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Abstract: In this paper, the design of probabilistic observers for mass-balance based
bioprocess models is investigated. It is assumed that the probability density of every
uncertain parameter, input and/or initial state is known a priori. Then, the probability
density of the state variables is obtained, at any time, by considering the image of this
initial probability density by the flow of the dynamical system. In comparison to classical
open-loop interval observers, the method provides information on the confidence level of
the estimates rather than simple upper and lower bounds. Applications to an anaerobic
wastewater treatment process are described in order to illustrate the method.
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1. INTRODUCTION

One of the main difficulties in the monitoring and con-
trol of biological reactors lies in the absence, in most
applications, of cheap and reliable sensors capable
of providing direct, on-line measurements of the bi-
ological state variables. The design of state observers,
also called software sensors, for the online monitor-
ing of the state variables which are not measurable
in real time has thus received increasing attention in
the literature, and has given rise to numerous practical
applications [Bastin and van Impe, 1995].

Classical observers used in the scope of non-linear
systems are, e.g., the extended Kalman filter [Jazwin-
ski, 1974], the extended Luenberger observer [Zeitz,
1987] and, more recently, the high gain observer [Gau-
thier et al., 1992, Bernard et al., 1998]. But even
if these observers are widely used in practice, they
assume that the model structure and parameters, and
the disturbances affecting the process, are perfectly
known. It is well-known that the observed state vari-
ables might provide poor estimates of the true values,
especially for highly uncertain bioprocesses.

Bioprocess models generally consist of two parts: (i)
a part based on mass-balance considerations which re-
quires few phenomenological knowledge; (ii) another
part that describes the biological reactions (kinetics)
and therefore includes a large part of phenomenologi-
cal knowledge. Taking advantage of this special struc-
ture, it is possible, under certain conditions, to design
state observers which do not require the knowledge
of the kinetics, by formulating an auxiliary dynamical
system [Bastin and Dochain, 1990]. In the counterpart,
the resulting observers, called asymptotic observers,
are open-loop observers and might be strongly sen-
sitive to biases on the influent masses, e.g., the in-
fluent concentrations; in addition, they have weaker
convergence properties. More recently, interval ob-
servers have been designed in order to deal with these
uncertainties [Rapaport and Gouzé, 2003]. The idea
is to estimate intervals into which the state is sure to
lie, based on guaranteed bounds on the uncertainties
such as imprecisions in the influent measurements or
model parameters. In this objective, the observation
principle is weakened in the sense that the observation
error is no longer expected to asymptotically converge
to zero. Several applications have been considered for



biological systems [e.g. Gouzé et al., 2000]. But even
if interval observers are more robust than the afore-
mentioned asymptotic observers, poor information is
obtained on the estimates since only guaranteed upper
and lower bounds are provided on these variables.

In many situations however, more informations than
simple upper and lower bounds is available on the
uncertainties, e.g. their probability densities. For the
uncertain parameters in particular, confidence inter-
vals can be easily obtained from the application of a
parameter identification procedure. In this work, we
intend to extend the concept of interval observers in
order to estimate the probability density of the unmea-
sured states, at any time, based on the probability den-
sities of the uncertain parameters and state variables
at initial time. These observers, called probabilistic
observers, are derived here for general mass-balance
based models for bioprocesses.

The paper is organised as follow. Some results on both
asymptotic and interval observers are first recalled in
section 2. Probabilistic observers are considered in
section 3, with emphasis on the calculation of the
probability densities for the state variable. Finally, an
application of probabilistic observers to the estimation
of the biomass concentration in an anaerobic digester
from real data is detailed to illustrate the method.

2. ASYMPTOTIC AND INTERVAL OBSERVERS
FOR BIOPROCESSES

A bioprocess operated in a stirred tank bioreactor is
often described by means of general mass-balance
based models of the following form [Bastin and
Dochain, 1990]:

ξ̇ =Kr (ξ) +D
(

ξin − ξ
)

− q (ξ) (1)

where ξ ∈ R
nξ (resp. ξin) denotes the concentration

vector in the liquid phase (resp. in the influent), K ∈

R
nξ×nr the yield coefficient matrix, r ∈ R

nr the
reaction rate vector, q ∈ R

nξ the gaseous exchange
vector, and D ∈ R the dilution rate.

Throughout the paper, it is assumed that (nξ − nb)
components of the state variables are measured on-line
with nξ−nb ≥ nr, and we denote ξa ∈ R

nξ−nb , ξb ∈

R
nb the measured and unmeasured state variables

respectively. It is also assumed that the gaseous flow
rates q are measured on-line. It follows that Eq. (1)
can be rephrased as:

ξ̇a =Kar (ξ) +D
(

ξina − ξa
)

− qa (ξ) (2)

ξ̇b =Kbr (ξ) +D
(

ξinb − ξb
)

− qb (ξ) (3)

with (Ka,Kb),
(

ξina , ξ
in
b

)

and (qa, qb) being the in-
duced partition of K, ξin and q respectively.

We state the following hypothesis:

Hypothesis 1. Matrix Ka ∈ R
(nξ−nb)×nr has full

rank.

From hypothesis 1 and a linear change of variables,
the following nb-dimensional auxiliary system can be
derived:

ż =−D
(

z − zin
)

− Pqa − qb (4)

ξb = z − Pξa (5)

where: P
∆
= −KbK

†
a

and K†
a is a left inverse of Ka. Note in particular that,

in the auxiliary system (4,5), the measured variable ξa

is used as an input.

The following result holds.

Lemma 1. Under Hypothesis 1 (and provided D is
persistently exiting), the solution ξ̂b of the following
open-loop observer converges asymptotically towards
the solution ξb of the reduced system (3):

˙̂z =−D
(

ẑ − zin
)

− Pqa − qb (6)

ξ̂b = ẑ − Pξa (7)

Proof. see, e.g., Bastin and Dochain [1990]. �

Such observers have however several defects due to
their open-loop nature. In particular, it is implicitly
assumed that the mass-balance part of the model is
perfectly known and that neither the measurements,
nor the values of the feeding inputs, nor the estimates
of the yield coefficients (matrix K) are biased. Oth-
erwise, the predictions of the mass-balance based ob-
server (6,7) will be corrupted and might provide poor
estimates of the unmeasured concentrations ξb.

In the case of large uncertainties, it is no longer pos-
sible to build exact observers guarantying that the
observation errors converges to zero. Therefore, the
observation principle must be revisited and the re-
sults must be weakened. A complementary approach,
called interval observers, provides guaranteed enclo-
sures on the estimated states, whenever upper and
lower bounds are known on the uncertain inputs and
parameters. Such observers consist in coupling two
estimators providing each an over-estimate x+ (t) and
an under-estimate x− (t) of the unknown state vari-
ables x (t) at any time. Details on interval observers
can be found, e.g., in Gouzé et al. [2000], Rapaport
and Gouzé [2003].

The following proposition applies the concept of inter-
val observers to the auxiliary system (4) derived from
the general mass-balance based model (1).

Proposition 1. The following pair of systems is an
interval observer for the variables z (t) solution of (4):



ż+ =−Dz+ (t) +Dzin
+

(t)

−P−
(

p+,p−
)

qa (t) + qb (t)

ż− =−Dz− (t) +Dzin
−

(t)

−P+
(

p+,p−
)

qa (t) + qb (t)

with: z+ (0) = ξ+
b (0) + P+

(

p+,p−
)

ξa (t)

z− (0) = ξ−
b (0) + P−

(

p+,p−
)

ξa (t)

where the unknown parameters p ∈ R
np and inputs

zin ∈ R
nb are characterised by their upper and lower

bounds:

p−j ≤ pj ≤ p+
j , ∀j = 1 . . . np

zini
−

(t)≤ zini (t) ≤ zini
+

(t) , ∀t , ∀i = 1 . . . nb

and the upper and lower bound matrices P+, P− are
defined componentwise:

P−
i,j

(

p+,p−
)

≤ Pi,j (p) ≤ P+
i,j

(

p+,p−
)

,

∀p ∈
[

p−,p+
]

, ∀i = 1 . . . nb , j = 1 . . . nξ − nb

Proof. See, e.g., Rapaport and Gouzé [2003]. �

Interval observers provide guaranteed bounds on the
estimation of the unmeasured variables, given rigor-
ous bounds on the parameters and the inputs. How-
ever, the resulting intervals might be large if the un-
certainty is high. In this case, it could be interesting to
build subintervals on the estimates corresponding to
different confidence levels on the uncertainty. Tools to
derive such observers are discussed in the next section.

ILLUSTRATIVE EXAMPLE – For the sake of simplic-
ity, we consider a simple model of the anaerobic diges-
tion process by taking into account a single substrate
(COD) and single bacterial population, denoted s and
x respectively. The biological reaction is represented
as:

k s
r(ξ)=µ(·) x
−−−−−−−→ x

where k is a yield coefficient, and µ (·) represents
the bacterial growth rate. By assuming perfect mixing
in the digester, the simple 2-dimensional dynamical
model is obtained:

ẋ (t) = −αD (t) x (t) + µ (·) x (t)
ṡ (t) = −D (t)

(

s (t) − sin (t)
)

− k µ (·) x (t)
(ADMH)

where α ∈ [0, 1] is a coefficient representing the ratio
of unattached biomass in the digester and sin (t) is the
concentration of substrate in the feeding stream (it is
assumed that no biomass is brought by the influent).
In addition, the methane flow rate qCH4

is defined as
follow:

qCH4
(t) = k′ µ (·) x (t)

with k′ being the yield coefficient associated with
methane production.

Based on model (ADMH), the following asymptotic
observer can be derived for the biomass concentration
provided that the methane gaseous flow rate is mea-
sured on-line:

˙̂x (t) =−αD (t) x̂ (t) +
1

k′
qCH4

(t) (8)

This example is in fact a particular case of the asymp-
totic observer defined in Lemma 1 with nξ = nb = 1.
Now, if the parameters α and k′ are uncertain with

α ∈ [α−, α+] and k′ ∈

[

k′
−
, k′

+
]

, an interval ob-

server can be constructed as:

˙̂x
−

(t) =−α+D (t) x̂− (t) +
1

k′+
qCH4

(t)

˙̂x
+

(t) =−α−D (t) x̂+ (t) +
1

k′−
qCH4

(t)

Note that the uncertainty on the measurements can
also be handled, e.g., by considering a multiplicative
noise e (t) ∈ [e−, e+], ∀t. �

3. PROBABILISTIC OBSERVERS

As mentioned before, it is not rare that the influ-
ent concentrations and/or model parameters are not
known precisely for biological processes. For param-
eters in particular, estimates as well as confidence
intervals can be obtained under the application of a
parameter identification procedure. More knowledge
than simple upper and lower bounds can obviously be
obtained on the unmeasured state variables, e.g. the
probability distribution of the estimates.

The construction of interval observers with confidence
levels has been previously addressed in Fruchard et al.
[2002]. The idea was to approximate the probability
densities of the estimates by considering a set of inter-
val observers indexed by the confidence level placed
on the uncertain parameters. In this work, we consider
a more general approach which consists in estimating
the probability density of the state estimates at any
time, given known probability densities on the uncer-
tain parameters and states at initial time.

3.1 Mathematical background

In mass-balance based bioprocess models of the form
(1), the uncertainties may correspond to the yield
coefficients in matrix K, to the influent concentrations
ξin, and/or to the unmeasured state variables at initial
time ξb0. In addition, the measurements of the state
variables ξa and the gaseous flow rates qa, qb might
be noisy. In order to derive the probability density of
the unmeasured state variables ξb, we consider the
auxiliary dynamical system (4,5) defined in section 2.



Hypothesis 2. The auxiliary dynamical system (4,5)
falls into the following class of dynamical systems:







ż (t) = A (p, t) z (t) + b (p, t)
ξb (t) = z (t) + c (p, t)
z (0) = ξb (0) − c (p, 0)

(S)

where p =
(

p1, . . . , pnp

)t
∈ R

np denotes the vector
of the uncertain parameters, and the components of
A ∈ R

nb×nb , b ∈ R
nb and c ∈ R

nb are C1 with
respect to p1, . . . , pnp

. In addition, the uncertain pa-
rameters p and initial conditions z0 have independent
probability densities (p.d.f.).

Remark 1. For sake of simplicity, we consider that pa-
rameters p1, . . . , pnp

are constants with known p.d.f..

Notations 1. In the sequel, the following notations are
used: χ0 =

(

ξb
t
0,p

t
)

, Z0 = (zt0,p
t), χt =

(

ξb
t
t,p

t
)

and Zt = (ztt,p
t). In addition, we denote fχ0

, fZ0
,

fχt
and fZt

their respective p.d.f..

The estimation of the p.d.f. of the unmeasured state
variables ξb at a given time t can be decomposed into
three successive steps:

1) estimate the p.d.f. of the random variable Z0

at initial time, from the individual p.d.f. of the
unmeasured state variables ξb0 and the uncertain
parameters p;

2) compute the image fZt
at time t of the p.d.f.

of fZ0
, by the flow of the auxiliary dynamical

system (4);
3) estimate the p.d.f. of the unmeasured state vari-

ables ξbt at time t, from the p.d.f. of Zt.

The following Theorem [see, e.g., Grimmett and
Stirzaker, 2001] provides a general framework to cal-
culate the image of a given p.d.f. by a C1-diffeomor-
phism for each aforementioned step.

Theorem 1. Let U , V be open subsets of R
n, K be

a compact subset of U , and φ : U 7−→ V be a C1

diffeomorphism. If z is a random variable with a p.d.f.
fz , then the random variable ω = φ (z) has a p.d.f. fω
given by:

fω (ω) =

{

fz
(

φ−1 (ω)
)

det
(

Jφ−1 (ω)
)

if ω ∈ φ (K)
0 otherwise

where Jφ denotes the Jacobian matrix of φ.

For steps 1) and 3), consider the mapping ψt defined
as:

ψt : U ′
t −→Ut = ψt (U

′
t)

Zt 7−→ χt =
(

ξb
t
t,p

t
)t

where U ′
t is an open subset of R

nb+np . From Hypoth-
esis 2, the following property is immediate.

Property 1. ψt is a C1-diffeomorphism.

For step 2), consider the mapping ϕt0 defined as:

ϕt0 : U ′
0 −→U ′

t = ϕt0 (U0)

Z0 7−→Zt =
(

ztt,p
t
)t

with U ′
0 being an open subset of R

nb+np . The map-
ping ϕt0 can be explicitly defined. Indeed, from linear
systems theory, a general solution of system (S) can
be obtained from:

zt = z (t,p) = Φ (0, t,p) z0 +

∫ t

0

Φ(τ, t,p) b (τ,p) dτ

where Φ(·, ·,p) ∈ R
nb×nb is the transition matrix, i.e.

the solution of the matrix differential equation:

d

dt
Φ(τ, t,p) =A (t,p) Φ (τ, t,p) , ∀t

Φ(τ, τ,p) = Inb×nb

Based on the analytical solution of system (S) and
Hypothesis 2, it can be shown that the following
property holds:

Property 2. ϕt0 is a C1-diffeomorphism.

Proposition 2. The p.d.f. fχt
corresponding to the

image χt =
(

ξb
t
t, p

t
)t

of the random variable χ0 ∈

K0 ⊂ U0 is given by:

fχt
(χt) =































fχ0

(

ψ0 ◦ ϕ
t
0
−1

◦ ψ−1
t (χt)

)

det Φ (0, t,p)

if χt ∈ Kt = ϕt0 (K0)

0 otherwise

Proof. From Properties 1 and 2, the transformations
in steps 1), 2) and 3) are C1-diffeomorphisms. The
overall transformation ψ0 ◦ ϕ

t
0
−1

◦ ψ−1
t is therefore a

C1-diffeomorphism (chain rule of differentiation), and
Theorem 1 applies. Since,

det Jψ0
= det Jψt

= Inb+np

then,

det J(ψ0◦ϕ
t
0

−1◦ψ
−1

t ) = det Jϕt
0

−1

In addition,

det Jϕt
0

= det

(

Φ(0, t,p) ?

0np×nb
Inp×np

)

= det Φ (0, t,p)

which completes the proof. �

Finally, individual p.d.f. for the unmeasured state vari-
ables ξb can be obtained, at any time t, by integrating
the joint state/parameter p.d.f. with respect to the un-
certain parameters p.



ILLUSTRATIVE EXAMPLE (continued) – A proba-
bilistic observer can be derived for the biomass con-
centration from auxiliary system (8). In this case, note
that ψt = ψ−1

0 = I . Moreover,

x̂ (t) = Φ (0, t, α) x̂0 +
1

k′

∫ t

0

Φ(τ, t, α) qCH4
(τ) dτ

where: Φ(τ, t, α) = exp

[

−α

∫ t

τ

D (s) ds

]

and

det
(

Jϕt
0

)

= exp

[

−α

∫ t

0

D (τ) dτ

]

�

3.2 Application to the anaerobic digestion process

The illustrative example presented throughout the pa-
per is continued hereafter.

Experimental data from a pilot scale digester located
at the LBE-INRA in Narbonne (France) are consid-
ered. This digester consists of a 1 m3 UASB reactor
and is fed with industrial wine distillery vinasses ob-
tained from local wineries. Both dilution rate D and
methane molar outflow rate qCH4

are available from
on-line measurements over a 40-days period. More
details on the plant configuration and the experimental
data can be found, e.g., in Bernard et al. [2001].

The objective is to design a probabilistic observer
estimating the biomass concentration x in the digester
based on the auxiliary system (8). The uncertainty
corresponds to the yield coefficient k′, the parameter
α and the concentration of biomass x̂0 at initial time.

• The value of 1
k′

was estimated off-line based
on mass-balance considerations, along with its
standard deviation:

1

k′
= 6.24 10−3 ± 2.1%

It is assumed that the probability density for
this parameter is Gaussian. In addition, the fol-
lowing 100%-confidence interval was obtained

from statistical considerations,
[

1
k′

−
; 1
k′

+
]

=
[

4.7 10−3; 7.8 10−3
]

.
• Parameter α is much more uncertain, and is

therefore attributed a uniform probability distri-
bution between bounds [α−;α+] = [0.3; 0.7].

• Finally, the following conservative bounds are
considered for the biomass concentration at ini-
tial time,

[

x̂−0 ; x̂+
0

]

=
[

0; 5 mg.L−1
]

.

Also note that the experimental data have been filtered
and, for the sake of simplicity, no measurement errors
are taken into account here.

The results obtained from the application of the proba-
bilistic observer are pictured in Fig. 1. The probability

density of the biomass concentration are plotted every
4 days (full line), along with both upper and lower
bounds on the estimates (dotted line). Experimental
points resulting from the off-line measurement of the
VSS concentration are also plotted in order to validate
the results (errorbars on the measurements are con-
sidered since the VSS and biomass concentrations are
linked as VSS = α× x).

Roughly speaking, it can be seen that the 100%-
confidence bounds (i.e., the bound corresponding to
the interval observer) correctly enclose the experi-
mental measurements. Note that the two data points
strongly differing from the others at time t = 17 day
correspond to a large increase in the influent flow
rate leading to a situation not described by the sim-
ple (ADMH) model. Also note that the bounds are
rather conservative since they correspond to intervals
of about 3 mg.L−1.

The probability density of x̂, which is uniform at
initial time by assumption, quickly changes during the
first 15 days, and then reaches a pattern that remains
roughly similar until final time. Insightful information
can be deduced from these results:

• The bounds on x̂ can be significantly improved
with respect to the 100%-confidence bounds
since a significant part of the range has a null
probability.

• The maximum likelihood estimate is close to the
lower bound during all the operation.

A straightforward interpretation can be obtained from
the resulting p.d.f. by extracting the mean and standard
deviation values of x̂. These values are pictured in
Fig. 2. It can be seen in particular that the estimates
are close to the experimental measurements, and the
interval corresponding to the standard deviation of x̂
mainly encloses these measurements.

4. CONCLUSIONS

In this paper, the design of probabilistic observers was
investigated for general mass-balance based biopro-
cess models. It was shown how the probability density
of the unmeasured state variables can be derived from
the knowledge of the probability density of the uncer-
tain parameters and/or measurement noises. An illus-
tration of the method for a simple anaerobic digestion
model was then presented. Applications to higher di-
mensional dynamical are currently being investigated.

Although only an asymptotic rate of convergence is
guaranteed in this paper, it worth pointing out that
this rate can be chosen in some cases [Rapaport and
Gouzé, 2003]. Such probabilistic observers can there-
fore be used as tools to improve bioprocess moni-
toring. In addition, they could also be applied in the
scope of bioprocess supervision and fault detection,
e.g., by defining a given tolerance expressed in term
of a threshold confidence level.
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Figure 1. Probability density of the estimated biomass concentration in the digester.
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Figure 2. Mean value and standard deviation of the estimated biomass concentration in the digester.
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