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Abstract

These lecture notes detail how to design a model for a biological
process. The difficulty is due to the fact that, on the contrary to other
fields (mechanics, electronics, etc.) there does not exist any validated
law to describe the behaviour of biological systems. Nevertheless, these
systems satisfy the mass conservation principle. On this basis, the
lecture explains how to derive a model which will represent the main
mass transfer within the system. The method consists of three steps.
First determine the reaction scheme and define a model in which the
microbial kinetics are not specified. Then find an analytical expression
for the biological kinetics. Finally validate the model trying to test

separately the different hypotheses assumed during model design.
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1 Introduction

System modelling in general is difficult and requires time to properly under-
stand the system and identify a model. This exercise is complicated when
the system integrates living organisms. On the contrary to domains like
physics where laws that are known since centuries (Ohm law, ideal gas re-
lationship, fundamental principle in mechanics, thermodynamic principle,
...) can apply, most of the biological models rely on empirical mathematical
expressions. These laws result from a priori ideas on the working of the
system (metabolism, trophic relationships, etc.) or, in some rare cases, have
been estimated from some experiments. Since it is not possible to use laws
that are admitted by everybody and that have been extensively validated
and used, it is primordial to characterise the reliability of the mathemati-
cal expressions used during the model development. This implies that the
reliability of the used relationships must be sorted hierarchically during the
model development. In this chapter, we will see how to organise the knowl-
edge in the model in order to distinguish a reliable part issued from the
mass balance and a more speculative part which will represent the bacterial
kinetics.

The model quality and the model structure must above all be determined
with respect to the model objectives. Indeed, a model can be developed for
very different purposes that must be clearly identified. Will the model be
used in order to:

e Reproduce an observed behaviour

e Explain an observed behaviour

e Predict the system evolution

e Understand some of the system mechanisms

e Estimate non measured variables

e Estimate process parameters

e Act on a system to regulate and impose the values for its variables

e Detect anomalies in the process working
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Depending on the modelling objectives and resources, a formalism must
be chosen. If the spatial heterogeneity is important and must be taken into
account in the model, a parameter distributed model must be written (using
e.g. partial differential equations). If the modelling aims at the improvement
of a metabolite production during transient phases, the system dynamics
must be represented in the model.

Moreover, besides its objectives, the model must also be in adequation
with the available data. Indeed a complex model involving a large number of
parameters will also require a large amount of data to identify its parameters
and to validate the model.

Finally, if we remember that most of the laws used in biology are specu-
lative, the key step in the modelling of bioprocesses is the model validation.
This step is often neglected, despite its determinant role to guaranty the
model quality. In particular it is crucial to demonstrate that the model
reaches properly the goals for which it was developed.

2 Principle of a bioreactor

2.1 The use of microorganisms

The fermentation principle consists in exploiting metabolic reactions that
take place in the cell of a micro-organism (bacteria, yeast, phytoplankton,
etc.). In order to activate the micro-organisms interesting metabolic path-
ways, some specific environmental conditions must be applied (temperature,
pH, nutrient concentration). The microorganisms generally need nutrients
to growth and precursors or activators in order to produce specific molecules.
The simplest required reaction is the growth process itself in order to recover
the biomass of microorganisms.

In these metabolic reactions, we can distinguish the following biochemical
components:

e the substrates S;, which are necessary for the goal of the fermentation
(growth of the microorganisms and/or precursor for the metabolite
to be produced). The substrate associated with growth must contain
all the elements necessary to sustain growth (i.e. N, C, K, P, Fe,
...). In general, these elements are added in excess so that they are
never limiting during the cultivation. Only the main nutrients (carbon,
nitrogen or phosphorus source) are monitored along the cultivation.
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e microbial biomasses (denoted X;). The microorganisms can be of var-
ious type and species (bacteria, phytoplankton, fungi, yeast, etc.);

e the products of the biochemical reactions,(denoted P;). These prod-
ucts can be in the agro-industrial field (cheese, beer, wine, ... ),
chemistry (enzymes, colourings...), pharmaceutical industry (antibi-
otics, hormones, vitamins...) or for energy production (ethanol, bio-

gas...)...

e catalysts: they can neither be produced nor consumed during the re-
action, but they are necessary.

Depending on the objectives of the fermentation, specific microorganisms
will be grown in order to enhance:

e production of biomass itself. It is for example the case for the produc-
tion of backer yeast.

e production of a metabolite. The goal is to enhance the cellular syn-
thesis of a particular compounds (ethanol, penicillin, ...).

e substrate uptake. In this case, the substrate degradation itself is the
objective. This is more specially used to remove pollutants from a
liquid medium. Most of the biological depollution processes are among
this category.

e phenomenological studies. In this particular case the fermentation
aims a better knowledge of the microorganism. The application can
be to better understand how the microorganisms grow in the natural
field.

2.2 The main types of bioreactors

There are a great deal of different bioreactors. Depending on the type of
microorganisms that are grown, they will need a support to settle or can be
free in the liquid. They can resist to more or less intense shearing constraints
which will implicate a specific steering system. These two main requirements
will determine the type of bioreactor. Two classes can be identified [1]:

e stirred tank reactors (CSTR) in which the medium is homogeneous
and each element of volume will represent the concentrations in the
whole fermenter
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e the bioreactors with non homogeneous concentration along space. In
particular the bioreactor for microorganisms using a support to growth
(called a “bed”) are in this category.

When the medium is homogeneous it can be described by ordinary dif-
ferential equations. When a strong spatial distribution must be taken into
account a model based on partial differential equations are more appropriate.
In this lecture we will present only the CSTR modelled with ODE.

2.3 Working of a bioreactor

2.3.1 Presentation

Figure 1 presents a simplified conceptual scheme explaining the principle of
a bioreactor. It is mainly a culture vessel of volume V where the microor-
ganisms grow. A pipe feeds the vessel with an influent medium (with flow
rate ;) and another one withdraws the culture medium with a flow rate
Qout-

Depending on the way the fermenter is fed and withdrawn, 3 basic work-
ing modes can be identified (figure 2).

2.3.2 Batch mode

The system is in batch during the fermentation, and has a constant volume,
since no feeding or withdrawal are performed during the fermentation. An
inoculum of micro-organisms is introduced at the initial time with all the
nutrients and substrates. The biomass or the final product are recovered at
the end of the fermentation. The advantage of this approach is that it avoids
the contaminations with other bacteria that can come in an open system.
The drawback is the limited means of action to act on the fermentation
(pH, temperature, aeration...). Therefore the batch mode is often the less
optimal from the automatic control point of view to optimise a cost criterion.
Nevertheless, this is the most used mode in the industry.

2.3.3 Fedbatch mode

As for the batch mode the duration of a fedbatch is finite. But here the
fermenter is fed and starts from a volume Vj to reach a volume V; at the
end of the fermentation. This mode allows a better control of the growth and
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Figure 2: The various working modes of the bioreactors
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biotransformation process along the fermentation. The fedbatch processes
are often in closed loop. This operating mode is particularly used when the
product to be recovered necessitates to empty the bioreactor like e.g. for
intracellular components.

2.3.4 The continuous mode (chemostat)

This is the most popular working mode in the field of wastewater treat-
ment. The volume of the bioreactor is constant since the influent flow rate
is equal to the effluent flow rate. This mode provides the richest dynamics,
and therefore presents the more latitude to optimise the process. It is also
often used in laboratories to study the physiology of a microorganism. The
advantage is also that it allows important productions in small size reactors.

2.3.5 The Sequencing Batch Reactors (SBR)

It is a combination of the previous working mode. The idea is to recover the
biomass before emptying the bioreactor. For this, the agitation is stopped
to let the biomass settle. The different steps used for wastewater treatment
are presented on Figure 3.

In the same way, the SFBR (sequencing fedbatch reactor) is a SBR with
a stage of filling that follows a fedbatch mode.

3 The mass balance modelling

3.1 Introduction

The modelling of biological systems is delicate because it is not based on val-
idated laws, like in other fields (mechanics, electronics, etc.). The evolution
of microorganisms is very complex and does not follow any clear law. Never-
theless, this system has to respect some rules, like all the physical systems.
For example, the mass conservation, the electro neutrality of the solutions,
etc. We will see in this section how to take these aspects into account in
the model design. As a result, this mass balance approach will guaranty a
certain robustness in the model.
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Figure 3: SBR (sequencing batch reactors): representation of the different steps
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3.2 Reaction scheme

The reaction scheme of a biochemical process is a macroscopic description of
the set of biological and chemical reactions which represents the main mass
transfer within the fermenter. A formalism close to this used in chemistry is
adopted [2]. A set of substrates S; are transformed into products P; following
3 possibilities:

e The reaction is a pure chemical reaction, and no biomass is involved.
The reaction is then a classical chemical reaction:

Sl+52+...+Sp—)P1+...+Pq

e The reaction is catalysed by a biomass X. The biomass acts only as
a catalyser and the reaction is not associated with the growth of the
microorganisms:

Si4+ S8 + .. +8, =5 P+ ..+ P,

e The reaction is associated with growth of the microorganisms. There-
fore the biomass is also a product of the reaction.

S+ S8+ .. +85 = PL+ ..+ P+ X

The reaction scheme is a concise way to summarise at the macroscopic
level a set of reactions that are assumed to determine the process dynamics.
The reaction scheme is therefore based on the assumptions related to the
available phenomenological knowledge of the process.

In general only the main components of a reaction are represented. In-
deed, it would be very difficult to present a real reaction for the growth of a
micro-organism since a great deal of components are necessary (Fe, Pb, F,

In the sequel, we will detail the reaction scheme by adding the yield
coefficients associated with the consumption (k;) or the production (k}) of

(]
each coefficient. Moreover, we will also indicate the rate of the reaction ¢:

kiS1 + koS + . + kpS, o KP4+ .+ kP + X

The consumption rate of S; is thus k;¢p, the production rate P; is thus k.
By convention ¢ corresponds to the production rate of the biomass.

In the sequel we will assume that the reaction scheme is composed of
a set of k biological or chemical reactions. We will considered n variables
(chemical concentrations, biomass,...).
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3.3 Choice of the reactions and of the variables

The choice of the number of reactions to be taken into account and the
choice of the state variables is capital for the modelling purpose. It will be
guided by the available knowledge on the reaction scheme on the basis of
the available data set. Often the complexity of the model is too high with
respect to the amount of data that are available to test and validate the
model. It must be chosen with parsimony, keeping in mind the objectives of
the model.

The choice of the reactions and of the variables will mainly determine
the model structure, it must be considered with care. We will see in section
6 how to validate this reaction scheme.

We briefly present in Appendix A a procedure to determine the number
of reactions that must be taken into account with respect to the available
data.

In the sequel, we will assume that the reaction scheme:

e represents the main mass and flow repartition between the set of reac-
tions that intervene in the process,

e is a set of reactions whose yield coefficients are constant.

3.4 Example 1

We will consider here the example of anaerobic digestion. This process is
used to remove a polluting substrate (S;) from wastewater thanks to anaer-
obic bacteria. In fact, this is a very complex process which involves several
different bacterial populations [3]. If the modelling objective is to control
this intricate ecosystem in order to improve the pollution removal, then we
need a rather simple model. This is why, to limit the model complexity, we
consider only two main bacterial populations. We assume therefore that the
dynamics can be described by two main steps:

e An acidogenesis step (with a rate 71(.)) in which the substrate S; is
degraded by acidogenic bacteria (X1) and is transformed into volatile
fatty acids (VFA) (S2) and COa:

k1St Y X, 4 ky S + ks COy (1)
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e A methanogenesis step (with a rate r5(.)), where the volatile fatty acids
are degraded into CH4 and COg by methanogenic bacteria (X2).

ks Sa Y Xy, + ks COs + ke CHy 2)

The constants ki, ko, k4, respectively represent the stoichiometric coef-
ficients associated with substrate S; consumption, production of VFA and
COs during acidogenesis. ks, ks and kg respectively represent stoichiomet-
ric coefficients associated with VFA consumption and with COs and CH4
production during methanogenesis.

It is worth noting that in some sense this reaction scheme has no biolog-
ical reality since biomasses X; and X5 represent a set of different species. In
the same way for substrates S; and Se which gathers a set of heterogeneous
compounds. A lot of models can be found in the literature for this process
[4, 3, 5]. Generally, the description of the processes within the bioreactor are
much more detailed [6, 7] but it leads to models difficult to use for control
purpose.

4 The mass balance models

4.1 Introduction

We will consider a continuously stirred tank reactor that guarantees a per-
fect mixing. We will see that independently of the working mode (batch,
fedbatch, continuous), the dynamical behaviour of the biological or chem-
ical compounds in the reactors can be directly deduced from the reaction
scheme.

We will show on a very simple example how the dynamical model can be
established.

4.2 Example 2

We will consider here the very simple example of the growth of a micro-
organism X on a substrate S with rate r(.):

kS T

The yield coefficient associated with substrate consumption is denoted

k.
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We assume that the influent flow rate is @);, and that the effluent flow
rate is Qoyut- We denote by  and s the total amount of biomass and substrate
in the volume V of the bioreactor.

Let us consider the evolution of V(t), z(¢t) and s(t¢) between two very
close time instants ¢ and ¢ + dt.

The evolution of the total liquid volume V is rather simple:

V(t+dt) =V(t) + Qindt — Qoudt

For the biomass, we have to take into account the new biomass produced
between ¢ and t+dt. The production term in the whole volume V is r(.)V dt,
and thus:

ot +dt) = z(t) + r()Vdt — det%

Note that, in order to compute the biomass lost in the effluent (in the volume
Qoutdt) we assume that the concentration in the small volume is the same as
in the whole bioreactor (i.e. {7). At this point the hypothesis of homogeneity
in the reactor is crucial.

In the same way, for the substrate, we must also consider the quantity of

substrate (with concentration S;,) arriving between the two time instant:

s(t + dt) = 5(t) + QinSin — kr()Vdt — Quurdt—

v
For a very small dt, we can then derive the following equations:
dz x
a = T(')V - Qoutv (3)
ds S
% = —k’?"()V + Qmsm - Qoutv (4)
dav
E = Qm - Qout (5)

Now, let us rewrite this model in term of concentration i.e. using the
variables X = {; and S = ;). It is straightforward to see that we get the
following model:

X =r()-DX
& = —kr() + D(Sin — 5) (6)
% = Qin — Qout
where D = % corresponds to the dilution rate.
Model (6) simplifies for the various working modes:



784 O. Bernard

e Batch. In this case we have Q;;, = Qout = 0. The volume is then
constant.

e Fed batch. Here Q. = 0; ‘fj—‘tf = Qin, V is increasing.

e Continuous mode. The volume V is constant since Q;, = Qout-

For sake of simplicity, in the sequel we will not describe the fed batch case
and we will concentrate on the batch or continuous mode. This simplifies
the equation since we do not need the equation which forecasts the volume
evolution.

4.3 Matrix representation

The reaction scheme leads to the following mass balance model which de-
scribes equivalently the mass flows within the bioreactor [2]:

£=Kr()+D(émn — &) — Q(6) (7)

Where € is the state vector containing all the process compounds and biomasses,
&in is the vector of the influent concentrations, r(.) is a vector of reaction
rates. The matrix K contains the stoichiometric coefficients (yields). Q(¢),
represents the gaseous terms of exchange between the liquid and the gas
phase. The dilution rate, D, is the ratio between the influent flow rate Q;,
and the reactor volume V.

Remark 1 In the case of the fed batch process, the state vector must also
contain the volume V of the reactor. The last equation will describe the
volume evolution (cf. equation (5)).

4.3.1 Example 2 (continued)

Let us consider model (6) working in continuous mode (V is constant, D =
%) The model can be rewritten as follows:

(5)-C)oel(s) ()

It corresponds exactly to the general model, (7) with:

O e
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4.3.2 Example 1 (continued)

Now let us come back to the anaerobic digestion example (see section 3.4).
We will assume that the methane solubility is very low and therefore that it
directly goes into the gas phase. The carbon dioxide is stored in the liquid
phase where he enters in the inorganic carbon compartment (C).

The mass balance model is then the following:

dX

— = n()-DX; (8)
% = ro(.) — DX (9)
% = D(Sin — 51) — k1ri(.) (10)
% = D(Sain — o) + kar1(.) — kara(.) (11)
% = D(Cin — C) — qc(€) + kar1(-) + ksra(.) (12)

where Sy, Soin and Cj, are respectively the influent concentrations of sub-
strate, VFA and dissolved inorganic carbon. The term g¢ () represents the
inorganic carbon flow rate (of CO) from the liquid phase to the gaseous
phase.

4.4 The gaseous flows

In order to derive the mass balance, we must take into account the com-
pounds which have a gaseous phase. Indeed, the gaseous species can escape
the bioreactor after going from the liquid to the gaseous phase (they can
also enter into the bioreactor).

We use for this Henry’s law which describes the molar flow rate of a
compound C' from its liquid phase to its gaseous phase:

qc = Kpa(C - C%) (13)

Remark 2 Ifq. < 0, it means that the gaseous flow will take place from the
gaseous phase to the liquid phase.

The transfer coefficient K a (1/T) highly depends on the operating con-
ditions and especially from stirring, and the exchange area between the lig-
uid and the gaseous phases (size of the bubbles)[8, 1]. The modelling of this
parameter with respect to the operating conditions can be very delicate.
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The quantity C* is the saturation concentration of dissolved C. This
quantity is related to the partial pressure of gaseous C (P¢) thanks to
Henry’s constant:

Henry’s constant can also vary with respect to the compounds in the culture
medium or the temperature.

Moreover, when several gaseous species are simultaneously in the gaseous
phase, they must follow the ideal gas law. This will give a relationship of
constant ratio between molar flow rates and partial pressures. For m gaseous
species C ... Cpy,:

& = & = = Fem (15)
qc1 qdc2 dem

4.5 Electro neutrality and affinity constants

The electro neutrality of the solutions is a second rule that the biological
systems must respect: the anions concentrations weighted by the number
of electrical charges must equal the concentration of cations with the same
weighting.

The chemical reactions are often well known and an affinity constant
is generally associated. This constant is generally related to the protons
concentration H, and therefore to pH.

4.6 Example 1 (continued)

4.6.1 Gaseous flows

The methane flow rate is directly related to methanogenesis:
qu = kera(.) (16)
The gaseous COs flow rate follows Henry’s law:
qc(§) = K1.a(CO2 — Kn Po) (17)

where P¢ is the CO9 partial pressure.
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4.6.2 Affinity constants

In the anaerobic digestion example, we will use the electro neutrality and
the chemical affinity constants:

In the usual operating range of pH for these processes (6 < pH < 8) we
assume that the VFA are under their ionised form. The dissolved COs is in
equilibrium with bicarbonate:

COs + HyO <> HCO3; + H*
The affinity constant of this reaction is then

HCO7 H*
Ky=—-3%"—
b CO,

4.6.3 Electro neutrality of the solution

The cations (Z), are mainly ions which are not affected by biochemical
reactions (Na™,...). Therefore, their dynamics will simply follow, without
modification the cation concentration Z;, in the influent, so that:
dz
— =D(Zy, — 7 19
Y = D(Z - 7) (19)

The anions are mainly represented by the VFA and the bicarbonate. Electro
neutrality ensures then that:

Z=8,+ HCO; (20)

4.6.4 Conclusion

If we add equation (19), the model can finally be rewritten under the matrix
form (7), with :

X1
Xo

e - |7 ,r<.)=[”(')],f<= (21)

S1
Sy ko —ks
C k4 ks
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o T _ -
0
G = Stin | 9=
Soin,

Ci qc(§)

S O O o O

An elimination of variables HCOj3 , COg2, and P using equations (17),(15)
(18) and (20), leads to the following expression for Px(¢) (cf [9]):

:¢—\/¢2—4KHPT(C+SQ—Z)

Pe() ul (23)
setting: ¢ =C + Sy — Z+ Ky Pr+ kk—Garg(.), we finally get
L
qc(§) = kra(C + S2 — Z — Ky Pc(§)) (24)

4.7 Conclusion

At this stage, we end up with a model based on the following physical and
chemical principles:

e Mass balance

e Jonic balance

Affinity constants

Ideal gas law

Henry’s law

The more important hypothesis (with respect to model reliability) is the
mass balance hypothesis deduced from the reaction scheme. This hypothesis
will therefore require to be validated in the sequel of the modelling approach.

The mass balance model can be used in this form for monitoring or
control purpose. Indeed, using the approaches developed in the framework
of systems with unknown inputs [10, 11, 12], the unknown reaction rates can
be removed thanks to adequate state transformations [2].
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Nevertheless, if the initial objective consists in simulating the system,
then the reaction rates r;(.) must be written with respect to the state vari-
ables and to the system inputs (environmental variables). This step is much
more delicate and a lot of hypotheses difficult to verify are requested.

5 Modelling of the kinetics

5.1 Introduction

For some specific purposes (optimal control, simulation, predictions, etc.)
it is necessary to have an analytical expression relating the reaction rates
to the state variables of the system. We have nevertheless to keep in mind
that these expressions are most of the time approximate relationships issued
from empirical considerations. Therefore we leave the background of physical
modelling presented previously.

In this section we will see how to establish a hierarchy between the as-
sumed hypotheses in order to obtain a two reliability level description of the
kinetics.

5.2 The mathematical constraints

5.2.1 Positivity of the variables

A priori, some physical constraints that the model must respect are known:
The variables must remain positive and they must be bounded if the amount
of matter entering in the bioreactor is bounded. These physical constraints
will impose constraints on the structure of the r;(.). Some quantities (per-
centage, ratios, etc.) must remain between known bounds. To guaranty that
the model respects this property, it should verify the following property:

Property 1 (H1) For each state variable & € [L;min, Limaz), the field &
on the boundaries must be directed in the admissible space. In other words,
the following conditions must be satisfied:

& = Limin = & >0
fi :Lz’maz :>‘£z SO

Particular case: We must have §; =0 = §Z > 0. in order that variable
&; remains positive.
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5.2.2 Variables that are necessary for the reaction

The second important constraint which must be satisfied by the biochemical
kinetics is related to the reaction scheme. A reaction can not take place if
one of the reactant necessary for the reaction is missing. This justifies the
following property:

Property 2 If¢; is a reactant of reaction i, then &; can be factorised in r;:

ri(&au) = f] V’L](ﬁau’)

We verify then easily that £; = 0 = r;(§,u) =0
In the same way, for the reactions associated to a biomass X, we have
the same property. Therefore a growth reaction can be rewritten

ri(§,u) = pi(§,u)X

The term p;(€,u) is called the growth rate.

5.2.3 Example 1 (continued)

Let us consider the anaerobic digestion model given by equations (8) to (11)
and let us apply the state positivity principle:

X =0=r()>0 25)
Xo=0=ry(.)>0
81 =0= D(Syn —S1) — kari(.) > 0
Sy = 0= D(Sain — So) + kar1(.) — ksra(.) > 0

Equations (25) and (26) are not very informative. In order that (27) and
(28) are respected whatever the experimental conditions, it requires:

7‘1(.) = 51(}51() and 7‘2(.) = Sngg()

Moreover, biomasses X7 and X are necessary, respectively for reactions
1 and 2, and thus:

26)
27)

(
(
(
(28)

7‘1(.) = /1,1(.)X1 and ‘)”2(.) = M?(-)XQ

Finally, we must have:
’1"1(.) = Slelll(.) (29)

7’2(.) = SQXll/Q(.) (30)
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5.2.4 Phenomenological knowledge

We will exploit the available phenomenological knowledge (even if it is often
speculative) in order to propose an expression for the reaction kinetics.

First, the laboratory experiments allows one to determine the variables
which act on the reaction rates. We have seen that the reactant and some-
times the biomass must be found among these variables.

Then, we must know whether the reaction is activated or inhibited by
these variables. It often happens that a variable is activating and that she
becomes inhibiting at high concentrations (toxicity effect).

Now, there remains to propose an analytical expression which will take
into account the mathematical constraints so as the phenomenological knowl-
edge on the process. For this, the modelling choices rely on one hand on
experimental observations (when they exist!) and on the other hand on
the available models in the literature. In all the cases, the parsimony prin-
ciple will be privileged to guaranty that the models can be identified and
validated.

The following paragraph details the list of models that are often found
in the literature to describe some typical reactions. These examples are
indicative and a very large number of different models can be found in the
literature, in particular to describe the growth rate [2, 1].

5.3 The growth rate

5.3.1 The Monod model

The most commonly used model is the Monod [13] model which uses the
kinetics identified by Michaglis-Menten for enzymatic kinetics :

S

S) = e —— 31
M( ) Mmazx K. +S ( )
Mmaz 18 the maximal growth rate and K the half saturation constant.

This simple model summarises the two main phases of the growth of a

microorganism:

e Unlimited growth, for high values of substrate (S >> Kg). The growth
rate is then constant, equal to the maximal growth rate pmqs

e The limited growth, for small values of substrate. In this case the
growth rate is approximately proportional to the substrate.
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Note that the similitude between enzymatic reaction and growth of a
microorganism are often used to justify the analytical expression of a reaction
rate [14, 15].

5.3.2 Haldane model

The Haldane model, initially proposed for an enzymatic reaction can be used
to represent a substrate inhibiting the growth at high values [16]:

S

2 32
K,+S+% (32

M = Pmaz
where K is an inhibition constant. This model predicts that the growth
rate is inversely proportional to the growth rate at high concentrations.

5.3.3 Multiple limitations

When two substrates S; and S are simultaneously limiting the growth,
a usual way of modelling the reaction rates is to take the product of two
Michaelis-Menten kinetics:

) (7 rs)
= Mmazx 33
p=H (Kgl + 51 KSg + S5 ( )

where K5, and Kg, are the half saturation constants associated respectively
to substrates S; and Ss.

If one of the substrate (say Sp) is at high concentration, the growth rate
is then equivalent to a Monod model with respect to the other substrate (1.e.

Ss).

5.4 Kinetics representation using neural networks

We expose briefly here an alternative method to represent the kinetics using
a neural network. The global model will then be composed of a mass balance
model based on O.D.E, and of a neural network for the reaction rates. In
this sense it is an hybrid model. No a priori hypotheses are performed on the
kinetics, except that we take into account some constraints to guaranty that
the system trajectory keep an acceptable meaning. The kinetics represented
by the neural network are then directly identified along the training step.
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Input hidden output
layer layer |ayer

Figure 4: Scheme of a neural network including a single hidden layer

Nevertheless, the variables which influence the kinetics must be determined.
These variables will constitute the input of the neural network.

A schematic view of the network is presented on Figure 4 for a single
hidden layer. The expression of the output of the network with respect to
the inputs is as follows:

p(S1s---3Sm) = Zh wi, $(Y_ vkiSi) (34)
i-1

k=1

where nj represents the number of neurons in the hidden layer. The
wr and wvg; are respectively the weights of the input and outputs layers.
Function ¢ is the activating function of the neuron. It is generally chosen
among a set of functions (sigmoides, hyperbolic tangent, gaussian, etc.).

The choice of the type of network and of the number of neurons is a rather
classical choice and we invite the reader to refer to [17] for more details.

Once the structure of the network has been chosen, the next step is the
training phase consisting in identifying the networks weights. This opera-
tion is a bit specific for hybrid systems and we refer to [18, 19] for more
explanations.
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6 Model validation

6.1 Introduction

The last modelling step is certainly the most important, but it is also the
most often neglected one. It is all the more important since we have seen
that it was necessary to assume a great amount of speculative hypotheses.
Before using a model, it is important to validate it properly. This stage
follows generally the identification step which is not described here.

The general objective for the validation is to verify that the model fits
the objectives that have been fixed. More precisely, we will see how to
test separately the various hypotheses that have been assumed during the
model development:

e the reaction scheme
e the qualitative model predictions

e the model as a whole (reaction scheme+kinetics+parameters)

It is important to note that the validation phase must be performed
from a data set which was not used to establish or to identify the model.
Moreover the new experiments that must be used to test the model validity
must significatively differ from the previously used data set (otherwise it is
a test of the experimental reproducibility rather than a test of the model
validity). If these conditions are not respected, the model can not pretend
to be validated

6.2 Validation of the reaction scheme

6.2.1 Mathematical principle

The proposed procedure relies on an important property, which is a con-
sequence of the mass conservation within the bioreactor. As a result this
approach will allow us to check if the obtained mass balance is consistent
with the data.

Property 3 We assume that the nxk matriz K has more rows than columns
(n > k). This means that there are more variables than reactions. In this
conditions, we have at least n — k independent vectors v; € R™ such that:

VK = 01k



Mass Balance Modelling of Bioprocesses 795

By convention, we normalise the first component of the vector v; in order
to have v;1 =1
Consequence : let us consider the real variable w; = v!¢, this variable
satisfies the following equation:

dwi

7 = DWiin — w;) — vfQ(€) (35)

with w; i, = v, Let us integrate (35) between two time instants ¢; and
t2. We rewrite this equation in order to let the components v;; of vector v;
appear. It leads to:

D vijde; (t1,ta) = b, (t1,12) (36)

Jj=2
where

to

be; (t1,t2) = &(t2) — &;(t1) — . D(7)(&jin(T) = &i(7)) — Q;(&(7))dT
The terms ¢, (t1,%2) can be estimated from the experimental measurements
of ¢; along time. An approximation of the integral can be computed e.g.
using a trapeze formulae. Moreover if the sampling frequency is not suffi-
cient, the data will probably require to be interpolated. We recommend for
this task to use spline functions which will at the same time smooth and
interpolate the data.

The relationship (36) is a linear relation linking the v;; to the terms
be; (t1,12). Since the ¢, (t1,%2) can be computed between various time in-
stants ¢1 and 9, (36) is a linear regression whose validity can be experimen-
tally tested.

Important remark: In fact, relationship (36) is a linear regression
which will provide us with an estimate of the v;;. These terms are related
with the coefficients of the yield matrix K, and will in general allow to
estimate the value of these coeflicients.

6.2.2 Example 4

Let us consider here the simple example of the growth of the filamentous
fungi Pycnoporus cinnabarinus (X) on two substrates, glucose ( carbon (C)
source) and ammonium (nitrogen (N) source). We assume therefore that
the reaction scheme is composed by a single reaction:
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N+C—X

The stoichiometric matrix K associated to this reaction is the following
=X NCO)):

K = (1 — kl — k‘g)t, and fm = (0 Nin Cm)t (37)

Let us consider the two following vectors orthogonal to the columns of K:

PR e _ LRy
v = (1 T 0) andvg—(l()kZ)

We can then define the following quantities:

by (t,t2) = X(ta) — X (81) + :2 D(1)X(7)

¢n(t1,t2) = N(t2) = N(t1) — : D(7)(Nin(1) = N(7))d7

bolts, ) = Clta) ~ (1) — [ D(r)(Cin(r) — C(r))dr

which will allow us to rewrite the following regressions associated with v
and vg:

bx(t1,t2) = k—11¢1v(t1,t2) (38)

bx(t1,t2) = k—12¢c(t1,t2) (39)

It is now easy to verify if the relationships (38) and (39) are significative
from a statistical point of view.

Figure (5) presents a validation example on the basis of a series of exper-
iment. The obtained regression is highly significative. This means that rela-
tions (38) and (39) are valid. As a consequence, the rows of matrix K, which
are orthogonal to v; and vg are necessarily of the type K = (1 — a1 — az)’.
Therefore the reaction scheme is valid, and subsequently the mass balance
model as well.

Note that these techniques lead also to the estimate of the yield coeffi-
cients k1 and ks.
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Figure 5: Validation of the linear relationship relating ¢x and ¢n (A); ¢x and ¢c (B)

6.3 Qualitative model validation

For the third stage, we assume that the reaction scheme, and therefore the
mass balance model has been validated. We will then consider a simulation
model consisting of the mass balance model plus the mathematical expression
of the kinetics.

The first think to do is to test whether the qualitative properties of the
model respect the experimental observations.

The first qualitative behaviour that we expect the model to reproduce
is the asymptotic behaviour obtained for constant inputs. Will the model
predict an equilibrium, or a more complex behaviour (limit cycle, chaos,...)
in agreement with experiments ?

How do these properties evolve when the inputs vary 7 For example, the
model will predict that an equilibrium in a bioreactor is globally stable for
values of the dilution rate lower than a bound, and that for higher values
the equilibrium becomes unstable. Does it correspond to the experimental
observations 7

More precise qualitative property on the type of transient allowed by
the model can also be compared with experimental data. For some specific
systems, these transients can be rather precisely determined from a structure
analysis [20, 21, 22, 23].

Another qualitative criterion that can be discussed is the response of the
system at steady state to a change in an input. Assume for example that an
increase of input u; (which is then kept constant) leads to a decrease in the
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steady state value of ;: is it verified from an experimental point of view ?

6.3.1 Example

For example, Hansen and Hubbell (1980) study the competition between two
bacterial species in a chemostat. The reaction scheme is composed of two

growth reactions:
k‘l S — Xl

kQS — X9

The growth rate associated to these reactions is assumed to be of Monod

type, i.e.:
i(S) = L
Hi —Nmasz+Ksi

where fipa: and Kg; are the maximum growth rate and the half saturation
constant associated with substrate S for species 1.

Hansen and Hubbell showed that the winner of the competition predicted
by the model depends on the dilution rate. More precisely, the winner is

the species with the smaller ratio J; = umfmﬁ The comparison of the 2
ratios J; and Jy leads to the study of the quantity r = % with
respect to the threshold value gz; — 1. If we assume that we are in the

case where D < fimaz1 < MWmaz2, then species 2 wins for a dilution rate
lower than Dy = “m““? i 1K:2  whereas for higher values, it is species
1 (see figure 6). These qualitative properties are verified experimentally (see

Figure 7).

6.4 Global model validation

This is the classical way of validating a model: the simulation results are
quantitatively compared to experimental data. The most popular criterion
is the least square criterion which is computed as follows for a data set of N
measurements:

N ~
J= Z |€(t:) — €(t:)?

where ¢ (ti) is the simulated value of the state £ at the sampling instant ¢;.
The criterion can be improved by weighting each component of the state
&; by a coeflicient which takes into account the mean value of {; and the
measurement accuracy for this variable.
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Figure 6: Competition in a chemostat with respect to the dilution rate (discussion of

the quantity “m:“# with respect to Z’; — 1). We consider here the case where

D < pimaz2 < Pmaz 1

This criterion should be minimum. In theory, the residuals (i.e. f —¢)
must be studied from a statistical point of view. In the ideal case, it should
have properties comparable to those of the measurement noise: it should
at least be zero on average, and more precisely one can expect a gaussian
distribution [25].

In this approach, the model is considered as a whole. If the residual
analysis is not good, in the case where the previous validation steps (reaction
scheme and qualitative criteria) have not been performed properly it would
be impossible to know the cause of the problem. This criterion does not give
any clue on the structural validity of the model (underlying reaction scheme,
qualitative properties), on the validity of the type of reaction rate modelling
used or on the correctness of parameter values.

If the two first validation steps have been successfully fulfilled, the prob-
lem is probably due to a an erratic parameter estimation.

In practice, in the framework of biotechnological systems, as it is difficult
to validate stricto sensu these models, one will be satisfied with a good
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Figure 7: Experimental validation of the qualitative model behaviour. Quantitative
model predictions are represented as well. The qualitative model predictions are verified
for: a) Two species (Escherichia coli, strain C-8 and Pseudomonas aeruginosa, strain
PA0283 which differ from their half-saturation constants. b) Two strains of Escherichia
coli which differ from their maximal growth rates. d) Coexistence obtained with 2 strains
of Escherichia coli which have the same parameter J;. Figure c) represents the effect of

nalidixic acid on the maximal growth rate for the 2 considered strains C-8. (from [24])

visual adequation between simulations and data. This subjective criterion
can be reinforced by an analysis of the correlation between predictions and
measurements.

6.4.1 Example

The following validation example presents the results obtained with the
anaerobic digestion model exposed throughout the paper. Figures 8 and
9 present model simulations compared to direct measurements [9]. The pe-
riods of time considered for the calibration step are shown on the figures.
The model correctly reproduces the behaviour of the system for the con-
sidered period in spite of the fact that it has been calibrated only using
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steady state measurements.

Indeed Figure 8 shows that the continuously measured variables (i.e.
gaseous flow rate and pH) are well predicted. It is worth noting that these
simulations also correctly reproduce the effect of the disturbances induced by
pump failures (around day 45). Remark also that the pH predictions match
quite well the direct measurements although pH measurements have not
been used to calibrate the model parameters. However the model predicts
a more severe pH drop during the destabilisation phase (days 21-25). This
may be due to an underestimation of the buffer capacity (i.e. the alkalinity
of the system). It can be noticed that during the destabilisation period the
gases are underestimated by the model.

The model simulations are also in good agreement with the off-line data
(Figure 9). Even if S; is a variable that stands for the various components
of the COD that can be rather different along the experiment, the adequacy
between model and measurements is good. The reaction of the model to the
overloading produced on day 68 seems to be slower than the process, so that
the accumulation starts less rapidly in the model.

The main quality of the model is its ability to predict the destabilisation
of the plant. This was not obvious since only equilibrium data have been
used for the model calibration and the data obtained during the destabilisa-
tion phases were not used. The quality of the model justifies its integration
in an on-line monitoring procedure in order to early detect a possible desta-
bilisation [26]. The model is also used to derive a robust control algorithm,
that is insensitive to the main modelling uncertainties and that avoid the
plant destabilisation [27].

7 Mass balance models properties

7.1 Boundness and positivity of the variables

We have seen in paragraph 5.2.1 that the models must be designed in order
to meet constraints like the positivity of the state variables.

We will see here that the models based on mass balances are of the type
BIBS (bounded input bounded state). To show this property, we use the
following hypotheses which are verified for the mass balance based systems:

Hypothesis 1 (H2) There exists a vector v whose components are strictly
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positive, such that:
'U+K — lek

Consequence: Let us consider the scalar quantity wt = v+£. Tt verifies
the following equation: (35):

W D, - ) - v QUO) (40)

We have to assume an hypothesis for Q(¢), which is verified in most of
the cases:

Hypothesis 2 (H3) There exists a positive real a and a real b, such that
Q(&) can be compared to a linear expression as follows:

vIQ(E) > avTE+b
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This hypothesis is verified if vTQ(¢) = 0, or if Q(&) is described by
Henry’s law (see section 4.4).

Property 4 If hypotheses (H1), (H2) and (H3) are verified, then the system
is BIBS.

Proof: The dynamics of w™ can be bounded as follows:

dw™ Dwl —b
— < (D ——m gt 41
Y < +ay Pt ) ()

+_
if we apply property 1, we can deduce: w* < max(w™(0), DIDU:’_La b)

In other words, 3" w;"¢; is bounded. Since w;” > 0, the state variables ¢;
are bounded.



804 O. Bernard

7.2 Equilibrium point and local behaviour

7.2.1 Introduction

In this section we briefly recall the principles of the studies of the model
properties. We invite the reader to consult [28] for more details.

Generally, the bioreactor models are non linear (e.g. they often have
multiple steady state), and they are of high dimension (large number of state
variables). They often have a large number of parameters, which often in-
tervene in nonlinear functions (nonlinearity with respect to the parameters).

Nevertheless, for dimensions greater than 3, it becomes very difficult to
characterise the behaviour of a dynamical system. We will however show
that the mass balance based model have structural properties which make
easier the system understanding.

In this paragraph, we consider a general dynamical system:

d¢
We keep in mind that f(&,u) = Kr(€) + D(&in — &) — Q(§). We will
consider here the case where u = (D, ;) is constant.

7.2.2 Equilibrium points and local stability

The equilibrium points are obtained for % = 0 when the inputs are main-
tained constant.

The non linear systems generically differ from linear systems since they
can have multiple equilibrium points.

The first step in the model analysis consists in testing if these equilibrium
points are locally stable. We consider the jacobian matrix of the linearised:

J(€) = g—g@

The equilibrium & is locally stable if and only if all the eigenvalues of
J(&) have a negative real part. If there exists an eigenvalue with positive
real part, the equilibrium is unstable. We can not conclude on the system
stability if none eigenvalues have a positive real part but one (at least)
eigenvalue has a zero real part.
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7.2.3 Global behaviour

The dynamics of a nonlinear system can be very complicated, and com-
plex behaviours like limit cycles, chaos, etc. can appear in addition to the
equilibria. It is therefore important to test whether a unique locally stable
equilibrium is globally stable. In other words if for any initial conditions the
trajectories will converge toward this equilibrium.

The standard method to prove that an equilibrium is globally stable relies
on the Lyapunov [28] approach. However it is often difficult to find a Lya-
punov function for a biological system. One can refer to [29] for constructive
methods to find Lyapunov functions in a large class of growth models.

7.2.4 Asymptotic behaviour

We have seen in paragraph 6.2.1 that in the general case where n > k, there
exists n — k vectors v; in the kernel of K. These vectors allow to compute
the quantities w; = vf¢ whose dynamics satisfies equation (35).

Moreover, there are often ¢ vectors v?

1

v'Q(¢) =0 (43)

The dynamics of the associated w{ is then very simple:

among the v; which verify:

dw?
dt

In the conditions that we consider (i.e. constant D and &;;,), the solutions
0

of system (42) will converge towards the hyperplane v?¢ = 0.

= D(w;n — w)) (44)

of (44) asymptotically converge towards w;;,,. This means that the solutions

The state of the system will then asymptotically converge toward the
vectorial subspace of dimension n — ¢, which is orthogonal to the g vectors
vY. This allows to simplify the study of the n dimensional system (42) into
a n — q dimensional system.

7.2.5 Example 4 (continued)

Let us consider the model of fungal growth (equation 37). We will moreover
assume that the kinetics has been represented by a Monod law with respect
to the 2 substrates C' and N:

() ©__nN

= X
Nma:vKC_l_CKN_l_N

(45)
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The two vectors v and vo identified in paragraph (6.2.2) verify straightfor-
wardly equation (43).
Therefore when t — 400, X + % — Nklln and X + % — (’;32"
The study of the 3 dimensional system is then simplified into the study

of the following system in dimension 1:

X Cin — ko X Nip — k1 X

dt  Fmer K G — ko X Ky + Ny — ki X (46)

One will verify that this system has three real equilibrium points (one of
them being the trivial equilibrium X = 0). These equilibria, in increasing
order, are respectively locally stable, unstable and locally unstable. With
respect to the parameters values, the equilibria will be positive (and therefore
admissible) or not. For the parametric domains where there exists a single
positive equilibrium, this equilibrium is globally stable.

8 Conclusion

We have presented a constructive and systematic method to develop bio-
process models in 4 steps. Let us recall that the modelling of a bioprocess
must be performed in the framework of a clearly identified objective. The
modelling must correspond to the quality and the quantity of the available
information so that the model can be correctly validated and identified.

The first modelling steps consists in gathering the physical and chemical
principles that can apply to the system and to assume a reaction scheme in
order to obtain the mass balance model.

In a second step, one must take benefit of the constraints that the model
must verify and use the empirical relationships to find an analytical expres-
sion for the reaction kinetics.

The third step consists in identify the model parameters by separating
those who are related to the mass balances (yield coefficients), those who
are related with the used physical principles (affinity constants, transfer
constants, etc.) and those who intervene in the reaction rates.

Finally, the ultimate modelling step must not be neglected: namely the
model validation. During this last step the model quality must be tested
using the more objective as possible criteria. The validity of the model must
be assessed along its ability to properly represent the mass balance, to repro-
duce correctly the qualitative features of the data, and to fit quantitatively
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the data. The important point is that the data which must be used for
model validation must not have been already used in the model construction
phase. During the validation step, not only the quality of the model will
be assessed, but also its validity domains: the working domains (in terms of
state variable and inputs) where the model is satisfactory.

To conclude, we insist on the fact that the modelling step can be very
long and expensive, but the quality of a model is a necessary conditions to
ensure that a controller or an observer based on it will properly work.

Appendix A .Theoretical determination of the dimension of K

Let us integrate equation (7) between 2 time instants ¢ and ¢ 4+ 7"

T t+T
EE+T) =60 = [ D(en(r) = €N +QEMNr = K [ r(emar,

(47)
Let us denote:
t+T
vt) =+ T) &) = | Din(7) —&(7))) + QUE(r))dr
and T
wt)= [ (e
Equation (47) can then be rephrased:
o(t) = Kw(t) (48)

The vector v(t) can be estimated along time on the basis of the available
measurements. The integral value can be estimated e.g. with a trapeze
approximation.

To avoid conditioning problem and to give the same weighting to all the
state variables, we normalise the data vectors u(t;) as follows:

. v(t:) — e(v)
B(ty) = 222
( Z) \/NO’(’U)
where e(v) is the average value of v(;), and o(v) their standard deviation.

Now the question of the dimension of matrix K can be formulated as
follows: what is the dimension of the image of K, in other words, what is
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the dimension of the space where u(t) lives. Note that we are looking for
a full rank matrix K. Otherwise, it would mean that the same dynamical
behaviour could be obtained with a matrix K of lower dimension.

Determining the dimension of the v(t) space is a classical problem in
statistical analysis. It corresponds to the principal component analysis that
determines the dimension of the vectorial space spanned by the vectors k;,
rows of K. To reach this objective, we consider matrix U obtained from a
set of N recording of v(t):

V= (0(t1), ..., 2(tn))

We will also consider the associated matrix of reaction rates, which is
unknown:

W = (w(t1), ..., w(tn))

We assume that matrix W is of full rank. This means first that there are
more measurements than reactions. It means also that the reactions are in-
dependent (none of the reaction rates can be written as a linear combination
of the other ones).

Property 5 For a matric K of rank k, if W has full rank, then the n x
n matriz M = VVT = KWWTKT has rank k. Since it it is a positive
symmetric matriz, it can be written, by:

M = PP

where P is an orthogonal matriz (PTP =1) and

g1 0
0 a9 0
Z: Jk
0
0 0

with 0,1 > 0; > 0 fori € {2,...,k}.
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Proof: it is direct application of the singular decomposition theorem [30].
Since rank (M) = rank (3) = k, it provides the result.

Now from a theoretical point of view it is possible to determine the
number of reactions in the reaction scheme: it corresponds to the rank of K
or, in other words, to the number of non zero singular values of VV7.

In the reality, the noises due to model approximations, measurement
errors or interpolation perturb the analysis. Therefore in practice there are
no zero eigenvalues for the matrix M = VIV

The question is then to determine the number of eigenvectors that must
be taken into account in order to represent a reasonable approximation of
the data v(t). To solve this problem, let us remark that the eigenvalues o; of
M correspond to the variance associated with the corresponding eigenvector
(inertia axis).

The method will then consist in selecting the p first principal axis which
represent a total variance larger than a fixed threshold.
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