nT,") — yp(nT;)
= (1= ay)y(nTh) — (1 — ay)yp(nTh)
= (1 — ay)y(nTh).
In the sequel, we will perform a global and a local stability analysis.

For the latter, we will need the computation of the linear approximation
of the deviation system around the periodic solution (0, y,(t)):

i = (£1(0) - ¢ Oy (1)
(18) { i = W (0 (1)7 — dj
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Releases more frequent than harvests. We will first prove our
result in the case where releases take place more often than harvests.
We obtain two different constraints for the Local Asymptotic Stability
(LAS) and Global Asymptotic Stability (GAS) of the periodic solution
in system (1). The latter is obviously stronger than the former, which
is sufficient in the case where pests outbreaks do not immediately take
large proportions.

In order to state the following theorem, we first need to define the
function

1, (5,7) =d<s+ %)

% 1

1= (o (17 )/ (1= (=)o =T )) (=0 )/ (k(1—e=@Tn/¥))”

This function is increasing in S and r because the sign of the partial
derivatives is determined by the sign of the last factor, which can be
shown to be positive. Indeed, this factor is positive when

oy (1— e4Th) o—dTh/k
<1,
1= (1—ay)e @ )\ k(1 - e=dTn/k)

and we have o, e~ (“T")/k < o and 1 — (1 — o )e~ %" > o, so that

—dTy, [k
aye

<1
1—(1—-ay)e 9T

Also, k(1 — e~ 9Th/k) > (1 — e~ 9Tr) since both sides of the inequality
have the same value in 7} = 0, and

d (k (1 _ edeh/k>) — de ATh/k > ge—dTh — %

__—dm
dT, dT, (1—em™),

which shows that p, (S, ) is increasing in .S and r.

Theore 1. When Tn, = kT, with kK € N*, the solution
(x(t),y(t)) = (0,ypn(t)) of (1) is LAS if and only if

(19) wow (L0.00)
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and is GAS if
1) 21,

20 > sup ——=, sup
(20) K Eh(@og(ﬂﬂ) >0 &

Proof. We start with the proof of global convergence under condition
(20). In this proof, we will first show that Z goes to zero, from which
we will derive that § goes to 0 also (so that y(t) converges to ypn(t)).

Let the initial condition for system (16)—(17) be (Zo,%o) at to = 0T,
that is, after the harvest and the predator release that take place at
the initial time. Analyzing (17) and noting that y,s(t) + § = y(t) > 0,
we have )

y > —dy
so that () > min(0, §o)e ™.

In order to analyze the # equation, we define the function

(21) G(z) = / s,

o 9(s)

which can easily be seen to be an increasing function of Z since g(s) > 0.

Since we also have that
g(s) < <sup M) s,
z>0 T

it is straightforward that lim_. G(%) = —oo. In order to show the
extinction of the pests we will then prove that G(Z) goes to —oco as t
goes to infinity. Therefore, we write the G dynamics:

dG(&) 1. f& .
= T ="" — 7 Ypn(t)
dt 9(z) 9(%) ?
f@
< == —min(0,9o)e — Yph(t)-
We will now consider the evolution of G between two successive har-
vests, that is, the evolution of G between the times nT;r and (n+1)T},

for a given n:
G(Z((n+1)Th)) < G(z(nT}))

(”+1)Th[f(f(7))
MEG)

+ —min(O,go)e_dT—yph(T) dr.

+
'n,Th
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Since no impulse is present inside the integral, we can drop the *
superscript in its lower extremity.

We will now analyze how the harvest that takes place at time (n+1)T},
impacts G. We have
(22)
(DT 4

G(#((n+ VT})) :/ ol

#((n+1)Th) F(n+1)T) 4
= / ——ds + / ——ds
zo g(s) #((n+1)Ty) g(s)
< G(#(nTy)))

) T
o Loy 0w ]

()T 4
+ / ——ds.
#((n+1)Tp) g(s)

The last term represents the influence of harvest on G and can easily
be approximated because

F((n+1)Ty) > 2(n+ D) = (1 — ap)i((n + 1)Tp).

Denoting S, = sup, >, f(z)/g(x) and r, = sup,>q g(x)/x, we have
(23)
(1—agz)z((n+1)Th) 1 (1—ag)z((n+1)Th) 1 ln(l N )
/ s / Infl ~ )

—ds =
#((n+1)Th) g(s) ((n+1)Ty) Tg$ Tg

Introducing (23) into (22) then yields a bound on the application
between successive moments after harvest.

(24)
G(((n+ 1T})) < G@(nTy))

(n+1)Th f(;i(T))_ . S ar
+/nn {g(i(f)) min(0, o) " —ypn(7) | d7

ln(l — az)
+ Y




HARVEST IN BIOLOGICAL PEST CONTROL 1649

We can now evaluate an upper-bound for G at any time ¢ > 0.
Defining [ as the integer part of ¢/T}, we have:

(Xﬂﬂ)—G@@fsA[gggg—ﬂmn@j@edT—wmﬁﬂdT
In(1 - )

+1

In(1 — o)

¢
S/ [Sg_min(oago)e_dT_yph(T)] dr +1 ”
0 g

t t
— _/ min(0, §o)e %" dr +/ [Sg — ypn(7)] dT
0 l

Th
In(1 —ay)

Th
+ l/ [Sg — Ypn(T)] dT + 1
0 Tg

- W(eﬂ# —-1)+ /lTh [Sg = ypn(7)] dr

In(1 — )

Th
+ l/ [Sg — Ypn(T)] dT + 1
0 Tg

The first two terms are bounded (the first one is obvious and the
second one is upper-bounded by S;7}). We then have to analyze the
third one, which has been obtained through the periodicity of y,(t)
and the fourth in order to know if G(Z(t)) goes to —oo when t goes to
infinity. In fact, it suffices to have

Th
| 180w ar +
0
to achieve this. It is more cleanly rewritten in the form
Th In(1 — o
(25) / yon()dr > S, Ty + 2L =)
0

Tg

In(1 — o)

Tg

<0

In order to obtain (20), we are now left with the computation of
fOTh Yph (T) d7, which is detailed in Proposition 3 of the Appendix:

Th
(26) / ypn (7) d

=)
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Introducing (26) into (25) then yields (20), which shows that this last
condition is sufficient to have Z go to 0 as t goes to oco.

Since & goes to zero, there exists a finite time ¢; after which h(Z) <
d/2 for all times. Therefore, after this time, we have

3 - _ _ - d_

y = (@) (pn(t) +9) — dy < h(@)ypn(t) — 59-
We have seen that h(Z)y,n(t) goes to zero as ¢ goes to infinity; so also
y does.

In order to have global asymptotic stability, we are only left with
local asymptotic stability to prove. In order to do that, we only have
to consider the discrete system that maps the state at time nT); ;r onto
the state at time (n + 1)7} with respect to the linear equation (18)
and the discrete part. After some computations, we obtain:

1) (2) (@+m) =B (%) (m)

(n+1)Tp, . 0)—a' (0 dr
(1- az)ef"Th T 0= O 0
—d

(DT
i 1 ay)e )

nTy,

Note that  is a term that we do not use in our analysis; therefore, it
is not expressed. Indeed, since the matrix is triangular and |Bas| < 1,
it is stable if and only if |Byi| < 1, i.e.,

(28) /(n+1)Th f’(O)Th + ln(l . az) ‘

YprdT >
Ty i 9'(0)

Similarly to what was done earlier, it can be shown that (28) is
equivalent to (19), so that the necessary and sufficient condition for
local stability is proven.

It is directly seen that (28) is satisfied when (20) is because y, (5,r)
is increasing in S and r, and we have
oa) . 9@)

PO fE) fE@
70) - I ) S5 gy 29 (O) = lim T <sup T

(29)
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This completes the proof of global stability, since we have shown
global convergence and local stability when (20) is satisfied. o

Releases less frequent than harvests. If we now consider the
case where predator releases take place less often than harvests, we
also obtain global and local stability results based on the following
function

1
(5 =5+

(1—az)\1—(1—ay)e 9n
rT}, 1— e dTh ’

which is nondecreasing in S and r since the last fraction is positive and
ag €1[0,1].

Theorem 2. When T, = kT}, with k € N*, the solution (z(t),y(t)) =
(0, ypr(t)) of (1) is LAS if and only if

(30) wu(Loha @)

and is GAS if
(31) w> <sup f(@) sup g(:c))

z>0 g(x) ’ z>0 T

Proof. This proof does not depart very much from the one of
Theorem 1. The only difference is that the reference period is now
T,.. We use the same function G(Z) as in (21), and an analysis similar
to the one of the previous theorem leads to

G(Z(mT, + (1 + 1)T}))) < G(E(mT, +1T})))

S La50)

- min(O, gO)e_dT - ypr (T) dr
mTr+I1Th

In(1 — a,
| In(l-ay)

Tg

?

which has the same form as (24) (where y,, is replaced by y,,) since it
is depicting the behavior of the system between two harvesting instants.
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Extending this to the whole T, interval, we obtain

T

e T
+/‘mTr [9(5(7)) min (0, go)e Ypr(T)| dr

G(z((m + 1)T,)) < G(z(mT,"))

In(1 — ay)
Ty '

+k

We now see that this expression is identical to (24) with the exception
of the presence of a k factor and the expression of yp,(t), which comes
from (9) instead of (3).

Condition (25) then becomes

Tr In(1 —
(32) / Ypr (T)dT > SyTy + ku,
0

Tg

and the computation of fOTT Ypr (T)dT With y,-(t) as in (9) yields (see
Proposition 4 in the Appendix)

T, —dT

r wr, 1—e %
33 r(7)dT = — .
(%) e =

This leads to condition (31). Global convergence of (Z,3) to (0,0)
is then concluded by using the same argument as in the proof of
Theorem 1 to show the convergence of 7 to 0.

The local stability condition (30) then directly arises from the analysis
of the stability of the discrete linearized system that maps %(m7.") onto
g((m + 1)T,F).

! () @+ =B (7) (nr)
where
(35)
(m+1)Ty ,, ,
(1 — a,)kedmrn £(0)—g' (0)yprdr .
. g [T o
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Again, since the system matrix is lower triangular, for stability we
simply require that |By1]| < 1 and |Baa| < 1. The latter yields a trivial
condition, so we calculate the former:

(36)

Ypr dT >

/(m“)TT F(OT, + kIn(l — o)
mT, gl(o) ’

which directly leads to condition (30) for local stability and the proof
of global stability is also complete because W, is increasing in S and r
and (29) is still satisfied. O

Comment. As we have seen, when condition (20) or (31) is satisfied,
the extinction of the pests is GAS. When the local condition (19) or (30)
is not verified, the extinction of the pests is not stable and a bifurcation
analysis similar to what is done in [10, 12] would show the presence of
a limit cycle when p is close to the limit. When p satisfies condition
(19) or (30) only, the pests’ extinction is locally stable, and we cannot
rule out that it is globally stable (since our global condition is only
sufficient). Such a budget has the advantage of being smaller than
the one that guarantees global stability. It allows for good control of
limited pest invasions; however, the culture is at risk of being destroyed
by a large pest outbreak.

Since, in both cases, the conditions for local and global stability are
identical up to two different parameters, any analysis of the conse-
quences of one of those conditions will immediately translate to the
other. The interpretation of conditions (19)—(20) and (30)—(31) will be
given in the next section.

4. Interpretation of results. It is easy to see that B, is
independent of T,.. The influence of T; on W, is trickier to identify
so we shall analyze it. We then present graphically the variation of
both B, and I with respect to 7). for a typical set of parameter values
and attempt to give a practical interpretation of these results.

4.1. Mathematical analysis. We first need to note that when
S+ (In(1 — o))/ (rTh) < 0, for any of the local or global conditions,
the condition is trivially verified. Indeed, it implies simply that no
biological control is needed for exterminating the pests; in fact, the
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partial harvesting is effective enough for this purpose (as «, is large
enough). We now evaluate how the release frequency influences the
minimal budget when this condition is not trivial.

We have already seen that B, is independent of T,.. We will now
study the latter’s influence on By,

Theorem 3. Let Ty, = kT, where k € N*.
The minimal budget is monotonically decreasing with respect to the

release period T,. for nonnegative values of up, i.e.,

8&1
oT,

(37) <0.

Proof. Knowing that T, is equal to T} /k, it is possible to identify the
sign of Op, /0T, noting that

O, _ Oy Ok _ Op, (—k*
oT, 0k 0T, 09k \ Tn )’
So
8Hh 8Hh
(38) sgn <8TT> = —sgn <W>,

By, is expressed as the product of two distinctive parts, one of which
is independent of k£ and which, for the nontrivial stability condition, is
positive,

S+

where S and r are the parameters required for the local or global
conditions, as defined previously.

The second part is viewed as a composite function of k so that (38)
can be evaluated as

00 o (i)

e (% (1 (o (1 - e,dn))/(f — (L= ay)e=))olk) >>
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(o (1 — e ) /(1 — (1 — oy e~ ™) 30)
~(ay(1— e ) /(1 (1 — ay)e=4Th)) o (k))* Ok

()
k

|

|

9]

or]

=

7 N 7/ N /N

Q3|QD’“
ESEES]
~_

E%(kefdn/k +dTy, — k) = <1 + %)edTh/k —1<0,

and using ’'Hospital’s rule,

—dTw/k _ 1
lim (ke—dTh/k +dTy, — k) = dT}, + lim <67)
—00

k— o0 ]./k
- ) (dTh/k2)e—dTh/k:
=t + Jim (T

:0,

we deduce that sgn (ke 9T»/k 4 dT},, — k) > 0. Therefore,

0
(41) sgn (8?:) < 0. O

We can deduce that we hit the smallest minimal value for the budget
for the largest possible T, in this case that corresponds to when k& = 1.
This happens when the release frequency equals the partial harvest
frequency.
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FIGURE 3. Variation of the minimal number of predators required per budget
year p as a function of release to harvest period ratio. Parameters are given the

values (in arbitrary units): a; = ay = 0.5, d = 1, and the rate of growth f/(0),
functional response g’(0) and numerical response h'(0) with respect to time when
the ecosystem is pest-free, i.e., z,(t) = 0, are all equal to 1.

4.2. Discussion. Figure 3 represents the analytical results obtained
in the previous sections for a chosen set of parameters. The plot
includes the two cases studies: either one of the partial harvest and
the release period is an integer multiple of the other.

Under this set of possible scenarios, increasing the frequency of release
beyond the frequency of harvest requires that the total number of
predators to invest in be higher than that when releases take place
less or as often as partial harvests. In the latter case, to ensure
pest eradication, the total budget of predators to invest in is fixed,
independently of the release period.

These results imply that it is clearly less costly to protect a crop for
lower frequencies of release. Of additional economic interest, in this
case, the biological treatment is always combined with partial harvest-
ing, so that there is little or no extra cost linked to the presence of
workers on-site. However, we recall that [13] previously demonstrated
that the higher the release frequency, the smaller the worst-case dam-
ages. Combining the results from both studies seems to indicate that
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the most profitable release strategy among the possibilities that have
been considered is the one where releases are synchronized with partial
harvests.

5. Conclusion. The results obtained in this paper for the stability
of the system are yet another confirmation that inundative control can
be an effective means of suppressing low pest invasions in agricultural
crops. This requires that a sufficient number of predators be introduced
in the system as in, for instance, [7, 9].

Our study aimed to provide a control strategy in the protection of
continuously grown crops that are partially harvested on a regular basis.
We demonstrated that partial harvesting had a nonnegligible effect on
biological control and needed to be taken into account when devising
a control strategy in the case of such crops.

We thus investigated the combined effects of releases and partial
harvests in terms of the relative frequencies of their implementation.
We considered the case where these two events occurred at periods such
that one was the integer multiple of the other, and with the two events
coinciding over the longer period. In particular, we found when releases
were as frequent as or less than the partial harvests, the minimal budget
did not depend on the period of release but instead on the harvest
parameters, the growth function of the pest population, the mortality
of the predators and the functional response. When releases were
more frequent than partial harvests however, the minimal budget value
increased with the increasing frequency of the releases, exceeding the
constant value obtained for the less frequent case. Combined with the
findings of [13] which pointed out that higher release frequencies led to
the optimal control policy, we concluded that for the set of possibilities
that was studied, the current best strategy is when release and harvest
frequencies are equal.

This approach, however, has its shortcomings. Since the integer mul-
tiple factor is key to calculating the minimal budget which would sat-
isfy the stability conditions, it is not yet generalized to other scenarios
where neither period is the integer multiple of the other. This would
happen for instance at other rational noninteger ratios as well as ir-
rational ones. It is highly likely that these intermediate ratios might
induce other dynamics in the system. Whether they might stabilize it
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given even lower minimal budget values or favor chaos remains to be
seen. Moreover, it would be interesting to extend the results to the case
where the two controls never coincide in spite of following a periodic
pattern. This would be in the line of the work, for instance, of [11],
where pesticide spraying—which is analogous to harvests—and releases
are not synchronized.

Nevertheless, we consider that our simplification already has its
practical economical advantage. Indeed, coinciding periods imply little
or no additional costs incurred in terms of labor: the task of predator
release can be assigned to workers in charge of partial harvesting. Field-
testing is now the next step required to validate the results of this paper.

APPENDIX

Proposition 3. Let Hypothesis 1 hold. Then
/Th ) dt = P (4 ay (1 —e”?™) e Th/k
, T d 1-(I—ay)e 9 J\ k(1 e dTu/k) ))

Proof. In order to compute the integral, we describe y,(t) as
Yo (iT;F e~ =) in each time interval [iT}, (i + 1)T5], with y,n (iT.7)
given by (6) when y(nT,") = y*. This yields:

%
k— i—1 T,

— <y*e—szr +'U/T’I‘ Ze—JdTr) / e—dt dt
=0 0

=0

1 e—kdT, k-1 1 e—idTr\ 1 _ —dT»
f—— T Z -
1—e—dlr — 1—edTr d

(1 - efder) + 'u'T;n(k _ leder)

Il
N\
NS

s,

d 1—e—dlr
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(A= )/(1 = e ) (1 ay) + ay MLy (g _ ratyy
B 1— (1 - ay)e 4T d

T 1— —kdT,
+l‘ r k—ei
d 1— e 9T

Th ((176_””’1)(17ay)+ay(1fe_dTh/k))(1fe_dTh)

=Pk (1=e @Th/k) (1= (1=ay)e~47h)
Ty (kz(l—e’dTh/k)—(l—e’dTh))(1—(1—(13,)67‘““’1)
TR (e T R) (1 (1-ay)e—7h)
Ty (1= (1 - ay)e ) — ayedTn/k) (1 — e~9Th)
K (1= e 9Tn/R) (1 = (1 — ay)e—9Th)
Th (k(l—eidTh/k)—(l—edeh))(1—(1—041,)57‘7”’1)
TR (e T R) (1 (1-ay)e—7Th)
i, (e ) (e ) (1 e )) (1))
= KgE (l_e—dTh/k)(1_(1_ay)e—dTh)

(s ay (1 _ e*dTh) e—dTh/k .
d 1= (1—-ay)e @ )\ k(1 —e-dTn/k) )’
Proposition 4. Let Hypothesis 1 hold. Then

T, —dT

r uT 1—e %"
| w0 de =1 —
0 — (I —ay)e 4

Proof. In order to compute the integral, we describe y,.(t) as
Ypr (1T, )e~4(t=Th) in each time interval [iT}, (i + 1)T}], with yp,(iT}")
given by (12) when y(mT.F) = y*. This yields:

T, (i+1)Th )
/ yp'r Zypr zT / e~ d(t=iTh) gy
0

Th

— Zy* —idTy, 1 _ ay)z/ C_dt dt

0

(1 —dTh

— Ze—szh — )Z
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_ uT, (1—e Th)1— (1 - ay)ke_deh
1 (1 ay)kedTr d 1—(1—ay)edTh
_ p(1— e ) o
Cd(1— (1 — ay)e—dThy’
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