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CHAPTER 1
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A method for the generation of attractive and neutrally stable limit cy-

cles for nonlinear systems is presented. It consists in designing an output

that, when regulated through a suitable feedback, forces the existence

of a limit cycle or neutral oscillations in the zero dynamics. Conditions

are then given to ensure that those characteristics of the zero-dynamics

translate to the whole system. A particular focus is made on the gen-

eration of neutrally stable oscillations through that method, because it

is not always easy to build an output that results in the existence of a

limit-cycle in the zero-dynamics. A special case where such a difficulty

arises is given in the analysis of oscillations generation around the up-

per vertical for the pendubot. The regulation of the output results in

neutrally stable oscillations, and we present a method for imposing that

those oscillations converge towards the desired ones.

Keywords: Limit cycles, feedback linearization, zero dynamics, pen-

dubot, first integral

In many applications, the natural operating mode of a control system
is an oscillating one. However, the oscillations are not always present in
the open-loop dynamics. Therefore, it is relevant to study new control de-
sign methods forcing the internal system dynamics (or a given output) to
present a pre-specified limit cycle. Examples of such systems are: walking
mechanisms (the full system state should behave periodically), rotating ma-
chines (the internal states, i.e. current and flux, are oscillatory if the torque
output is kept constant), the synchronization of a vertically landing aircraft
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with the oscillation of a platform (e.g. an aircraft carrier), etc.

There exist some published works addressing problems in this category.
Under the hypothesis of the existence of a limit cycle, Hauser and Chung?®
present a setup for the computation of Lyapunov functions, allowing to
determinate if the given limit cycle is exponentially stable. Nevertheless
no procedure is presented for the generation of the limit cycle itself. This
latter problem has recently been addressed by the works of Marconi et al'2,
Aracil et al', Sepulchre and Stan'8, Westervelt et al'® and Canudas de Wit
et al*. In Marconi et al'2, the authors deal with the problem of tracking an
oscillatory signal. The addressed problem is the motion synchronization of
a vertically landing aircraft with the oscillation of a platform. In Aracil et
al', oscillations of the Furuta pendulum are stabilized through an energy-
shaping approach, and passivity is used as a mean to generate oscillations in
Sepulchre and Stan'®. Westervelt et al'® and Canudas de Wit et al* present
approaches that have been motivated by the walking mechanism, for which
the natural operating mode is a periodic one, with Westervelt studying the
zero-dynamics of a controlled biped (which are hybrid due to the impacts)
and Canudas de Wit having designed a feedback law that generates globally
stable orbits for an underactuated inverted pendulum.

In certain cases, the oscillatory internal behavior is a byproduct of an
output regulation problem. An example is the torque and flux norm regula-
tion problem for the induction motor. The linearization of these two outputs
(as originally proposed by De Luca and Ulivi®), leads to an oscillating be-
havior in the internal dynamics. Indeed, under this particular frame, the flux
and current vector asymptotically converge to a linear stable oscillation?.
In Canudas de Wit et al*, an output is designed and regulated such that the
resulting zero dynamics of the system present a limit cycle. Evenmore, the
family of outputs that is proposed allows for enough freedom such that the
solutions of the zero dynamics can converge towards any prespecified closed
curve. The formalization of this approach, with constructive methods for
the design of outputs whose regulation generates oscillating behaviors were
then given, along with the corresponding stability analyses®'6. The out-
put, once regulated, is called a virtual constraint because it imposes a fixed
relation between the states of the model, so that it reduces the number of
degrees of freedom of the model.

In this chapter, we will complement the existing results and intro-
duce their application on the pendubot, a two-link planar robot whose
only actuated joint is the “shoulder”. We wish to generate oscillations for
the pendubot around the upward position: the oscillations of the first arm

6,16
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should have a given angular amplitude (= 2a;) and a prespecified period.
This chapter is structured as follows. In Section 1, we present results
about the stability of periodic orbits in cascade systems. We then analyze
oscillating behaviors in dimension 2 in Section 2. A model of the pendubot
is presented in Section 3, followed with the presentation of conditions on
the regulated output for the apparition of periodic orbits around the upper
vertical. The control problem is then treated, for the pendubot, in Section
4, which is concluded by some simulations. Finally, we give a conclusion.

1. Oscillations in cascade systems
1.1. Attractive limit sets in cascade systems

In this section, we will show that a globally attractive limit-cycle in the
zero-dynamics of a system could result in a globally attractive limit cycle
for the system itself. In order for that result to be valid, some conditions
are to be satisfied for the interconnection between the zero dynamics and
the rest of the system, and on the stability of the limit cycle in the zero
dynamics. The affine system that we consider is analyzed in the normal
form

(121000 "

§ = Al + Bu

where £ € R", z € R ", u € R™ (m < n), and the functions f and
1) are locally Lipschitz continuous on their domains of definition. Function
1 is such that ¥ (z,0) = 0 for all z (without loss of generality; indeed, if it
were not the case, f is redefined as f(z)+1(z,0) and ¢ as ¥(z, &) —¥(z,0)).
The zero dynamics are represented by z = f(z).

Many stabilization designs are known for this particular normal form
(e.g., the global asymptotic stabilization of the origin of the £ dynamics
through a &-feedback yields boundedness of the solutions of (1) and global
asymptotic stabilization of the origin of (1)17). In this section, we impose the
same kind of conditions as in Sepulchre et al.l”: the interconnecting term
¥(z,€) is linearly bounded in z when ||z|| > M for some M > 0, so that
finite escape time cannot occur. Also, there exists a positive semidefinite
radially unbounded function W (z), that decreases along the solutions of
the system when ||z is large:

Assumption 1: Suppose that there exists M > 0,7 and 7, class K functions
such that

9z, Ol < m(IEIDIzI + n2(11€]])
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for ||z|| > M.

Assumption 2: Suppose that there exists a positive semidefinite radially
unbounded function W(z) and positive constants C' and M such that, for
all ||z|| > M, the following holds:

(a) LyW(z) <0
(b) IGE] Izl < CW (z);

Point (b) of Assumption 2 is classically satisfied by Lyapunov functions
W (z) produced by converse theorems for exponentially stable systems!!.

Nonlinear systems can present many different kinds of w-limit sets other
than an equilibrium point”. In this section, we are interested in the case
where one w-limit set is a limit cycle. An important property of the limit
cycles is that they are compact sets; therefore, we will analyze the situation
where one w-limit set is a compact set .

Definition 1: A compact set vy is “almost globally attractive” for the dy-
namics

i = f(z) (2)

with x € IR", if it is attractive with basin of attraction containing the
whole state space minus a set of Lebesgue measure zero.

In dimension 2, the simple situation where a limit cycle -y attracts every
solution except those starting at the mandatory equilibrium inside the area
circumscribed by « fits into Definition 1: « is almost globally attractive
because the equilibrium is of Lebesgue measure zero.

We now consider the case where the union of the w-limit sets of (2) is
made of an almost globally attractive compact set v and an equilibrium %
such that v and z are disjoint.

Remark 2: Note that Z is unstable. Indeed, if Z is stable without being
asymptotically stable, there are solution whose w-limit set is neither Z nor
~. On the other hand if Z is asymptotically stable, the regions of attraction
of Z and ~ are open, non empty, connected sets'!. Therefore, IR™ needs to
be covered by two disjoint, non empty, open sets, which is a contradiction.
Therefore Z is unstable.

If we consider the existence of an almost globally attractive compact
set v in the z-dynamics, the next theorem gives conditions for the almost
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globally attractivity of v to translate into almost global attractivity of I' =
{(2,¢) € R™|z € v and £ = 0} in the interconnected system.

Theorem 3: Suppose that Assumptions 1 and 2 are satisfied for system
(1) for which f: R*™ "™ — R" " and ¢ : R™ " x IR" — IR™ " are locally
Lipschitz continuous functions. Let the only invariant sets of 2 = f(z) be
z = 0 and 7, respectively an equilibrium and an almost globally attractive
compact set (0 ¢ v). If (A, B) is controllable, then any feedback in the
form u = k(¢) guaranteeing that the origin of £ = A¢ + Bk(£) is Globally
Asymptotically Stable and Locally Exponentially Stable (GAS-LES) yields

(i) convergence of the solutions of

5= o)+ 9(=8)
{é _ AE+ BR(E) )

to the unstable equilibrium (z,£) = (0,0) or to the compact set I".

(ii) If the set of initial conditions of solutions converging to (0,0) is of
Lebesgue measure zero, the compact set I' is almost globally at-
tractive.

(iii) If the equilibrium of 2 = f(z) is hyperbolic, and if the global sta-
ble manifold of the origin (0,0) is a manifold whose dimension is
globally defined and constant, the compact set I is almost globally
attractive.

(iv) If v is an exponentially stable periodic orbit for 2 = f(z), then I is
an exponentially stable periodic orbit for (3).

Proof: Boundedness of the state along the solutions is a direct consequence
of the boundedness of W along the solutions and the radial-unboundedness
of W (z)'".

Every solution of (3) converges to the set E = {(z,£{) € R"|{ = 0}.
LaSalle’s invariance principle then asserts that every bounded solution con-
verges to the largest invariant set of E. This set is defined by the largest
invariant set of 2 = f(z): the origin z = 0 and the compact set . Because
every solution of (3) is bounded, every solution either converges towards
the origin (0,0) or towards the compact set I". Moreover, Remark 2 implies
that z = 0 is an unstable equilibrium in the z-dynamics. The fact that
(z,€) = (0,0) is unstable directly follows, which shows (i).

The basin of attraction of the origin (0, 0) is the set of initial conditions
of solutions not converging to I'. Because it is of Lebesgue measure zero,
the compact set T' is almost globally attractive, which shows (ii).
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If the origin z = 0 is a hyperbolic fixed point for Z = f(z), the set
of eigenvalues of the Jacobian linearization g—ﬁ(O) contains n, > 1 (resp.
ns < n—r—1) eigenvalues with positive (resp. negative) real parts (ns+mn, =
n—r).

Since the origin ¢ = 0 is locally exponentially stable for £ = A¢ + Bk(¢),
the Jacobian linearization A + Bg—’g(o) has r eigenvalues with negative real

parts. The Jacobian linearization of the complete system (3) is then

7 [ 5@+ 500 %’g(oép
0 A+ B3(0)

Because ¥(z,0) = 0 for all z, %(070) = 0. Therefore, the eigenvalues of
J are those of 2—5(0) and of A + Bg—’g(o). J has then ns; +7 < n—1
eigenvalues with negative real parts and n, > 1 eigenvalues with positive
real parts. The stable manifold theorem for a fixed point” then states that
there exists a local stable manifold M, of dimension n, + r and a local
unstable manifold M, of dimension n, at the origin. If the dimension
of the global stable manifold is globally defined and constant, this global
stable manifold also has a dimension n, + r. Therefore the set of initial
conditions of solutions that converge to the origin (0,0) (and not to T') lies
in a manifold of dimension smaller or equal to n» — 1. Because a manifold
of dimension smaller or equal to n — 1 is of Lebesgue measure zero in IR™,
the compact set T' is almost globally attractive, which proves (iii).

Exponential stability of v implies the existence of a Lyapunov function
Vi(z) that is decreasing along the solutions of 2 = f(z). This function
satisfies

LiVi < —kil2]?

where ||z||, = infye~ ||z — y||®. On the other hand, a similar Lyapunov
function V5(¢) can be found for the ¢ subsystem (mql/£]|? < Va2(€) <
mall€lI?, Lagspr(e)Ve < —msl|€]|?). As in Khalil'', we then define the Lya-
punov function:

V(2,€) = Vi(z) + 2k/V2()
with k£ > 0, whose derivative is
/ L B V2
V =LiVi(2) + LyVi(2) + k%
<~k 122 + GRep(z,8) — kmy 1L

< —killz]l = BRIl + GRa(, )
km
< —kallzll; — 22Nl + M|
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where the last inequality is valid in a small neighborhood of I' because
%w(z,g) is continuously differentiable. Taking k > %
definiteness of the derivative of V. The closed orbit I' is therefore exponen-

tially stable. This proves (iv). O

ensures negative

The origin of the complete closed-loop system behaves like a saddle
point: it is attractive in some directions and repulsive in others. This is
illustrated in Figure 1, where « is a limit cycle, n = 3, and r = 1. In this
figure, the z system is of dimension 2 with an almost globally attractive limit
cycle 7. In order to clarify the figure, we suppose that the stable manifold
M of the origin is the & axis. Therefore, every solution starting on that
axis converge to the origin (0,0,0)7. All the other solutions converge to the
limit cycle because the origin is only attractive in the & direction.

| 3

22

- -

21

Fig. 1. Almost global attractivity of a limit cycle. Solutions starting on the ¢ axis
converge to the origin. All others converge to ~.

The method that is then used for the generation of oscillations in an
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affine system in the form
z=F(z)+ G(z)u

then comnsists in finding an output y that will be such that this system
put into the normal form with & = y has the form (1) with an almost
globally attractive limit-cycle in its zero-dynamics. Such a method has been
presented in Grognard and Canudas de Wit®, but its application is difficult.
Also, it is sometimes easier to design an output such that the oscillations
in the zero-dynamics are neutrally stable; in other words, the equilibrium
is surrounded by a continuum of closed, periodic, orbits (in dimension 2).

1.2. Neutrally stable oscillations in cascade systems

As we will see in the case of the pendubot, the design of an output whose
regulation generates an attractive limit cycle (as in the previous section)
is not always an easy task. It is sometimes easier to find an output whose
zero-dynamics are neutrally stable, with an equilibrium surrounded by a
continuum of periodic orbits. We will generalize this behavior to invariance
of the level sets of a radially unbounded positive semidefinite Lyapunov
function and to the following cascade system:

{ Z = f(Z) +wz(z7£7u)
§= ¢5 (5, u)

We therefore need two new assumptions that are closely related to the
previous ones:

(4)

Assumption 3: Suppose that there exists M > 0,7 and 7, class K functions
such that

1¥=(2, & w)ll < m (&, w) DIzl + m2(ll(€; w])
for ||z]| > M.

Assumption 4: Suppose that there exists a positive semidefinite radially
unbounded function W (z) such that, for all ||z]|:

LfW(Z) =0

and we obtain a weaker result than Theorem 3:

Theorem 4: Suppose that Assumptions 3 and 4 are satisfied for system
(4) for which f : R — ZRTL—T7 wz IR " x IR x IR™ — IR™ " and
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Ye + IR" x IR™ — IR" are locally Lipschitz continuous functions. If the
origin of the £ subsystem is finite-time stabilizable, then any feedback in
the form u = k(£) guaranteeing that the origin of & = t¢ (£, k(€)) is finite-
time stabilized ensures that each solution of

§ = ve(&k(E))

reaches, in finite time, a region where W (z) is constant and £ = 0

Proof: For any initial condition (z(0),£(0)), the controller k(&) ensures
that there exists a time T'(z(0),£(0)) and some Z(z(0),£(0)) € R™"
such that (2(7T'(z(0),£(0))),£&(T(2(0),£(0)))) = (Z,0) (Assumption 3 en-
sures that no escape of z in finite time of z can take place during that
time-span so that Z is finite). For all ¢ > T', we then have £(t) = 0, so that
the the remaining dynamics are

2= f(2)

and the solution is then such that W (z) stays constant (at the value W(Z)Q

Tt is interesting to see that, if (4) can be rewritten in the following form

{z‘; = f(2) +9:(2, )€ + Pus(2,§ u)u
£ =Ye(§) + Yue(z,§,u)u

with, among other conditions, # = f(z) neutrally stable, £ = ¢(€)
globally exponentially stable and .(z,0) = 0, the classical forwarding
technique'®'% can be applied to achieve stabilization of the solutions of
the closed-loop system to a prespecified level-set. We do not develop this
method because, in the pendubot case, we do not have v,(z,0) = 0.

Also note that, if (4) is a normal form®, with u scalar and the ¢ subsys-
tem a chain of integrators, it is easy to build a finite-time controller (the
time-optimal controller for the £ subsystem, for example). However, the
resulting controller is not very satisfying, because the level of W(z) that is
reached cannot be tuned. For the pendubot, we will present heuristics that
ensure convergence of the solutions to the desired level set (and desired
oscillations) after having designed an output that ensures neutral stabil-
ity of the oscillations in dimension 2. In the following section, we will be
interested in analyzing those neutrally stable oscillations in 2D-systems.
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2. Oscillations in the plane

As stated earlier, the oscillations that we will generate will come from the
zero-dynamics, which is very interesting because the analysis of the cycles
can then be made in the dimension of the zero-dynamics (which is smaller
than the dimension of the original system). By construction, this dimension
will often be two. Therefore, we give two results for the analysis of cycles
in two dimensional systems.

Lemma 5: Let f : IR x IR — IR be a Lipschitz continuous function such
that for all (z1,2z2) € IR? the function f is such that f(z1, 22) = f(z1, —22).
Let the system

5+ £(2,5) =0 (5)

If there exists Z € IR such that f(2,0) = 0 ((2,0) is an equilibrium of
(5)) and there exist Zmin < Z < Zmayz Such that f(z,0) < 0 in [Zmin, Z)
and f(z,0) > 0 in (Z, Zmaz], then there exists a neighborhood of (z,%) =
(2,0) such that all solutions in that neighborhood are periodic orbits (the
hypotheses are illustrated on Figure 2).

Fig. 2. Generic form of behavior for systems satisfying the hypotheses of Lemma 2.
The arrows indicate the direction of the field when z = 0.

Proof: Let us first show that the phase plane is symmetric with respect to
the z axis. We first define (21, 22) = (2, 2). System (5) can then be rewritten
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as

2= 2
. 6

{Z2=—f(zhz2) (©)
The symmetry has to be shown with respect to the z; axis. Let us now
reverse the time (replace ¢ by 7 = —t) and replace 22 by —z2. The dynamics

(6) then becomes
dzs

e =—f(z1, =) = —f(z1, 22)

The dynamics are unchanged. This means that, if (21 (¢), 22(t)) is solution of
(6), then (21(t), —22(t)) also is. The main difference is that, if (z1(¢), 22(t)) is
solution with ¢ increasing, then (21 (t), —z2(t)) is solution with ¢ decreasing:
they run in opposite directions.

We will now constructively show the existence of a cycle for (6) around
the equilibrium (21, 22) = (Z,0).

Let us consider (21(0), 22(0)) = (2maz,0)- From (6), we see that z3(0) <
0; this means that z, starts decreasing as well as z;. We will now show that
(21(t), 22(t)) reaches the axis z; = Z in finite time.

First, we see that, as long as z;(t) is inside the interval [z, zmaz], 21
decreases. Indeed, if it were to increase at some time, this would mean that
29 has become positive, so that it is gone through 0 with z;(¢) inside the
interval. However, 25 < 0 for zo = 0 and 27 in the interval, which prevents
2o from becoming positive and thus z; from increasing.

We now show that (z1(t),22(t)) has to reach the axis z; = z at time T'
with 22(T) < 0. We will show this by contradiction:

e Let us suppose that z;(¢) converges to z; > z and never converges
to Z. To make sure that z; does not keep decreasing beyond z; (so
that zf is the limit in finite or infinite time of 24(¢)), there must
exist z5 < 0 such that (27, z5) is an equilibrium, which is not the
case. Therefore, z1(t) has to converge to Z in finite or infinite time.

e Let us suppose that (21(t), z2(t)) converges to (z,0) in finite or
infinite time. This would create a solution with initial condition
at (Zmaz,0) and going to (Z,0) through the region where 25 is
negative. By symmetry, there would exists a reversed-time solution
with initial condition in (z4z,0) and going to (Z,0) through the
region where 25 is positive. The concatenation of both solutions
in positive time creates a homoclinic curve. For the existence of
a homoclinic curve, an equilibrium is required in the interior of
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the region defined by the curve, which is not the case. Therefore a

solution starting at (2maz,0) cannot converge to (Zz,0).
Therefore, there exists 2 < 0 such that (z1(t), 22(t)) converges to (Z, z3)
(See Figure 3). This takes place in finite time. Indeed, for a convergence to
take place in infinite time, (Z, z; ) must be an equilibrium, which is not the
case.

<1

Fig. 3. Construction of a cycle for equation (5).

Let us now consider an initial condition (z1(t),22(t)) = (2min,0) for
system (6) in reverse time:

d —
{ji‘rl i
2= f(a1,22)

The same reasoning can be held to show that there exists z; < 0 such
that (z1(7), 22(7)) reaches (Z, z5 ) in finite (reversed) time.

Let us now suppose, without loss of generality, that 2z < z, < 0. We
will now consider all solutions starting at (z1(0),0) with z1(0) € [z, 2maz]-
All those solutions cross the axis z; = Z in finite time. If z1(0) = Z, this
crossing takes place at zo = 0; if 21(0) = 2Zmaz, this crossing takes place at
7y = 23 . By continuity, for all 25 € [25,0], there exists z;(0) such that the
solution cross the axis z; = Z with zo = 25. Let us now pick 25 = 2z, , and
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rename the corresponding z;(0) 727" (see the dash-dotted line on Figure

3).

We now have a solution going from (z;,0) to (2,25 ) in finite time with
22 < 0. We can then concatenate this solution with the solution going
from (Z, 23 ) t0 (Zmin,0) in finite time (which we had discovered in reversed
time). We now have a solution going from (z7,0) t0 (zmin,0) in finite time
with 29 < 0. By symmetry of the phase plane, we have a solution linking
(Zmin, 0) to (z7,0) in finite time with zo > 0. This creates a cycle T'.

A similar reasoning can be held for any initial condition inside the region
circumscribed by T' (except the equilibrium). I' defines the border of a
neighborhood of the equilibrium inside which all solutions are cycles. O

Remark 6: The condition of Lemma 5 concerning the sign of f(z,0) for
z belonging to an interval [Zmin, #mas] 1S satisfied if f is differentiable at
(2,0) and %L(7,0) > 0.

The simplest example of this kind of system is the harmonic oscillator
54+ w?z=0 (7)

The evenness of the function f with respect of 2 is obvious. The lone equi-
librium is z = 0, and % =w?>0.

A stronger result can be given when f has a particular structure, which
results in the following form for (5):

a(2) 4+ B(2)22 +v(2) =0 (8)

where we suppose that g and I are Lipschitz continuous. This form is
central in this chapter as it will be the one that the zero-dynamics will take
when generating oscillations for the pendubot through the regulation of a
linear output.

For (8), we first have a direct consequence of Lemma 5

Corollary 7: If g and L are Lipschitz continuous functions defined on IR
then, for any root Z of v(z), there exists a neighborhood of (z,%) = (z,0)
such that all solutions in that neighborhood are cycles if v is differentiable
at Z and

dy

I (2)a(2) >0

Note that, if the opposite condition (j—j(z)a(z) < 0) is satisfied at an equi-
librium, this equilibrium is unstable (it suffices to analyze the linearization
of the system around this equilibrium).
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We have also shown in Perram et al.!* that a general integral of system
(8) could be built. It is described in the following result:

Theorem 8: Let [2(t), 2(t)]be the solution of system (8) with given initial
conditions [zg, o). If the function

I(zazvz(]’féo) =é2—exp{ 2]2 ﬁ(T)dT}

Z0 a(T
9
+ exp{—Zf al(;%dr} J exp {2f al(;%dT} aj(f)lds ®)

exists, then it is finite and preserves its value (= 0) along the solution

[2(2), 2(2)]-

Coming from this full integral, and as hinted in Shiriaev and Canudas
de Wit'6, we will almost always be able to build a first integral of system
(8) (independent of the initial condition) as shown in the following result:

Lemma 9: Given any solution (z(t),2(t)) of (8) (with initial condition
(20,%0)) and any z{,z5 € IR such that a(s) # 0 for s belonging to the
intervals [29, 27] (or [21, 20]) and [20, 23] (or [23, 20]), the function
Vv(zwzz)(z"é) =€.’L'p{2 27 gg:;dT}
T 2v(s

+ 7 eap {27 Z8dr | 2Sds
is constant along the solution (2(t), 2(t)) that are such that a(z(t)) # 0 for
all t > 0.

(10)

Proof: This result is a direct consequence of (9). Using the equality

emp{—Z/z: %d’l’} = e:vp{—2/Z: %dT} emp{2/z:0 %dT}

which is valid for any 2z{ € IR satisfying the condition given in the Lemma,
we can multiply (9) by exp{Qf 'g(T)dT} and obtain:

2 exp{?fz gg:ng} —ea:p{Qf ) gg:)dT}
+ea:p{2 fzo gg:gdr} I exp{Q fz ingdT} exp{ 2fZ° ZE:%dT} 27((5))d3 =0
along the solution starting at (2o, 20)-

The second term is constant, so that it can be put on the right hand
side of the equality. The third term can be simplified (the first and third
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exponentials in that term are inverse of each other) so that we now have:

2exp {Z/Z; %d7}+/2: exp {2/2: %dT} Zy(gi)ds =exp {Z/Z;0 %dr} ég
(11)

The second term of the left hand side can now be split into the sum of two
integrals:

Foear {20} Sar} s = [ eon {2 52% } G0} >’ s

with f:f exp {2 f;; gg:; dT} 2(s )ds going to the right hand side of (11), s

that (11) becomes:
exp {2 fzz ﬂ(r)dr} 2 4 fz* erp {2f g(r)dT
eacp{Q fzo QE:;dT} 2+ f* exp{2f ig:)d } 2(;,((:))d5

which shows the proposition: the function

z . z el 2
Vier,z3)(2,2) = exp 2/ —B(T)dr éz+/ exp 2/ —5(T)d7' s)ds
’ 27 Oé(T) z5 27 a(T) «a S)
stays constant along the solution of (8) with initial condition (29, 29). O

In this proposition, we present a family of functions which stay constant
along any solution of the system: the parameter z{ and z5 can be chosen
almost freely independently of the initial conditions (with the restriction
that the condition given in Lemma 9 is satisfied). The main difference with
the function I is that the function V is independent of the initial condition,
but that the constant value at which the function stays is not zero: it
depends on the initial condition. In order to confirm this result, it can
easily be computed that V=0 along the solutions.

Finally, it is interesting to notice that, behind the infinite number of
functions that are integral functions for system (8) (defined by the different
values that 2z and z5 can take), lies a single function. In fact, for any two
pairs of parameters (z7,23) and (2%, ), there exists real constants A and
B such that Vi.; .1)(2,2) = AV(zx . (2, 2) + B for all (2, 2).

Considering the harmonic oscillator (7), we see that a(z) =1, 8(z) =
and v(z) = w?z. The construction (10) results in the function

Vi(z, 2) = 32 + w?2? + w?23?
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As z5 can be chosen freely, we take z5 = 0, so that V is the classical
Lyapunov function for the harmonic oscillator.

The existence of function V' along which the solutions are constant is
not sufficient to ensure the presence of cycles. Only if the constant levels of
this function represent closed curve does it result into cycles. This function
will later be useful to create attractive limit cycles for the pendubot.

In Section 1, we have shown that an efficient method to generate an
oscillating behavior in a nonlinear control system was the construction and
regulation of an output that ensures the presence of oscillations in the
zero-dynamics of the system. After regulation of this output, the remaining
dynamics are oscillating, so that the whole system presents oscillations. We
have first exposed a case where the zero-dynamics result in an attractive
limit cycle, and have then shown that we could obtain a (weaker) result
when those zero-dynamics are simply neutrally stable: the resulting closed-
loop dynamics present oscillations of unknown amplitude (depending on
the initial condition). In Section 2, we have then presented tools for the
analysis of those neutral oscillations in a special case of zero-dynamics: pla-
nar oscillations in the form (5) or (8); sufficient conditions for the existence
of neutrally stable cycles and a first integral were given. We will now use
these tools for the control and analysis of a particular mechanical system,
the pendubot, for which we will show how to go from neutrally stable to
exponentially stable oscillations.

3. Control of the pendubot

The following section will be devoted to the description and desired behav-
ior of the pendubot: a two-links planar robot with a motor at the shoulder
and no motor at the elbow (see Figure 4).

A classical mechanical model for this robot is:

M(q)§+ C(q,4)q + g(q) = Bt (12)

where ¢ = [q1 ¢2]* € IR?, and ¢ represents the angle of the first link with
the lower vertical axis and ¢ the angle of the second link with the first link.
If a motor is available at both joints, the robot is fully actuated and the
solution of the problem is trivial. For the pendubot, a torque can only be
applied at the first joint: therefore, 7 € IR, which means that the pendubot
is underactuated. The matrices that define the model are the following :

M(g) = myly +ma(l3 4+ LT + 2Ly 1zcos(qa)) ma(l5 + Lyl cos(gz))
= mg(lg + Lqly COS(QQ)) mgl%



October 29, 2004 11:47 WSPC/Trim Size: 9in x 6in for Review Volume grognard

Virtual constraints for the orbital stabilization of the pendubot 17

Fig. 4. Coordinates position on the pendubot.

C(q,d) = —maLqls sin(ga)ge —maLilasin(g2)(d1 + o)
q,q mQLllQ SiH(QQ)ql 0

g(q) — (g ((mlll + m212) Sin(Q1) + mals sin(ql —+ Q2)))
gmalasin(qr + ¢2)

5= (o)

We wish to generate oscillations for the pendubot around the upward
position. It is desired for the oscillations of the first arm (linked to the
shoulder) to have a given angular amplitude (= 2a;) and a prespecified
period (T5). Also, we wish that the oscillations take place with the second
arm close to the vertical. A simple description of the oscillatory behavior
would be to say that the robot goes back and forth between a rest position
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at the left of the vertical and a rest position at the right of the vertical
axis. In term of coordinates, this means that ¢; oscillates around 7 and g¢o
oscillates around 0.

If we take the desired behavior to the limit, we would like to have the
first link oscillate around the upper vertical while the second one stays
vertical. For the model, this translates into oscillations of ¢; around w,
while ¢; + ¢o stays constant at the value 7 (this also results in ¢ = —ga).
If a control law is built that achieves this objective, the behavior of the
complete system is given by the evolution of ¢; or g2 once g1 + g2 = 7: it
represents the zero-dynamics. For the pendubot, we will concentrate on the
evolution of ¢» based on the second equation of the model

0 = —ma(I3 + L1l2 cos(gz))d + m2l3ds + maLilysin(g2)d3
= —cos(g2)Go + sin(g2)¢3 = 0

where we have introduced the constraint ¢; + ¢2 = 7. This system is not in
the appropriate form to apply Lemma 5. If oscillations are present, there is
a rest position on the right of the vertical axis (g2 < 0 and ¢2 = 0). At that
point, the derivative of the angle satisfies ¢o = 0, so that §» is forced to be
zero by the zero-dynamics: the whole system is at rest and cannot move
afterwards. This is in contradiction with the fact that we were considering
an oscillating solution. Therefore, no oscillation can be generated with the
second link staying vertical.

3.1. Sufficient conditions for oscillations

Because an upward oscillatory behavior is not achievable when keeping the
second link vertical, we will not impose such a strong constraint and the
second link will also have to oscillate. Instead of having ¢; +¢2 = 7, we will
impose a more general constraint

a1 +(g2) =0

by building an output y = ¢1 + ¢(¢2) that we will regulate so that the
system presents the desired oscillations. In other words, the zero-dynamics
must present oscillations.

The zero-dynamics then take the following form (we study the second
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equation of the model when y = 0):

Po o d

0= —mg(lg + Lyl COS(QQ))(d—(ﬁQQ + @Qﬂ + mQqu.Q

. d . .
+maLyly sm(qz)(d—qi)gqg + gmalzsin(g2 — ¢(q2))

[ dyp , dp ] .
= |(1 — =——=)mol5 — —msLqls cos
( dqg) 209 dgs 211102 (Q2) q2
. de o 2 ] . :
+ [ma2Lils Sln(‘h)(@) —ma(l3 + Lil COS(Q2))d—qz @3 + gmala sin(g2 — ¢(g2))
2
[ dy dy ..
= (1=, - 22T A
( s )Mo g 1 COS(Q2)] g2

2

+ [Ll sin(qz)(o%'Z)2 —(lo + Ly cos(qz))%] §2 + gsin(gz — ©(g2)) (13)

These zero-dynamics are exactly in the form (8)

o(q2)é2 + B(a2)d5 +v(g2) =0

that was considered in Corollary 7. For any system in the form (13), we can
then perform the analysis based on this result, and an integral function can
be built based on Lemma 9. If this integral function is radially unbounded
and there is a single equilibrium, then every solution is a cycle.

Analyzing (13) in the light of Corollary 7 will impose conditions on
the function ¢(g2) that will make sure that there are oscillating solutions
around the upper vertical where ¢ = 7 and g2 = 0. In order to have an
equilibrium in g2 = 0, we must have v(0) = 0, which translates into

p(0) = kr

for some integer k. This equilibrium must correspond to ¢; = 7, so that we
must pick & = —1. The second condition that should be satisfied for the
application of Corollary 7 is

which here becomes:

that is
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so that, cycles occur around the upper vertical if

2 de
Li+1, dgo

»(0) = —7 and (0)<1 (14)

3.2. Oscillations shaping

Instead of looking at the problem of analyzing equation (13) for a given
function ¢, we can shape ¢ so that (13) has a desired form:

aq(g2)d2 + Ba(a2)@ + va(g2) = 0 (15)

so that the oscillations of the zero-dynamics follow a prespecified behavior.
In order to have equivalence of the behaviors, we should first notice that
we can multiply (15) by an arbitrary function ¢(gs) # 0 without changing
the behavior of the desired system. We can then match (13) and (15):

(1 - 42)ls — 2 Ly cos(go) | = aal@)d(e)
Ly sin(gz)(72)* = (I + Ly cos(a2)) 8 = Ba(a2)d(42)
gsin(gz — ¢(g2)) = 7a(q2)$(q2)

and, with ¢(g2) fixed, we obtain a set of ordinary differential equations
with g2 as independent variable and ¢ the unknown solution. If this set of
equations is solvable, it is very difficult to find an analytic expression for
these solutions for given ayg, B4, 74- In order to avoid the use of a numerical
solution of this equation, we simply consider the case where the output is
linear.

3.3. Linear output

A particular case of the previous constraint is the case where ¢ is affine:
©(g2) = aga—b, so that the regulation of the output y yields g1 +ag>—b = 0.
It directly comes from the condition for oscillations (14) that we must have

b= and <a<l1

2
lo + 1,

In order to stay close to the case where ¢; + ¢2 = 7, we rewrite a as
a = 1—e (with e small), so that the constraint is rewritten as g1 +¢2 = €ga+7
and the condition for oscillation becomes

0<e< (16)

1
Li+ 1
From the constraint ¢; + g2 = €eg2 + , it results that, when ¢; < 7, we
have ¢o > 0 and ¢1 + g2 > 7, so that, when the robot is on the right of
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the vertical axis, the second link leans slightly to the left (and conversely,
when ¢; > 7). The evolution of the pendubot during a half-cycle follows
the illustration of Figure 5.

Pendubot
1 T T T T T T T T T

0.9F b

0.8} N

0.7 b

0.6 b

0.5

04F

0.3F

0.2

0.1

0 1 1 1 1 1 1 1 1
-05 -04 -03 -0.2 -01 0 0.1 0.2 0.3 0.4 0.5

Fig. 5. Evolution of the pendubot during a half-cycle for ¢ = 0.2 and o5 = % .

The notations of (13) then simplify and the zero dynamics become:

(ely — (1 — €)Ly1 cos(qz)) Go + L1 sin(gz)(1 — €)%¢% + gsin(ega + ) =0
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so that the dynamics are rewritten as:

((1 — €)Ly1 cos(qz) — €l2) Go — Ly sin(g2)(1 — €)%¢3 + gsin(eqz) =0 (17)

A first consequence of this constraint (16) on e, is that a(g) = (1 —
€)L1cos(ga) — €l is not sign definite, so that the phase plane of (17) will be
made of vertical strips separated by vertical lines corresponding to the roots
of a(g2). In the case where € does not satisfy (16), we have the behavior
of the zero-dynamics that is illustrated on Figure 6. Numerous cycles are
observed around different equilibria. However, no cycle is observed around
the equilibrium g = 0 (which corresponds to the equilibrium ¢; = 7), so
that the desired behavior is not achieved.

Fig. 6. (g2, ¢2) phase plane when constraint (16) is not satisfied by e

We will now concentrate on the oscillations of (17) in the region sur-
rounding (g2, ¢2) = (0,0) where a(gz) # 0. This constraint on « imposes
€la < (1 —¢€)Ly cos(gz) for all g in the region. For any e, this constraint can
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only be satisfied if g» does not reach 7: for a given ¢, ga must belong to an
interval:

els ely
— 4 . s 1
arccos ((1 6)L1) < g9 < arccos ((1 e)L1> ( 8)

From this, we see that, the smaller € is, the larger the angle o can be:
as € tends to zero, the interval tends to | — 7, 5[.

The conditions of Lemma 5 and 9 are then well satisfied for the equi-
librium ¢ = 0, so that oscillations take place around the upper vertical
axis.

On Figure 7, the symmetries of the phase planes are illustrated through
the picture of the cycles. The vertical dotted lines represent the limit in-

duced by (18).

Phase plane with epsilon=0.02

0.8 T T T

0.4

0.2

©

-0.8 | ! ! ! ! ! !
-2 -15 -1 -0.5 0 0.5 1 15

Fig. 7. Phase plane of the zero dynamics (17) for e = 0.02.
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Integral function

As (17) fits in the format (8), we can deduce from Lemma 9 the form of
the integral function that is kept constant along the solutions of (17):

) — q —L sin(ﬂ')(lfe)2 .0
{/v(q;a7q§=b)(q2,q2) - €£L'p{2 q;“‘ (l—el)Ll cos(7)—el2 dT} a3

2 s — Lisin(7)(1—¢)? 2gsin(es
+ qu;b exp {2 fq;“ (1—e)L1 Eolgr)—)elg dT} (l—e)gl CO(S(S))—€l2 ds

_ ( (1—€)L1 cos(gqa)—¢ls )2 I—e .
T \(1—€)L1icos(gi*)—el2 42

+ q2 ( (1—€)L cos(s)—ely )2(176)( 2g sin(es) ds

q3% \ (1—€)L1cos(q3%)—el2 1—€)L1 cos(s)—ela

where the parameters ¢;¢ and ¢3° can be arbitrarily chosen inside the in-
terval defined by (18). The denominators containing ¢3* are scalar factors,
so that they can be taken out, and the integral function becomes:

Ve(ga,d2) = ((1 — €)Ly cos(gz) — ela)™™ 9 ¢3

+2g qu; ((1 — €)Ly cos(s) — ely)' ™ sin (es) ds (19)

For any cycle, there exists V. such that V. = V. along the cycle. On the
other hand, the span of values for V. that we can use is limited to those
that are such that V, = V. corresponds to a cycle.

The expression of the integral is computable, though no obvious ana-
lytical expression is available. However, it simplifies when ¢ = %, so that,

in that case,

L —1
Breost@) “ a4y con( ) (20)

where the g5 term has been dropped.
Also, an approximation of (19) can be given when e is small by using

Vo.5(q2,42) =

sin(eqa) ~ esin(gz)
so that the integral becomes

Velaen o) = 10~ OLacos(@) = b~ (@~ 7))

In the sequel, we will denote by V. the exact value of the integral function,
and by V, its approximation.
Differentiating V. along the solutions of (17) results in

Ve = 2[ely — (1 — €)L1 cos(g2)]' ™ g (sin(egz) — esin(gs))

which confirms that V, is constant along the cycles as long as the approxi-
mation €sin(gs) & sin(ege) is valid.
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On Figure 8, it appears that the approximation (21) is very good when
the cycle is small (V. < —0.05), which is what we expected: indeed, small
cycles imply small amplitudes for the movement of gs, which is required for
the approximation to be valid. It is also to be noted that, when the cycles
are large, the approximation gives a good representation of the behavior of
the system, though with a slightly larger amplitude.
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Fig. 8. Phase plane of the zero dynamics for € = 0.02: comparison of the actual cycles
(solid lines) and the approximation (21) (dotted line)

In the case of € small, we have V, = [(1 —€)L; — 612]2(176) (—ﬁ)
at the equilibrium (g2,¢2) = (0,0) and V. = 0 on the hypothetical cycle
that would touch the constraint (18). Therefore, V.=". represents a cycle
if and only if

€9
CLi(1-ep?
In the case of € = 0.5, (20) indicates that V.5 = —4g at the equilibrium

[(1—e)L; —el,]* ™9 <V, <0

15
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and V5 = —4g % when an hypothetical cycle touches the constraint.
Therefore, V.5 = V.5 represents a cycle if and only if
= o+ L1
—4g < Vo5 < —4gy | 2L
g < Vos < —4g 2L,

4. Controlled oscillations

In the previous section, we have shown that we could build a linear output
such that its regulation would generate neutrally stable oscillations of the
pendubot around the upper vertical. This regulation however would result
in an oscillating pendubot having unknown amplitude, as the phase plane of
the zero-dynamics is illustrated on Figure 7. We now will present a control
strategy to generate oscillations having pre-specified amplitude and period.

4.1. Specifications

As stated in the previous section, we have the following specifications for
the control problem:

(i) The angle ¢; must oscillate between 7 — a and 7 + a, (with o, < F).
(ii) The period of oscillation must be equal to T}

We will base this analysis on equation (17). For any €, the angle g2 can at
most oscillate between —arccos <(1flﬁ) and +arccos (ﬁ), due to
the constraint (18). This translates into maximal oscillations of ¢ between
7w — (1 — €)arccos ((1—6152)L1) and 7 + (1 — €)arccos ((1_6l52)L1 ) Specification
(i) can then only be achieved if € is such that

as < (1 — €)arccos (ﬁ) = Umaz(€)
— oL,

It can easily be seen that % < 0forall e € (0,1), that ama:(0) = §
and that @maz(1) = 0. Therefore, there exists €mq: > 0 such that for all
0 < € < €mas, the desired angle of oscillation can be achieved. Therefore,
for each € < €mqz, there exists V. such that the oscillation along the level
Vi(ga,d2) = V. satisfies specification (i).

We now have to choose among those € < €,,,, the value that will ensure
the satisfaction of specification (ii).

Let us define T'(¢) as the period of an oscillation of amplitude 2a; for a

given e. This function 7" : (0, €mqz) — IRT is continuous inside the interval.
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We can see that T(0) = +oo; indeed, when e = 0, the oscillation does not
really take place: it is replaced by a continuum of equilibria, so that we
say that the period of oscillation is infinite.Also, there exists T},;, such
that T'(€maz) = Tmin- By continuity of T, for any Ts > Tyuin, there exists
€ € (0,€maz) such that T(€) = Tyuin. This determines an oscillation that
satisfies both (i) and (ii). We will then build a controller that regulates the
output y = g1 + (1 — €)g2 — 7 and ensures convergences of Vz towards Vz so
that the specifications are satisfied.

4.2. Control design

In this section, we build a controller for system (12) that forces the output
y = q1+(1—€)ga—7 to 0 and convergence of V; to V, (we have dropped the
“sign from €). We first rewrite system (12) in new coordinates based on the
output: we define yy =y =q1 + (1 —€)ga — 7 and y2 = 91 = ¢1 + (1 — €)go.
The last two coordinates, based on the coordinates of the zero dynamics,

are g2 and ¢». The system then becomes:
d .
G =2
dgs _ (la+Licos(g2))(F(q,d4)+G(g,4)7)+L1 sin(g2)(y2—(1—€)d2)> —g sin(y1+eqz)
ddt - (1—€)L1 cos(g2)—¢ls
=

L = F(q,9) + G(q, )7

where the expressions of F' and G directly come from the model (12). It can
be seen that G(gq,q) # 0 in the region of interest (where (18) is satisfied).
We can then linearize the y part of the system by feedback by imposing

1 .

with v the new control variable and the system becomes

dgz

Fr q‘2

dg2 _ (l2+Ljcos(ga))vt+Ly sin(g2)(y2—(1—€)¢2)* —gsin(y1+eqa)

dt (1—€)L1 cos(gq2)—el2 (22)
dyr _

gt =92

ay2 _—

at Y

Note that % equation can be rewritten as

dgs _ L1 sin(qg)(l—e)qu—gsin(qu)
dt (1—€)L1 cos(qa)—ela
+(12+L1 cos(g2))v+La sin(ga)(y3 —2(1—€)daya) —g[sin(y1+€ga) —sin(eg2)]
(1—€)L1 cos(g2)—ela
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where the first term contains the zero-dynamics, and that the evolution of
Ve is as follows:

4re = 24o((1 — €)Ly cos(gz) — €l2)'~2(Ly sin(gz)(y3 — 2(1 — €)day2) — g[sin(ys + ega) — sin(eg2)])

+2(}2((1 — 6)L1 COS(QQ) — 612)1_26(12 + Ly COS(QQ))U

and it is easily seen that, when y; = yo = 0, the control law
v=—kyg (Ve — V)

with kv > 0 steers (g2, g2) to the cycle corresponding to V. = V, (except if

(¢2(0), 2(0)) = (0,0)).
On the other hand, the control law

v = —k1y1 - k2y2

with kq, ko > 0 steers (y1, y2) to (0,0) and results in neutral stability of the
oscillations in the zero-dynamics.

In order to achieve both at the same time, we could apply the method
that was presented in Shiriaev and Canudas de Wit!®, which requires the
analysis of the local controllability of an auxiliary time-varying system
around the target orbit, but we prefer to simply sum both control laws
and analyze the resulting behavior:

v=—kyg (V. —V.) — kiy1 — kay2 (23)

We would like to check if the cycle corresponding to V. = V., and y; = y2 = 0
is exponentially stable in (22). Exponential stability of a limit-cycle can be
verified® by first applying a (diffeomorphic) change of coordinates

(g2, G2,91,y2) — (0,p)

where p represents coordinates that are transverse to the considered limit
cycle and equal to zero on the limit cycle, and € represents the evolution
of the solution along the limit cycle so that the system is rewritten in the
form

p=AO)p+ f2(6,p)

with f1(0,0) =0, f2(0,0) = 0 and %ﬁil = 0. The limit cycle is then an
exponentially stable orbit if and only if the transverse linearization

dp
L= a6 (24)
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is asymptotically stable. Ideally, we should build a Lyapunov function
pT P(6)p with P, positive definite, satisfying

% — _A(B)TP — PA(®) — Q(6), with Q(8) >0
to show this stability, but we are not able to; however, we can at least show
that the matrix A is Hurwitz along the cycle, which is a good indication for
stability (note, however, that this is not sufficient for asymptotic stability
of the non-autonomous system (24), as shown in Khalil'l).

In our case, the p coordinate is already available. It suffices to take
p= (Ve =Ve,y1,y2). We will not explicitly build the § coordinates, because
it will not change anything for us if we show that A(f) or A(ge,qs) is
Hurwitz. Both matrices are identical. Let us now write the p dynamics,
with h(g2,g2) = 2((1 —€) L1 cos(gz) —e€l2)1=2¢ (> 0 in the region of interest):

¥ = 245h(q2, ¢2) (L1 sin(gz)(y3 — 2(1 — €)day2) — g [sin(y1 + €g2) — sin(eqz)])

+2¢2h(g2, ¢2)(l2 + L1 cos(g2))(—kv W — kiyr — kayo)
dyr _
g Y2

%2 = —kv@W — kiy1 — kayo

with W = V. — V.. We can linearize the p dynamics around (W, y1,92) =
(0,0,0) and obtain

W —3011(g2, ¢2) —Gaa12(q2, 42) —G013(q2, G2) w
n | = 0 0 1 Y1
Y2 —kvgo —ky —ks Y2

where

a11(g2,G2) = kv (l2 + L1 cos(g2))h(qz, 42)
a12(q2, ¢2) = (g cos(egz) + k1 (l2 + L1 cos(g2)))h (g2, g2)
a13(q2,G2) = (2(1 — €)Ly sin(g2) g2 + k2(la + L1 cos(qz2)))h(g2, 42)

and the " derivative now represents the derivative with respect to the time
evolution # along the target cycle, with g2 and g2 being the value of those
states along the target limit-cycle at time 6.

The characteristics polynomial of this linear system, for fixed (g2, ¢2) on
the target orbit is

poa(s) = 5%+ (k2 + Q§a11)52 + (k1 + kQQ.%all — kvqgaw)s + qu'gau — kvqgalg
=g3 + (kQ + qgkv(lg + Iy COS(QQ))I'L)52
+(ky —2(1 — €)L1ky @3 sin(gz)h)s — kv ¢2g cos(eqz)h
The first conclusion that can be drawn is that, to the contrary of what we
expected, ky needs to be negative for the last term to be positive when
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g2 # 0 (if go = 0, the polynomial has one root in s = 0). The Routh
criterion also indicates that we need to have

kz > @5 |kv|(I2 + L1 cos(gz))h

for all (go, ¢2) on the target orbit. This can be achieved because, for a given
ky < 0 the right-hand side is bounded (it then suffices to take ko large
enough). The Routh criterion also imposes

(k2+qgkv(lg+L1 cos(qg))h)(kl—2(1—6)L1kvqg sin(ga)h) > |kv|qgg cos(ega)h

for all (g2,¢2) on the target orbit. This can be achieved by taking k; large
enough.

To summarize this analysis, the parameters of the control law have to
be picked as follows: ky needs to be taken negative while k; and ks need
to be taken large enough. The efficiency of the control law is confirmed in
the following simulations.

4.3. Simulations

We will now present simulations of the control law for the pendubot with
the parameters that were given in Canudas de Wit et al.%, that is

Li =052m 1; =0.30m I =0.29m m; =6kg me =4kg ‘(]:9.81?2

We first apply the procedure of Section 4.1 in order to find a cycle that has
an angular amplitude of 2a; = % and a period of 10 seconds. This yields
that we should take ¢ = 0.0195 and V. = —0.074 (we obtain that value
by computing the approximate value V. of V. along the target cycle). The
pendubot then has the desired behavior. If the pendubot starts at rest in a
position close to the vertical (¢g2(0),g2(0),v1(0),42(0)) = (0.01,0,0,0), the
controlled system (with ky = —100, ky = 10, ks = 20 and V. instead of Ve)
behaves as shown on Figures 9 and 10. The time-evolutions of the states, of
V. and the torque 7 are shown on Figure 9 while the projection of the solu-
tion on the (go, ¢2) phase plane is shown on Figure 10. Note that the time
evolution of V, is not monotonous and does not exactly settle at a constant
value because we display the approximate value of the integral function
(V) and not its exact value (V,) and we use this approximate value in the
control law. See also that the torque oscillates with time and that (y1,y2)
stays close to (0,0) during the whole time-span (of 60 seconds). Figure 10
shows that the solution converges quite directly towards the desired orbit.
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Fig. 9. Time evolution of the states, the integral function V, and the torque along the
solution of the controlled pendubot with (g2(0), 42(0),v1(0), y2(0)) = (0.01,0,0,0)

Conclusion

In this chapter, we have presented two results about the stability of pe-
riodic orbits in cascade systems when there is a periodic orbit in the
zero-dynamics. After giving some results about periodic orbits in two-
dimensional systems, we have shown how oscillations can be generated in
the pendubot through the design and regulation of an output. A detailed
analysis shows that a prespecified behavior can be achieved by tuning the
available parameters (¢ and V).
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