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Abstract

The study presents dynamic optimisation of a small size single basin wastewater
treatment plant. The objectives are to determine an optimal sequence of aeration/non-
aeration times so that for a typical diurnal pattern of disturbances, the effluent
constraints are respected, the plant remains in periodical steady state, and energy
consumption is minimised.

Based on the optimal state trajectories results, two simple feedback rules are
proposed. Simulation results with these rules show very satisfactory control perfor-
mance.
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Nomenclature

Roman symbols

ASM1 – Activated Sludge Model No. 1

ASP – Activated Sludge Process

BOD – Biochemical Oxygen Demand
(

mg L−1
)

COD – chemical oxygen demand
(

mgL−1
)
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9, 812 37 Bratislava, Slovakia, Tel :+421 (0)2 59325 354, Fax :+421 (0)2 52 49 64 69, e-mail :
fikar@cvt.stuba.sk

†Corresponding author

1



CVP – Control Vector Parameterisation

f – vector of right sides of differential equations (−)

IVP – Initial Value Problem

J – performance index (−)

kLa – oxygen transfer coefficient
(

h−1
)

Nc – number of cycles (−)

NLP – Non-linear Programming

OC – Orthogonal Collocation

p – parameter vector (−)

P – nominal power of the turbines (kWh)

p.e. – population-equivalent

Q – flowrate
(

m3 day−1
)

ri – apparent reaction rate of a component i
(

mgL−1 day−1
)

SI – soluble inert COD concentration
(

mgL−1
)

SND – soluble organic nitrogen concentration
(

mgL−1
)

SNH – ammonium concentration
(

mg L−1
)

SNO – nitrate and nitrite nitrogen concentration
(

mg L−1
)

SO – dissolved oxygen concentration
(

mgL−1
)

SS – readily biodegradable COD concentration
(

mg L−1
)

SS – suspended solids
(

mg L−1
)

T – optimisation horizon (day)

∆ti – aeration/non-aeration time (s)

TN – total nitrogen
(

mgL−1
)

ub – state of turbines – on(1)/off(0) (−)

u – control vector (−)

V br – bioreactor volume (m3)
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WWTP – Wastewater Treatment Plant

x – state vector (−)

XB,A – autotrophic biomass concentration
(

mgL−1
)

XB,H – heterotrophic biomass concentration
(

mgL−1
)

XI – particulate inert COD concentration
(

mg L−1
)

XND – particulate organic nitrogen concentration
(

mg L−1
)

XS – slowly biodegradable COD concentration
(

mgL−1
)

Greek letters

τCOD – influent COD concentration variation (−)

τQ – influent flowrate variation (−)

Subscripts and superscripts

in – influent

max – maximum value

rs – recycled sludge

w – excess sludge
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1 Introduction

A widely used system for biological wastewater treatment is the activated sludge process
(ASP). The removal of nitrogen (N) requires two biological processes : nitrification and
denitrification. The former takes place under aerobic conditions, whereas the latter re-
quires anoxic environment. For small size plants, i.e. less than 20,000 p.e. (population
equivalent), the two processes are very often carried out in a single basin using surface tur-
bines. The nitrification process (respectively denitrification process) is realised by simply
switching the turbines on (respectively off).

Among the issues to be addressed in order to improve the functioning of small size
wastewater plants, the effluent quality and the total operation costs are important. Of
course these issues are not independent since the pollution reduction generally involves
additional costs (investment, operation, ...). The choice of the aforementioned issues is
motivated below:

• Effluent quality: During the last decade, a stricter European Union (EU) directive
(91/271 “Urban wastewater”) came out and fixed the maximum pollutant concentra-
tions allowed in the effluent of small size wastewater treatment plants. For example,
for the most restrictive component, i.e. total nitrogen (TN), the maximum concen-
tration is fixed at 10 mg/l.

• Operation costs: The main component of total operation costs of small size wastew-
ater plants is constituted by the energy dissipated by the system of aeration (tur-
bines) (Vasel, 1988). Oxygen control is therefore of great importance since the de-
crease of the total period of aeration reduces significantly the operation costs.

The main challenge of the control of activated sludge processes is disturbances rejec-
tion. The objective is to avoid excessive aeration and to maximise the conversion rates of
the biological processes. The most important source of disturbances is the influent. Its
characteristics are large diurnal variations both in flowrate and composition (the result of
characteristic life patterns of households). Even if the large reactor volume dampens this
diurnal cycle, just by dilution, there remains a significant task for active control. The other
important sources of disturbances are rain/storm events that may cause serious overload-
ing incidents or in winter time when the growth rate of biomass is severely inhibited by
low temperature.

Control of the ASP has been the subject of a large number of research studies. More
control oriented are for example the works of Kim et al. (2000) that use simplified linearised
model with aeration time as the manipulated variable, Qin et al. (1997) have employed
interpolating Model Predictive Control, or Lindberg (1998) has used linear multivariable
LQ control.

The studies that investigate the problem from the process point of view include for
example the works of Isaacs (Isaacs, 1997, 1996; Zhao et al., 1995, 1994b). A comparison
of several control strategies has been investigated in Lukasse et al. (1999); Potter et al.
(1996); Debusscher et al. (1999).
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The aim of this work is to determine an optimal duration of the aeration and non-
aeration sequences which will minimise the operation costs as well as satisfy the constraints
specified by the EU directives. Based on the analysis of the optimal operational policy,
simple feedback rules will be formulated.

The rest of the paper is organised as follows. Section 2 introduces the dynamic model
considered. Section 3 defines the optimisation problem, discusses the choice of the control
variables, and specifies control and state constraints. Main results are presented in Section 4
where a periodic stationary regime is found. Finally, Section 5 concludes the paper.

2 Wastewater Treatment Plant Model

2.1 Process

The process considered is a real small-size treatment plant which is designed for 15, 000
p.e. It consists of a unique aeration tank (V br = 2, 050 m3) equipped with mechanical
surface aerators (turbines) which provide oxygen (P = 30 kW, kLa = 4.5 h−1) and mix the
incoming wastewater with biomass (Fig. 1). The settler is a cylindrical tank where the
solids are either recirculated to the aeration tank (Qrs = 7, 600 m3/day) or extracted from
the system (Qw = 75 m3/day).

PSfrag replacements

Influent

Aeration tank

Settler

Recycled sludge

Effluent

Excess sludge

Figure 1: Typical small-size activated sludge treatment plant.

The influent average flow Qin is about 3, 050 m3/day and average organic CODin and
total nitrogen TNin loads are 343 mg/L and 33 mg/L, respectively (after primary treat-
ment). The daily variations of dry weather conditions are based on measured data from
the plant. It is accounted for by defining weighting functions for both influent flowrate and
organic load variations, τQ(t) and τCOD(t) (Fig. 2).

The average wastewater composition is shown in Table 1. The fractions f are related to
the state variables presented in Table 2 and defined as the ratio between the corresponding
concentration and CODin or TNin.
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Figure 2: Influent flowrate and organic load variations.

Table 1: Average inlet composition

CODin fractions TNin fractions

fSI 5% fSNH 66%

fSS 35% fSNO 0%

fXI 10% fSND 2%

fXS 35% fXND 32%

fXBH 15%

fXBA 0%
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2.2 Model

The model used in this the work is based on the Activated Sludge Model No.1 (ASM
1) by Henze et al. (1987). This is the most popular mathematical description of the
biochemical processes in the reactors for nitrogen and chemical oxygen demand (COD)
removal. It was adopted with two modifications: (i) the state variable describing the to-
tal alkalinity is not included, and (ii) inert particulate material from influent and from
biomass decay are combined into a single variable (XI) since they are of minor interest.
The resulting biodegradation model consists of 11 state variables (Table 2) and 20 param-
eters. The kinetic and stoichiometric parameter values considered are those defined for
the simulation benchmark (Alex et al., 1999). The complete set of equations, parameters
values, and influent conditions can be found on the European COST action 624 website
(http://www.ensic.u-nancy.fr/COSTWWTP) as well as from the authors.

Table 2: Model state variables

1. Inert soluble organic matter, SI

[

gCODm−3
]

2. Readily biodegradable substrate, SS

[

gCODm−3
]

3. Inert particulate organic matter and products, XI

[

gCODm−3
]

4. Slowly biodegradable substrate, XS

[

gCODm−3
]

5. Active heterotrophic biomass, XB,H

[

gCODm−3
]

6. Active autotrophic biomass, XB,A

[

gCOD m−3
]

7. Nitrate and nitrite nitrogen, SNO

[

gNm−3
]

8. Ammonium nitrogen, SNH

[

gN m−3
]

9. Soluble biodegradable organic nitrogen, SND

[

gN m−3
]

10. Particulate biodegradable organic nitrogen, XND

[

gNm−3
]

11. Dissolved oxygen, SO

[

gO2 m−3
]

The model assumptions are as follows:

• the reactor is well mixed,

• perfect separation of liquid and solid phases in the settler,

• the sum of all settler flowrates equals the settler influent flowrate.

The model of the system involves 11 state variables (SI SS XI XS XB,H XB,A SNO SNH

SND XND SO)T with the associated initial conditions given in Table 3.
The model differential equations can be stated as

ẋ = f(x) (1)

where f are right hand sides of the differential equations given by:
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Table 3: Initial concentrations in the aeration tank

SI SS XI XS XB,H XB,A SNO SNH SND XND SO

Conc. (mg/L) 17.98 2.27 2120.15 79.55 2238.65 115.18 0.02 9.70 0.14 6.29 0.00

• For soluble components (i = 1, 2, 7, 8, 9):

fi(x) =
Qin

V br

(

xin
i − xi

)

+ ri(x) (2)

• For particulate components (i = 3, 4, 5, 6, 10):

fi(x) =
1

V br

[

Qin
(

xin
i − xi

)

+ Qrs Qin − Qw

Qrs + Qw
xi

]

+ ri(x) (3)

• For dissolved oxygen concentration (i = 11):

f11(x) =
Qin

V br

(

xin
11 − x11

)

+ r11 + ubkLa (Smax
O − SO) (4)

(5)

where ri(x), i = 1, . . . , 11 represents the apparent reaction rate depending on the kinetic
rates of degradation of the components, kLa is the oxygen transfer coefficient, and Smax

O is
the dissolved oxygen saturation concentration (Smax

O = 10 mg/L).
The input ub is a binary sequence switching between 1 and 0 and represents the state

of turbines (on/off) that aerate the plant. Without loss of generality, it is assumed that at
time t = 0 the turbines are on.

2.3 Control Variables

There are several possible variables that can serve for control: recycle flowrate, sludge
extraction flowrate, electrical power of turbines in aerobic mode, etc. Sometimes also
influent flowrate can be used – mainly during rainstorm conditions if the sewage system
volume can be used to accomodate some extra wastewater. The real manipulated variable
that influences the operation of wastewater treatment plants (WWTP), is the sequence of
switching times, i.e. times when the turbines switch on/off.

Unfortunately, this control variable does not occur explicitly in the model equations.
However, it is possible to normalise the model with respect to time in order to obtain an
alternative description where the true manipulated variables occur in the system equations.
Let us assume that there are Nc cycles within one day consisting of a period of aeration
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followed by a period of non-aeration and let us denote the lengths of the finite time elements
by ∆t1, . . . , ∆t2Nc

. The final time of the simulation/optimisation T is given as

T = ∆t1 + ∆t2 + · · ·+ ∆t2Nc
(6)

The aim of the normalisation is to change the time intervals ∆t1, ∆t1 + ∆t2, . . ., T into
evenly spaced fixed time intervals τ = 1/2Nc, 2/2Nc, . . . , 1. This results in the modified
system equations

dẋ

dτ
= u(τ)f (x, ub) , τ ∈ [0, 1] (7)

where u(τ) is a piece-wise constant sequence of the length 2Nc containing the switching
times ∆t1, . . . , ∆t2Nc

.

3 Definition of the Optimisation Problem

The main aim of the WWTP plant is to maintain satisfactory concentrations of organics,
nitrogen, phosphorus, and other pollutants. According to the new European Union reg-
ulations on the effluent of wastewater treatment plants, the maximum concentrations in
terms of chemical oxygen demand (COD), biological oxygen demand (BOD), suspended
solids (SS), and total nitrogen (TN = SNO + SNH + SND) are given by:

CODmax = 125 mg/L (8)

BODmax = 25 mg/L (9)

SSmax = 35 mg/L (10)

TNmax = 10 mg/L (11)

As it has been investigated in the previous study (Chachuat et al., 2001), the most critical is
the total nitrogen constraint since the other constraints are usually satisfied during normal
operating conditions for this plant.

The concentration of nitrogen can be influenced by the amount of oxygen diffused by the
turbines during the aeration sequences. In most cases, the larger the aeration percentage
time, the lower effluent nitrogen concentration can be attained. However, the economic
costs dictate to reduce the aeration times.

The usual practice in controlling the nitrogen concentration is to follow some indirect
setpoint indicators as for example ammonia concentration, dissolved oxygen, redox poten-
tial, nitrogen depletion detection, etc. (Caulet et al., 1998; Debusscher et al., 1999; Lukasse
et al., 1999; Spanjers et al., 1996). The selection of the setpoint/controlled variable might
be dictated by the sensor availability or process controlability. The actual setpoint value
is often chosen from process knowledge, or based on some preliminary experiences.

In this study, we aim at optimisation of the higher level – based on the overall and
economic objectives. Therefore, instead of choosing a suitable controlled variable and its
setpoint, we directly optimise an economic criterion.
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3.1 Performance index

There are several possible choices of the performance index. One of the simplest ways is
to minimise the overall nitrogen concentration during the day as

min
u

J =

∫ 1

0

TN(t) dt (12)

With such a choice, the nitrogen constraint is automatically satisfied, whenever the plant
design and operating conditions make it possible.

In this study, economic cost has been chosen as the most realistic. About 3/4 of the
total cost is related to energy consumption of the aeration turbines (Vasel, 1988). As these
operate in on/off mode, minimising the time of aeration will decrease the operating costs.
Therefore, the dimensionless cost function is defined as

min
u

J =

Nc
∑

j=1

u(τ = 2j−1

2Nc

)

T
(13)

3.2 Constraints

In addition to the quality constraints specified by (8)–(11), some additional limitations are
imposed on the aeration times to ensure the feasibility of the computed aeration profiles
and to prevent the turbines from damaging.

The minimum air-on and air-off times are set to 15 minutes to avoid too frequent
cycling of the turbines and to ensure that the activated sludge after anoxic periods will be
sufficiently aerated and mixed in the aeration tank.

Maximum times of 120 minutes are also considered to prevent floc sedimentation in
the aeration tank as well as anaerobic conditions, hence modifying the degradation perfor-
mances. In addition, the CSTR assumption may be violated for extended periods with no
agitation.

In order to find a stationary regime, initial conditions of the plant are assumed to be
unknown and are subject to optimisation. Then, the requirement of a stationary regime
dictates that states at the final optimisation time are the same as the initial states.

The final time of optimisation T has been chosen as one day as the disturbances are
periodic with this frequency. This results in an equality constraint that sum of all aeration
and non-aeration times should be equal to T .

3.3 Optimisation Problem

To summarise, the optimisation problem can be stated as follows:

min
u,p

J =

Nc
∑

j=1

u(τ = 2j−1

2Nc

)

T
(14)
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subject to

dẋ

dτ
= uf (x, ub) , τ ∈ [0, 1], x(0) = p (15)

0 = ||x(1) − p|| (16)

T =

2Nc
∑

j=1

u(j) (17)

10 ≥ TN(τ) = SNO(τ) + SNH(τ) + SND(τ) (18)

u(j) ∈ [15, 120] min, j = 1, 2Nc (19)

There are several possible dynamic optimisation methods that can solve this problem.
As the optimised variables are time independent, it is particularly suitable to convert the
original dynamic problem into static one. In order to avoid inclusion of integer variables
that currently may pose problems and complicate the solution, it is supposed that the num-
ber of the cycles Nc is known. In this case the problem reduces to nonlinear programming
task.

Two popular conversion methods are orthogonal collocation (OC) (Logsdon and Biegler,
1989; Cuthrell and Biegler, 1989) and control vector parameterisation (CVP) (Teo et al.,
1991; Fikar et al., 2000). The first one creates large NLP problems as the dynamic state
variables are approximated by orthogonal polynomials. On the other hand, it is straightfor-
ward to use when state variable inequality constraints (as (18)) are considered. The second
group is suitable if the problem comprises a large number of states but involves integration
of the differential equations, thus augmenting the computational time considerably.

In this work, CVP approach has been chosen. As optimisation solver, the general
purpose dynamic optimisation package DYNO (Fikar and Latifi, 2001) has been employed.
Its underlying NLP solver is NLPQL (Schittkowski, 1985), IVP solver can be VODE (Brown
et al., 1989) or DASSL (Brenan et al., 1989), and the gradients are calculated from the
backward integration of the adjoint variables.

3.4 State Variable Constraints

Different approaches to handle state variable inequality constraints are possible within the
CVP framework (Teo et al., 1991; Vassiliadis et al., 1994; Feehery and Barton, 1998). We
have converted (18) into an endpoint integral equality constraint by the relation

dx12

dτ
= max(TNmax − TN(τ), 0)2 (20)

x12(1) = 0 (21)

Note that squaring the max operator ensures first order continuity and improves integration
speed. The second equation is often converted into inequality

x12(1) ≤ ε (22)

where ε is a small positive number to improve NLP convergence.
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4 Results and Discussion

The above described techniques that solve inequality state path constraints have been
tested and the best results have been obtained with the Max approach (Fikar, 2001).
Adding interior point constraints as suggested by Vassiliadis et al. (1994) might produce
better results. However, due to the mechanism of calculating the gradients by the system of
adjoint variables, each interior constraint generates another system of differential equations.
As the number of the constraints is large, this would increase the computational time
significantly.

Another possible approach would be to generate the gradients by the method of sensi-
tivities. In that case, the number of constraints does not change the number of differential
equations needed to integrate. However, each optimised variable adds another system of
differential equations describing the sensitivities. As for the case of the WWTP process,
the number of the optimised times is large (2Nc), the sensitivity method would not decrease
the computational burden.

Based on some preliminary experiments (Chachuat, 2001), the number of cycles has
been fixed to Nc = 29 and was not a subject of further optimisation as this would lead to
mixed integer dynamic optimisation (Barton et al., 2000; Branicky et al., 1998).

This optimisation problem converged to the optimal aeration profile with the average
aeration of 39.51% shown in Fig. 3. It can be noticed that the total nitrogen hits the
maximum constraint. The same cost value has been obtained in Chachuat (2001) using
fixed initial state conditions and the overal optimisation time T = 60days.

It should be noted that CVP approach to dynamic optimisation converges only to a
local optimum and the global optimum need not to be found. To reduce this probability,
we have performed several optimisations with different starting values of the optimised
parameters and different precisions. Although several local optima have been found, the
minimum average aeration remainded approximately the same.

From the all 11 states, nitrate and nitrite nitrogen concentration SNO and dissolved
oxygen concentration SO are plotted in Fig. 4. They are particularly interesting, because
on the contrary to other states, only these two show a limited sensitivity towards the distur-
bances (inlet flowrates and inlet concentrations). More precisely, switching of the turbines
in the obtained optimal stationary regime occurs frequently either if the concentration of
SNO falls close to zero or if the concentration of SO is sufficiently high. Moreover, these
two states can be measured. A simple feedback control strategy can then be proposed from
their behaviour:

1. Start aeration when SNO decreases sufficiently close to zero,

2. Stop aeration when SO reaches a certain value.

We note that the first rule has been proposed for example by Zhao et al. (1994a)
for a different alternating WWTP setup (BIO-DENITRO) and based on an analysis of
a simplified ASM1 model. This rule follows from the fact that the denitrification period
should be large enough to consume most of the SNO in the reactor. On the other side, it
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Figure 3: Optimal stationary trajectories for J = 39.51%. Left: Nitrogen constraint, right:
aeration policy
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Figure 5: Trajectories for rule based control. Left: Nominal and perturbed nitrogen con-
straint, right: nominal aeration policy

is not necessary to make it longer if the SNO concentration is already close to zero as no
relevant bioprocess takes place in the reactor.

Also the second rule can be found quite often working well in practice. However, it
is not clear what the SO setpoint should be. Another difficulty arises as the nature of
disturbances causes the setpoint to be time-varying. Actually, its shape is in this case
similar to that of the influent flowrate.

The application of these simple rules is shown in Fig. 5 where the total nitrogen con-
centration is shown for two cases. The first one denoted as nominal applies the rules with
values of SNO(min) = 0.01 mg/L and SO(max) = 0.7 mg/L. In the perturbed case it is
supposed that the third day is rainy with 300% increase of the influent flow and with 50%
decrease of the influent concentrations for the whole day.

It is interesting to note that the simple feedback control policy produces aeration rates
that act actively against the disturbances. Continuation of the simulation for another
200 days (not shown here) to attain stationary operation gives the average aeration rate
approximately the same as that of the optimal control (39.60%) with the peak concentration
of the total nitrogen only slightly higher (10.74 mg/L).

Also, the disturbance rejection caused by rainy day simulation is satisfactory. However,
as rainy conditions have the largest impact on the settler behaviour that has not been
modelled here, the more detailed model may behave differently.

5 Conclusions

This paper has dealt with the determination of the optimal aeration strategies for small-
size activated sludge plants based on dynamic optimisation. The model employed for the
optimisation is the standard ASM1 model. From the control point of view, this model
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represents a system with one manipulated input – sequence of aeration/non-aeration times
and with primary output – total nitrogen concentration in the effluent. No setpoint is
known for the output, only its upper constraint.

Based on the problem specifications, the optimisation task has been defined and solved
using the dynamic optimisation solver DYNO. The time base for the optimisation has been
fixed to one day, based on the periodicity of the disturbances – composition and flowrate
of the influent.

To assure stationary operation of the plant, initial states were considered as optimised
parameters and a terminal constraint was included that initial and terminal states should
be the same.

Based on the optimal stationary state profiles, simple feedback policy has been defined
that relates the start and stop of aeration to nitrate and dissolved oxygen levels, respec-
tively. Application of this controller for several days showed only a very small deterioration
compared to the dynamic optimisation solution.

The results obtained can serve to several purposes. The dynamic optimisation solution
can indicate the relation between the actual and optimum operation and whether there is
a room for improvement that will justify additional investments due to necessary sensors
needed for state estimation. Next, the stationary profile can be used as a setpoint at
the existing plant or the simple rules observed here can be used to enhance the existing
operating policies.
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