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a b s t r a c t

A great variety of systems in nature, society and technology – from the web of sexual
contacts to the Internet, from the nervous system to power grids – can be modeled as
graphs of vertices coupled by edges. The network structure, describing how the graph is
wired, helps us understand, predict and optimize the behavior of dynamical systems. In
many cases, however, the edges are not continuously active. As an example, in networks
of communication via e-mail, text messages, or phone calls, edges represent sequences
of instantaneous or practically instantaneous contacts. In some cases, edges are active for
non-negligible periods of time: e.g., the proximity patterns of inpatients at hospitals can
be represented by a graph where an edge between two individuals is on throughout the
time they are at the same ward. Like network topology, the temporal structure of edge
activations can affect dynamics of systems interacting through the network, from disease
contagion on the network of patients to information diffusion over an e-mail network. In
this review, we present the emergent field of temporal networks, and discuss methods
for analyzing topological and temporal structure and models for elucidating their relation
to the behavior of dynamical systems. In the light of traditional network theory, one can
see this framework as moving the information of when things happen from the dynamical
system on the network, to the network itself. Since fundamental properties, such as the
transitivity of edges, do not necessarily hold in temporal networks, many of thesemethods
need to be quite different from those for static networks. The study of temporal networks is
very interdisciplinary in nature. Reflecting this, even the object of study has many names—
temporal graphs, evolving graphs, time-varying graphs, time-aggregated graphs, time-
stamped graphs, dynamic networks, dynamic graphs, dynamical graphs, and so on. This
review covers different fields where temporal graphs are considered, but does not attempt
to unify related terminology—rather, we want to make papers readable across disciplines.

© 2012 Elsevier B.V. All rights reserved.
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Complex networks describe a wide range of systems in nature and society. Frequently cited examples
include the cell, a network of chemicals linked by chemical reactions, and the Internet, a network of
routers and computers connected by physical links. While traditionally these systems have been
modeled as random graphs, it is increasingly recognized that the topology and evolution of real
networks are governed by robust organizing principles. This article reviews the recent advances in the
field of complex networks, focusing on the statistical mechanics of network topology and dynamics.
After reviewing the empirical data that motivated the recent interest in networks, the authors discuss
the main models and analytical tools, covering random graphs, small-world and scale-free networks,
the emerging theory of evolving networks, and the interplay between topology and the network’s
robustness against failures and attacks.
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Abstract. Inspired by empirical studies of networked systems such as the Internet, social networks,
and biological networks, researchers have in recent years developed a variety of techniques
and models to help us understand or predict the behavior of these systems. Here we
review developments in this field, including such concepts as the small-world effect, degree
distributions, clustering, network correlations, random graph models, models of network
growth and preferential attachment, and dynamical processes taking place on networks.
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Brief introduction to 
complex networks





Complex Systems

• Self-organised!

• Evolving!

• Adaptive!

!

• No central 
organising mind!

• No conventional 
way of description



Complex Systems: how to approach

Statistical description!
• Systems with random features!
• One sample does not 

characterise the typical 
behaviour!

• Statistical averages of quantities!
!

Analytical approach!
• Write down (coupled) differential 

equations for interactions!
• Attempt to solve!
• Usually no closed-form 

solutions; numerical solutions, 
phase space analysis, etc!

Empirical data analysis!
• How to detect patterns and 

structure in information?!
• How to characterize the system 

instead of its building blocks?!
• Multivariate methods etc!
!
Simulations!
• Postulate rules (e.g. the ant 

raids)!
• Simulate and observe system 

behaviour!
• Try to match empirical 

observations

OR



Complex Networks

…a way of mapping complexity!
!
Each complex system can be interpreted as a complex 
network, which identifies the interactions between the 
interconnected components

The network approach!
• Combines the elements of all the other approach!
• Disregards (unnecessary) details of the system!
• Focuses on the structure of interactions!
• Statistical characterisation of system



The network approach

1. Measuring - make observations on Nature!
2. Modelling -  attempt to explain observations:!

2.1.  Choose the right level of coarse-graining!
• Units:  Vertices or nodes ⇔ interacting elements!

• Edges or links ⇔ interactions!
2.2. Strip the problem to its simplest form!

• Interaction structure ⇔ evolution and behaviour of system!

2.3. Formulate the problem in mathematical terms!
• Statistical analysis of network structure!
• Dynamics of processes taking place on networks!

3. Validating - check if calculations or simulations can!
• reproduce the observations!
• explain the observations!

4. Go back to 1. & 2. and rethink



Complex systems as networks

Networks are interpreted as graphs!
!

G=(V, E) 
!

• Components ⇔ vertices v ∈ V!

• Interactions between components ⇔ 
edges (u,v) ∈ E 

• Identification of vertices and edges 
defines the type of the actual 
network

Vertex Edge

person friendship

neuron synapse

WWW hyperlink

company ownership

gene regulation



Undirected networks

 G=(V, E) 
 (u,v) ∈ E ≡ (v,u) ∈ E 
!

• The directions of edges do 
not matter!

• Interactions are possible 
between connected entities 
in both directions

The Internet: Nodes - routers, Links - physical wires

Opte project



Directed networks

 G=(V, E) 
 (u,v) ∈ E ≢ (v,u) ∈ E 

!

• The directions of 
edges matter!

• Interactions are 
possible between 
connected entities 
only in specified 
directions

Citation network: Nodes - publications, Links - references

Moritz Stefaner, eigenfactor.com

http://eigenfactor.com


Weighted networks

 G=(V, E, w) 
 w: (u,v) ⇒ R 
!

• Strength of 
interactions are 
assigned by the 
weight of links

Social interaction network: Nodes - individuals!
                         Links - social interactions

Onnela et.al. New Journal of Physics 9, 179 (2007).



Bipartite network

 G=(U, V, E) 
U ∩ V = ∅ 
∀(u,v) ∈ E, u ∈ U and v ∈ V

Gene-desease network:!
          Nodes - Desease (7)&Genes (747)!
          Links - gene-desease relationship

Bhavnani et.al. BMC Bioinformatics 2009, 10(Suppl 9):S3



Planar networks
Viana et.al. Nature Scientific Reports 3:3495 (2013)

 G=(V, E, loc) 
loc: v ⇒ (x,y) 
• Nodes can be 

embedded in a plane!
• Geo-localised 

networks!
• Spatial networks

Street networks:!
          Nodes - junctions, Links - streets



Multiplex and multilayer networks

 G=(V, Ei), i=1…M 
• Nodes can be present in 

multiple networks 
simultaneously !

• These networks are 
connected (can influence 
each other) via the 
common nodes

Gomes et.al. Phys. Rev. Lett. 110, 028701 (2013)

M=2

Karsai et.al. (submitted)

Skype adoption network!
          Nodes - users, Links - social ties, !
          Colours - service adoption/termination



Temporal and evolving networks
 G=(V, Et), (u,v,t,d) ∈ Et 
          t - time of interaction (u,v) 
   d - duration of interaction (u,v,t) 
!
!
   
  G=(Vt’, Et’) 
      v(t) ∈ Vt’  
      (u,v,t) ∈ Et’

Mobile communication network!
     Nodes - individuals!
     Links - calls and SMS

Mikko Kivela

• Temporal links encode time varying interactions

• Dynamical nodes and 
links  encode the 
evolution of the 
network!

• Usually t<<t’



WHY!
and!

WHY!
NOW?



Why?

• A common framework applicable to many systems!
• Different systems can be studied with same methods!
• A “birds-eye” view on the system!

!
MANY NETWORKS SHARE SIMILAR CHARACTERISTICS!

!

• Similar processes shape the networks!
!
WE WILL NEVER UNDERSTAND COMPLEX SYSTEMS 
UNLESS WE MAP OUT AND UNDERSTAND THE 
NETWORKS BEHIND THEM AL Barabási



Why now?

Slide from CCNR Complex Networks Course!
A. L. Barabási 2012



Why now?

Slide from CCNR Complex Networks Course!
A. L. Barabási 2012



Why now?

• Data availability - the Big Data Revolution!

• Universality - similar features of very similar systems!

• Urgent need to understand complexity!
• Economic impact!
• Drug design, metabolic engineering!
• Human decease network!
• Fighting, terrorism and military!
• Epidemic forecast!
• Brain research

Slide from CCNR Complex Networks Course!
A. L. Barabási 2012



Characteristics:!
The node degree



Node degree

ki = Ai1 + Ai2 + ... + AiN = Σj Aij

Number of connections 
of a node

2

3

2

3

1

1

1

• Directed network

• Undirected network

In degree

Out degree

kin,i = Σj Aji

kout,i = Σj Aij

1

0

0

1

1

2

3

2

1

00

3
1

1



Degree-distribution

In summary the key difference between a random and a scale-free 
network comes in the different shape of the Poisson and of the power-law 
function: in a random network most nodes have comparable degrees and 
hence hubs are forbidden. Hubs are not only tolerated, but are expected in 
scale-free networks Fig. 4.5.

The more nodes a scale-free network has, the larger are its hubs. The 
hubs grow polynomially with the network size, hence their size can be con-
siderable in large networks. In contrast in a random network the size of the 
largest node grows logarithmically or slower with N, implying that hubs 
will be tiny even in a very large network.

THE SCALE FREE PROPERTY HUBS11

Left column: the degrees of a random network 
follow a Poisson distribution, which is rather 
similar to the Bell curve shown in the figure. 
This indicates that most nodes have compara-
ble degree. Hence nodes with a large number 
of links are absent (top panel). Consequently 
a random network looks a bit like a national 
highway network in which nodes are cities 
and links are the major highways connecting 
them (bottom panel). Indeed, there are no ma-
jor cities with hundreds of highways and no 
city is disconnected from the highway system. 

Right column: In a network with a power-law 
degree distribution most nodes have only a 
few links. These numerous small nodes are 
held together by a few highly connected hubs 
(top panel). Consequently a scale-free net-
work looks a bit like the air-traffic network, 
whose nodes are airports and links are direct 
flights between them. Most airports are tiny, 
with only a few flights linking them to other 
airports. Yet, we can also have few very large 
airports, like Chicago or Atlanta, that hold 
hundreds of airports together, acting as major 
hubs (bottom panel). 

Once hubs are present, they change the way 
we navigate the network. For example, if we 
travel from Boston to Los Angeles by car, we 
must drive through many cities (nodes). On 
the airplane network, however, we can reach 
most destinations via a single hub, like Chica-
go.

After [4].

Figure 4.6
Random versus scale-free networks
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whose nodes are airports and links are direct 
flights between them. Most airports are tiny, 
with only a few flights linking them to other 
airports. Yet, we can also have few very large 
airports, like Chicago or Atlanta, that hold 
hundreds of airports together, acting as major 
hubs (bottom panel). 

Once hubs are present, they change the way 
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must drive through many cities (nodes). On 
the airplane network, however, we can reach 
most destinations via a single hub, like Chica-
go.
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Figure 4.6
Random versus scale-free networks

• Quasy-regular structures!
• Random graphs!
• Erdős-Rényi model

• Most of real networks!
• Scale-free networks!
• Barabási-Albert model



Random Graphs
Erdős-Rényi model: simple way to generate random graphs

Definition

Erdős-Rényi (ER) random network is a simple random graph.
There are two slightly different definitions, G(n, m) and G(n, p):

G(n,m)

I Take an empty graph with n
nodes.

I Add m edges uniformly at
random.

. . . or alternatively:

I Pick uniformly at random a
graph from the set of all
graphs with n nodes and m
edges.

G(n, p)

I Take an empty graph with n
nodes.

I Add an edge between any
pair of nodes independently
with probability p.

. . . or alternatively:

I Pick with probability
pm(1 � p)

(

n
2)�m a network

from the set of all networks
with n nodes.

• The G(n,p) definition!
1. Take n disconnected nodes!
2. Add an edge between any of the 

nodes independently with 
probability p!

Alternatively:!
• pick with probability                                

a network from the set of all 
networks with size n

Random-graph theory studies the properties of the
probability space associated with graphs with N nodes as
N→! . Many properties of such random graphs can be
determined using probabilistic arguments. In this respect
Erdős and Rényi used the definition that almost every
graph has a property Q if the probability of having Q
approaches 1 as N→! . Among the questions addressed
by Erdős and Rényi, some have direct relevance to an
understanding of complex networks as well, such as: Is a
typical graph connected? Does it contain a triangle of
connected nodes? How does its diameter depend on its
size?

In the mathematical literature the construction of a
random graph is often called an evolution: starting with
a set of N isolated vertices, the graph develops by the
successive addition of random edges. The graphs ob-
tained at different stages of this process correspond to
larger and larger connection probabilities p , eventually
obtaining a fully connected graph [having the maximum
number of edges n!N(N"1)/2] for p→1. The main
goal of random-graph theory is to determine at what
connection probability p a particular property of a graph
will most likely arise. The greatest discovery of Erdős
and Rényi was that many important properties of ran-
dom graphs appear quite suddenly. That is, at a given
probability either almost every graph has some property
Q (e.g., every pair of nodes is connected by a path of
consecutive edges) or, conversely, almost no graph has it.
The transition from a property’s being very unlikely to
its being very likely is usually swift. For many such prop-
erties there is a critical probability pc(N). If p(N)
grows more slowly than pc(N) as N→! , then almost
every graph with connection probability p(N) fails to
have Q . If p(N) grows somewhat faster than pc(N),
then almost every graph has the property Q . Thus the

probability that a graph with N nodes and connection
probability p!p(N) has property Q satisfies

lim
N→!

PN ,p"Q #!! 0 if
p"N #

pc"N #
→0

1 if
p"N #

pc"N #
→! .

(4)

An important note is in order here. Physicists trained
in critical phenomena will recognize in pc(N) the critical
probability familiar in percolation. In the physics litera-
ture the system is usually viewed at a fixed system size N
and then the different regimes in Eq. (4) reduce to the
question of whether p is smaller or larger than pc . The
proper value of pc , that is, the limit pc!pc(N→!), is
obtained by finite size scaling. The basis of this proce-
dure is the assumption that this limit exists, reflecting
the fact that ultimately the percolation threshold is inde-
pendent of the system size. This is usually the case in
finite-dimensional systems, which include most physical
systems of interest for percolation theory and critical
phenomena. In contrast, networks are by definition infi-
nite dimensional: the number of neighbors a node can
have increases with the system size. Consequently in
random-graph theory the occupation probability is de-
fined as a function of the system size: p represents the
fraction of the edges that are present from the possible
N(N"1)/2. Larger graphs with the same p will contain
more edges, and consequently properties like the ap-
pearance of cycles could occur for smaller p in large
graphs than in smaller ones. This means that for many
properties Q in random graphs there is no unique,
N-independent threshold, but we have to define a
threshold function that depends on the system size, and
pc(N→!)→0. However, we shall see that the average
degree of the graph

$k%!2n/N!p"N"1 #"pN (5)

does have a critical value that is independent of the sys-
tem size. In the coming subsection we illustrate these
ideas by looking at the emergence of various subgraphs
in random graphs.

B. Subgraphs

The first property of random graphs to be studied by
Erdős and Rényi (1959) was the appearance of sub-
graphs. A graph G1 consisting of a set P1 of nodes and a
set E1 of edges is a subgraph of a graph G!&P ,E' if all
nodes in P1 are also nodes of P and all edges in E1 are
also edges of E . The simplest examples of subgraphs are
cycles, trees, and complete subgraphs (see Fig. 5). A
cycle of order k is a closed loop of k edges such that
every two consecutive edges and only those have a com-
mon node. That is, graphically a triangle is a cycle of
order 3, while a rectangle is a cycle of order 4. The av-
erage degree of a cycle is equal to 2, since every node
has two edges. The opposite of cycles are the trees,
which cannot form closed loops. More precisely, a graph
is a tree of order k if it has k nodes and k"1 edges,

FIG. 5. Illustration of the graph evolution process for the
Erdős-Rényi model. We start with N!10 isolated nodes (up-
per panel), then connect every pair of nodes with probability
p . The lower panel of the figure shows two different stages in
the graph’s development, corresponding to p!0.1 and p
!0.15. We can notice the emergence of trees (a tree of order 3,
drawn with long-dashed lines) and cycles (a cycle of order 3,
drawn with short-dashed lines) in the graph, and a connected
cluster that unites half of the nodes at p!0.15!1.5/N .
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Random-graph theory studies the properties of the
probability space associated with graphs with N nodes as
N→! . Many properties of such random graphs can be
determined using probabilistic arguments. In this respect
Erdős and Rényi used the definition that almost every
graph has a property Q if the probability of having Q
approaches 1 as N→! . Among the questions addressed
by Erdős and Rényi, some have direct relevance to an
understanding of complex networks as well, such as: Is a
typical graph connected? Does it contain a triangle of
connected nodes? How does its diameter depend on its
size?

In the mathematical literature the construction of a
random graph is often called an evolution: starting with
a set of N isolated vertices, the graph develops by the
successive addition of random edges. The graphs ob-
tained at different stages of this process correspond to
larger and larger connection probabilities p , eventually
obtaining a fully connected graph [having the maximum
number of edges n!N(N"1)/2] for p→1. The main
goal of random-graph theory is to determine at what
connection probability p a particular property of a graph
will most likely arise. The greatest discovery of Erdős
and Rényi was that many important properties of ran-
dom graphs appear quite suddenly. That is, at a given
probability either almost every graph has some property
Q (e.g., every pair of nodes is connected by a path of
consecutive edges) or, conversely, almost no graph has it.
The transition from a property’s being very unlikely to
its being very likely is usually swift. For many such prop-
erties there is a critical probability pc(N). If p(N)
grows more slowly than pc(N) as N→! , then almost
every graph with connection probability p(N) fails to
have Q . If p(N) grows somewhat faster than pc(N),
then almost every graph has the property Q . Thus the

probability that a graph with N nodes and connection
probability p!p(N) has property Q satisfies

lim
N→!

PN ,p"Q #!! 0 if
p"N #

pc"N #
→0

1 if
p"N #

pc"N #
→! .

(4)

An important note is in order here. Physicists trained
in critical phenomena will recognize in pc(N) the critical
probability familiar in percolation. In the physics litera-
ture the system is usually viewed at a fixed system size N
and then the different regimes in Eq. (4) reduce to the
question of whether p is smaller or larger than pc . The
proper value of pc , that is, the limit pc!pc(N→!), is
obtained by finite size scaling. The basis of this proce-
dure is the assumption that this limit exists, reflecting
the fact that ultimately the percolation threshold is inde-
pendent of the system size. This is usually the case in
finite-dimensional systems, which include most physical
systems of interest for percolation theory and critical
phenomena. In contrast, networks are by definition infi-
nite dimensional: the number of neighbors a node can
have increases with the system size. Consequently in
random-graph theory the occupation probability is de-
fined as a function of the system size: p represents the
fraction of the edges that are present from the possible
N(N"1)/2. Larger graphs with the same p will contain
more edges, and consequently properties like the ap-
pearance of cycles could occur for smaller p in large
graphs than in smaller ones. This means that for many
properties Q in random graphs there is no unique,
N-independent threshold, but we have to define a
threshold function that depends on the system size, and
pc(N→!)→0. However, we shall see that the average
degree of the graph

$k%!2n/N!p"N"1 #"pN (5)

does have a critical value that is independent of the sys-
tem size. In the coming subsection we illustrate these
ideas by looking at the emergence of various subgraphs
in random graphs.

B. Subgraphs

The first property of random graphs to be studied by
Erdős and Rényi (1959) was the appearance of sub-
graphs. A graph G1 consisting of a set P1 of nodes and a
set E1 of edges is a subgraph of a graph G!&P ,E' if all
nodes in P1 are also nodes of P and all edges in E1 are
also edges of E . The simplest examples of subgraphs are
cycles, trees, and complete subgraphs (see Fig. 5). A
cycle of order k is a closed loop of k edges such that
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mon node. That is, graphically a triangle is a cycle of
order 3, while a rectangle is a cycle of order 4. The av-
erage degree of a cycle is equal to 2, since every node
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which cannot form closed loops. More precisely, a graph
is a tree of order k if it has k nodes and k"1 edges,
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the graph’s development, corresponding to p!0.1 and p
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Erdős and Rényi (1959) was the appearance of sub-
graphs. A graph G1 consisting of a set P1 of nodes and a
set E1 of edges is a subgraph of a graph G!&P ,E' if all
nodes in P1 are also nodes of P and all edges in E1 are
also edges of E . The simplest examples of subgraphs are
cycles, trees, and complete subgraphs (see Fig. 5). A
cycle of order k is a closed loop of k edges such that
every two consecutive edges and only those have a com-
mon node. That is, graphically a triangle is a cycle of
order 3, while a rectangle is a cycle of order 4. The av-
erage degree of a cycle is equal to 2, since every node
has two edges. The opposite of cycles are the trees,
which cannot form closed loops. More precisely, a graph
is a tree of order k if it has k nodes and k"1 edges,

FIG. 5. Illustration of the graph evolution process for the
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Poisson distribution

Degree distribution

Image 3.4a
Anatomy of a binomial and a Poisson degree distribution.

The exact form of the degree distribution of a random network is the 
binomial distribution (left). For N  » ‹k›, the binomial can be well approx-
imated by a Poisson distribution (right). As both distributions describe 
the same quantity, they have the same properties, which are expressed in 
terms of different parameters: the binomial distribution uses p and N as 
its fundamental parameters, while the Poisson distribution has only one 
parameter, ‹k›.

Image 3.4b
Degree distribution is independent of the network size.

The degree distribution of a random network with average degree ‹k› = 50 
and sizes N = 102 , 103 , 104. For N = 102 the degree distribution deviates 
significantly from the Poisson prediction (8), as the condition for the 
Poisson approximation, N » ‹k›, is not satisfied. Hence for small networks 
one needs to use the exact binomial form of Eq. (7) (dotted line). For N = 
103 and larger networks the degree distribution becomes indistinguishable 
from the Poisson prediction, (8), shown as a continuous line, illustrating 
that for large N the degree distribution is independent of the network size. 
In the figure we averaged over 1,000 independently generated random 
networks to decrease the noise in the degree distribution.
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Scale-free networks - first observations
Networks of scientific papers Derek J. de Solla Price, Science (1965)!
• Nodes: scientific papers, Links: citations between them!
• Number of citations to scientific papers shows a heavy-tailed distribution!
• It can be characterised as a Pareto distribution or power-law distribution

!

Structure of the WWW!
• Nodes: WWW documents, Links: URL links!
• More than 3 billions of documents!
• Collection by a robot which explores all URL links in a document (web site) and 

follow them recursively!
• They found a heavy-tailed degree distribution which could be well approximated 

with a power-law function!
!

• It is a scale-free network

P (k) ⇠ k��

R. Albert, H. Jeong, A-L Barabási, Nature (1999)!
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ki!1 outgoing (or incoming) links is less
than NPout(ki!1) (or NPin(ki!1)).

A particularly important quantity in a
search process is the shortest path between
two documents, d, defined as the smallest
number of URL links that must be followed
to navigate from one document to the
other. We find that the average of d over all
pairs of vertices is "d#$0.35!2.06log(N)
(Fig. 1c), indicating that the web forms a
small-world network5,7, which characterizes
social or biological systems. For N$8%108,
"dweb#$18.59; that is, two randomly chosen
documents on the web are on average 19
clicks away from each other.

For a given N, d follows a gaussian distri-
bution so "d# can be interpreted as the diam-
eter of the web, a measure of the shortest
distance between any two points in the sys-
tem. Despite its huge size, our results indi-
cate that the web is a highly connected graph
with an average diameter of only 19 links.
The logarithmic dependence of "d# on N is
important to the future potential of the web:
we find that the expected 1,000% increase in
the size of the web over the next few years
will change "d# very little, from 19 to only 21.

The relatively small value of "d# indicates
that an intelligent agent, who can interpret
the links and follow only the relevant one,
can find the desired information quickly by
navigating the web. But this is not the case
for a robot that locates the information
based on matching strings. We find that
such a robot, aiming to identify a docu-
ment at distance "d#, needs to search
M("d#)&0.53×N 0.92 documents, which,
with N$8%108, leads to M$8%107, or
10% of the whole web. This indicates that
robots cannot benefit from the highly con-
nected nature of the web, their only success-
ful strategy being to index as much of the
web as possible.

The scale-free nature of the link distrib-
utions indicates that collective phenomena
play a previously unsuspected role in the
development of the web8, forcing us to look
beyond the traditional random graph mod-
els3–5,7. A better understanding of the web’s
topology, aided by modelling efforts, is cru-
cial in developing search algorithms or
designing strategies for making information
widely accessible on the World-Wide Web.
Fortunately, the surprisingly small diameter
of the web means that all that information
is just a few clicks away.
Réka Albert, Hawoong Jeong, 
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incoming links, the probability of finding
very popular addresses, to which a large
number of other documents point, is non-
negligible, an indication of the flocking
nature of the web. Furthermore, while the
owner of each web page has complete free-
dom in choosing the number of links on a
document and the addresses to which they
point, the overall system obeys scaling laws
characteristic only of highly interactive self-
organized systems and critical phenomena6.

To investigate the connectivity and the
large-scale topological properties of the
web, we constructed a directed random
graph consisting of N vertices, assigning to
each vertex k outgoing (or incoming) links,
such that k is drawn from the power-law
distribution of Fig. 1a,b. To achieve this, we
randomly selected a vertex i and increased
its outgoing (or incoming) connectivity to
ki!1 if the total number of vertices with

Internet

Diameter of the 
World-Wide Web
Despite its increasing role in communica-
tion, the World-Wide Web remains uncon-
trolled: any individual or institution can
create a website with any number of docu-
ments and links. This unregulated growth
leads to a huge and complex web, which
becomes a large directed graph whose ver-
tices are documents and whose edges are
links (URLs) that point from one docu-
ment to another. The topology of this
graph determines the web’s connectivity
and consequently how effectively we can
locate information on it. But its enormous
size (estimated to be at least 8%108 docu-
ments1) and the continual changing of docu-
ments and links make it impossible to
catalogue all the vertices and edges.

The extent of the challenge in obtaining
a complete topological map of the web is
illustrated by the limitations of the com-
mercial search engines: Northern Light, the
search engine with the largest coverage, is
estimated to index only 38% of the web1.
Although much work has been done to
map and characterize the Internet’s infra-
structure2, little is known about what really
matters in the search for information —
the topology of the web. Here we take a step
towards filling this gap: we have used local
connectivity measurements to construct a
topological model of the World-Wide Web,
which has enabled us to explore and char-
acterize its large-scale properties.

To determine the local connectivity of
the web, we constructed a robot that adds to
its database all URLs found on a document
and recursively follows these to retrieve the
related documents and URLs. We used the
data collected to determine the probabilities
Pout(k) and Pin(k) that a document has k
outgoing and incoming links, respectively.
We find that both Pout(k) and Pin(k) follow a
power law over several orders of magnitude,
remarkably different not only from the
Poisson distribution predicted by the classi-
cal theory of random graphs3,4, but also
from the bounded distribution found in
models of random networks5.

The power-law tail indicates that the
probability of finding documents with a
large number of links is significant, as the
network connectivity is dominated by
highly connected web pages. Similarly, for
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Figure 1 Distribution of links on the World-Wide Web. a, Outgoing

links (URLs found on an HTML document); b, incoming links (URLs

pointing to a certain HTML document). Data were obtained from

the complete map of the nd.edu domain, which contains 325,729

documents and 1,469,680 links. Dotted lines represent analytical

fits used as input distributions in constructing the topological

model of the web; the tail of the distributions follows P(k)&k'(,

with (out$2.45 and (in$2.1. c, Average of the shortest path

between two documents as a function of system size, as predicted

by the model. To check the validity of our predictions, we deter-

mined d for documents in the domain nd.edu. The measured

"dnd.edu#$11.2 agrees well with the prediction "d3%105#$11.6

obtained from our model. To show that the power-law tail of P(k) is

a universal feature of the web, the inset shows Pout(k) obtained by

starting from whitehouse.gov (squares), yahoo.com (triangles) and

snu.ac.kr (inverted triangles). The slope of the dashed line is

(out$2.45, as obtained from nd.edu in a.

R. Albert, H. Jeong, A-L Barabási, Nature (1999)!

THE SCALE-FREE PROPERTY INTRODUCTION4

A visualization of the web sample that led to 
the discovery of the scale-free property. The 
sequence of images shows an increasingly 
magnified local region of the network. The 
first panel displays all 325,725 nodes, offer-
ing a global view of the full dataset. Nodes 
with more than 50 links are shown in red and 
nodes with more than 500 links in purple. The 
increasingly magnified closeups reveal the 
presence of a few highly connected nodes, 
called hubs, that accompany scale-free net-
works (Image by M. Martino).

Figure 4.1
The topology of the WWW

In contrast in Fig. 4.1 numerous small-degree nodes coexist with a few 
hubs, nodes with an exceptionally large number of links. The purpose of 
this chapter is to show that these hubs are not unique to the Web, but we 
encounter them in many real networks. They represent a signature of a 
deeper organizing principle that we call the scale-free property.

AL Barabási, Network Science Book (2013)



Scale-free networks - other examples
The internet

• Nodes: routers!
• Links: Physical wires
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Faloutsos, Faloutsos and Faloutsos (1999)!



Scale-free networks - other examples
Airline route map network

• Nodes: airports!
• Links: airplane connections

Guimera et.al. (2004)!

where ! ! 0.9 " 0.1 is the power law exponent, g(u) is a
truncation function, and b# is a crossover value that depends on
the size of the network.

A question prompted by the previous results regarding the
degree and the centrality of cities is: ‘‘Are the most connected cities
also the most central?’’ To answer this question, we analyzed first the
network obtained by randomizing the worldwide air transportation
network (Fig. 1b). We found that the distribution of betweennesses
still decays as a power law but, in this case, with a much larger
exponent value, ! ! 1.5 " 0.1. This finding indicates the existence
of anomalously large betweenness centralities in the air transpor-
tation network.

For the randomized network, the degree of a node and its
betweenness centrality are strongly correlated; i.e., highly con-
nected nodes are also the most central (Fig. 2a). In contrast, for the
worldwide air transportation network, it turns out that there are
cities that are not hubs, i.e., have small degrees but that nonetheless
have very large betweennesses (Fig. 2a).

To better illustrate this finding, we plotted the 25 most connected
cities and contrasted such a plot with another of the 25 most central
cities according to their betweenness (Fig. 2 b and c). Although the
most connected cities are located mostly in Western Europe and
North America, the most central cities are distributed uniformly
across all of the continents. Significantly, each continent has at least

one central city, which is typically highly connected when compared
with other cities in the continent, i.e., Johannesburg in Africa or
Buenos Aires and São Paulo, Brazil, in South America. Interest-
ingly, besides these cities with relatively large degree, there are
others, such as Anchorage (AK) and Port Moresby (Papua New
Guinea), that, despite having small degrees, are among the most
central in the network (Table 2).

Degree-Betweenness Anomalies and Multicommunity
Networks
Nodes with small degree and large centrality can be regarded as
anomalies. Other complex networks that have been described in the

Fig. 1. Degree and betweenness distributions of the worldwide air transpor-
tationnetwork. (a)Cumulativedegreedistributionplotted indouble-logarithmic
scale. The degree k is scaled by the average degree z of the network. The
distribution displays a truncated power-law behavior with exponent " ! 1.0 "
0.1. (b) Cumulative distribution of normalized betweennesses plotted in double-
logarithmic scale. The distribution displays a truncated power-law behavior with
exponent ! ! 0.9 " 0.1. For a randomized network with exactly the same degree
distribution as the original air transportation network, the betweenness distri-
bution decays with an exponent ! ! 1.5 " 0.1. A comparison of the two cases
clearly shows the existence of an excessive number of large betweenness values
in the air transportation network. Fig. 2. Most-connected versus most-central cities in the worldwide air

transportation network. (a) Betweenness as a function of the degree for the
cities in the worldwide air transportation network (circles). For the random-
ized network, the betweenness is well described as a quadratic function of the
degree (dashed line) with 95% of all data falling inside the gray region. In
contrast to the strong correlation between degree and betweenness found
for randomized networks, the air transportation network comprises many
cities that are highly connected but have small betweenness and, conversely,
many cities with small degree and large betweenness. We define a blue region
containing the 25 most central cities in the world and a yellow region con-
taining the 25 most connected cities. Surprisingly, we find there are only a few
cities with large betweenness and degree (green region, which is the inter-
section of the blue and yellow regions). (b) The 25 most connected cities in the
world. (c) The 25 most central cities in the world.

7796 ! www.pnas.org"cgi"doi"10.1073"pnas.0407994102 Guimerà et al.



Scale-free networks - other examples
Scientific collaborations

• Nodes: scientists (here geo-localised)!
• Links: common papers

Newman (2001)!

how small it is. The hundreds strong megacollaborations of
CERN and Fermilab are sufficiently diluted by theoretical
and smaller experimental groups that the number is only 9,
and not 100.!
Distributions of numbers of authors per paper are shown

in Fig. 2, and appear to have power-law tails with widely
varying exponents of !6.2(3) "Medline!, !3.34(5) "Los
Alamos Archive!, !4.6(1) "NCSTRL!, and !2.18(7)
"SPIRES!. The SPIRES data, which are again shown in a
separate inset, also display a pronounced peak in the distri-
bution around 200–500 authors. This peak presumably cor-
responds to the large experimental collaborations that domi-
nate the upper end of this histogram.
The largest number of authors on a single paper was 1681

"in high-energy physics, of course!.

D. Numbers of collaborators per author

The differences between the various disciplines repre-
sented in the databases are emphasized still more by the
numbers of collaborators that a scientist has, the total num-
ber of people with whom a scientist wrote papers during the
five year period. The average number of collaborators is
markedly lower in the purely theoretical disciplines (3.87 in
high-energy theory, 3.59 in computer science! than in the
wholly or partly experimental ones (18.1 in biomedicine,
15.1 in astrophysics!. But the SPIRES high-energy physics
database takes the prize once again, with scientists having an
impressive 173 collaborators, on average, over a five year
period. This clearly begs the question whether the high-
energy coauthorship network can be considered an accurate
representation of the high-energy physics community at all;
it seems unlikely that many authors would know 173 col-
leagues well.
The distributions of numbers of collaborators are shown

in Fig. 3. In all cases they appear to have long tails, but only
the SPIRES data "inset! fit a power-law distribution well,
with a low measured exponent of !1.20. Note also the small

peak in the SPIRES data around 700—presumably again a
result of the presence of large collaborations.
For the other three databases, the distributions show some

curvature. This may, as we have previously suggested #50$,
be the signature of an exponential cutoff, produced once
again by the finite time window of the study. Redner #57$ has
suggested an alternative origin for the cutoff using growth
models of networks—see Ref. #10$. Another possibility has
been put forward by Barabási #58$, based on models of the
collaboration process. In one such model #51$, the distribu-
tion of the number of collaborators of an author follows a
power law with slope !2 initially, changing to slope !3 in
the tail, the position of the crossover depending on the length
of time for which the collaboration network has been evolv-
ing. We show slopes !2 and !3 as dotted lines on the
figure, and the agreement with the curvature seen in the data
is moderately good, particularly for the Medline data. "For
the Los Alamos and NCSTRL databases, the slope in the tail
seems to be somewhat steeper than !3.!

E. Size of the giant component

In the theory of random graphs #24,59–61$ it is known
that there is a continuous phase transition with increasing
density of edges in a graph at which a ‘‘giant component’’
forms, i.e., a connected subset of vertices whose size scales
extensively. Well above this transition, in the region where
the giant component exists, the giant component fills a large
portion of the graph, and all other components "i.e., con-
nected subsets of vertices! are small, with average size inde-
pendent of the number n of vertices in the graph. We see a
situation reminiscent of this in all of the graphs studied here:
a single large component of connected vertices that fills the
majority of the volume of the graph, and a number of much
smaller components filling the rest. In Table I we show the
size of the giant component for each of our databases, both
as total number of vertices and as a fraction of system size.

FIG. 2. Histograms of the number of authors on papers in Med-
line, the Los Alamos Archive, and NCSTRL. The dotted lines are
the best fit power-law forms. Inset: the equivalent histogram for the
SPIRES database, showing a clear peak in the 200 to 500 author
range.

FIG. 3. Histograms of the number of collaborators of authors in
Medline, the Los Alamos Archive, and NCSTRL. The dotted lines
show how power-law distributions with exponents !2 and !3
would look on the same axes. Inset: the equivalent histogram for the
SPIRES database, which is well fitted by a single power law "dotted
line!.

SCIENTIFIC COLLABORATION NETWORKS . . . . I. . . . PHYSICAL REVIEW E 64 016131
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Scale-free networks - other examples
Protein networks

• Nodes: proteins!
• Links: physical interactions-binding

Jeong et.al. (2001)!
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Scale-free networks - other examples
Sexual-interaction networks

• Nodes: individuals!
• Links: sexual incursion

Liljeros et.al. (2001)!

Unlike clearly defined ‘real-world’ net-
works1, social networks tend to be
subjective to some extent2,3 because

the perception of what constitutes a social
link may differ between individuals. One
unambiguous type of connection, however,
is sexual contact, and here we analyse the
sexual behaviour of a random sample of
individuals4 to reveal the mathematical fea-
tures of a sexual-contact network. We find
that the cumulative distribution of the
number of different sexual partners in one
year decays as a scale-free power law that
has a similar exponent for males and
females. The scale-free nature of the web of
human sexual contacts indicates that strat-
egic safe-sex campaigns are likely to be the
most efficient way to prevent the spread of
sexually transmitted diseases.

Many real-world networks1 typify the
‘small-world’ phenomenon5, so called
because of the surprisingly small average
path lengths between nodes6,7 in the 
presence of a large degree of clustering3,6

(Fig. 1). Small-world networks are classed
as single-scale, broad-scale or scale-free,
depending on their connectivity distribu-
tion, P(k), where k is the number of links
connected to a node8. Scale-free networks,
which are characterized by a power-law
decay of the cumulative distribution
P(k)!k!", may be formed as a result of
preferential attachment of new links
between highly connected nodes9,10.

We analysed the data gathered in a 1996
Swedish survey of sexual behaviour4. The
survey involved a random sample of 4,781
Swedes (aged 18–74 years) and used struc-
tured personal interviews and question-

naires. The response rate was 59%, which
corresponds to 2,810 respondents. Two
independent analyses of non-response error
revealed that elderly people, particularly
women, are under-represented in the sam-
ple; apart from this skew, the sample is rep-
resentative in all demographic dimensions.

Connections in the network of sexual
contacts appear and disappear as sexual
relations are initiated and terminated. To
investigate the connectivity of this dynamic
network, in which links may be short-lived,
we first analysed the number, k, of sex part-
ners over a relatively short time period —
the 12 months before the survey. Figure 2a
shows the cumulative distribution, P(k), for
female and male respondents. The data
closely follow a straight line in a double-
logarithmic plot, which is consistent with 
a power-law dependence. Males report a
larger number of sexual partners 
than females11, but both show the same 
scaling properties.

These results contrast with the exponen-
tial or gaussian distributions — for which
there is a well-defined scale — found for
friendship networks8. Plausible explana-
tions for the structure of the sexual-contact
network described here include increased
skill in acquiring new partners as the num-
ber of previous partners grows, varying
degrees of attractiveness, and the motiva-
tion to have many new partners to sustain
self-image. Our results are consistent with
the preferential-attachment mechanism of
scale-free networks: evidently, in sexual-
contact networks, as in other scale-free 
networks, ‘the rich get richer’9,10.

We next analysed the total number of

partners, ktot, in the respondent’s life up to
the time of the survey. This value is not 
relevant to the instantaneous structure of
the network, but may help to elucidate the
mechanisms responsible for the distribu-
tion of number of partners. Figure 2b shows
the cumulative distribution, P(ktot): for
ktot#20, the data follow a straight line in a
double-logarithmic plot, which is consis-
tent with a power-law dependence in the
tails of the distribution.

Our most important finding is the scale-
free nature of the connectivity of an 
objectively defined, non-professional social
network. This result indicates that the 
concept of the ‘core group’ considered in
epidemiological studies12 must be arbitrary,
because there is no well-defined threshold
or boundary that separates the core group
from other individuals (as there would be
for a bimodal distribution).

Our results may have epidemiological
implications, as epidemics arise and propa-
gate much faster in scale-free networks 
than in single-scale networks6,13. Also, the
measures adopted to contain or stop the
propagation of diseases in a network need
to be radically different for scale-free net-
works. Single-scale networks are not sus-
ceptible to attack at even the most
connected nodes, whereas scale-free net-
works are resilient to random failure but are
highly susceptible to destruction of the

brief communications

NATURE | VOL 411 | 21 JUNE 2001 | www.nature.com 907

The web of human sexual contacts
Pro m isc u o us in d ivid u a ls are th e vu ln era b le n o d e s to targ e t in sa f e -s e x c a m p a ig ns.

Figure 1 It’s a small world: social networks have small average
path lengths between connections and show a large degree of
clustering. Painting by Idahlia Stanley.

Figure 2 Scale-free distribution of the number of sexual partners for females and males. a, Distribution of number of partners, k, in the
previous 12 months. Note the larger average number of partners for male respondents: this difference may be due to ‘measurement bias’
— social expectations may lead males to inflate their reported number of sexual partners. Note that the distributions are both linear, 
indicating scale-free power-law behaviour. Moreover, the two curves are roughly parallel, indicating similar scaling exponents. For
females, "$2.54%0.2 in the range k#4, and for males, "$2.31%0.2 in the range k#5. b, Distribution of the total number of part-
ners ktot over respondents’ entire lifetimes. For females, "tot$2.1%0.3 in the range ktot#20, and for males, "tot$1.6%0.3 in the
range 20&ktot&400. Estimates for females and males agree within statistical uncertainty.
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Scale-free networks - other examples
Online social networks

• Nodes: individuals!
• Links: online interactions

Social network of Steam!
http://85.25.226.110/mapper!

http://85.25.226.110/mapper


Scale-free networks

Albert, R. et.al. Rev. Mod. Phy. (2002)

Exponents of real-world networks are usually between 2 and 31). The topology of the Internet is studied at two differ-
ent levels. At the router level, the nodes are the routers,
and edges are the physical connections between them.
At the interdomain (or autonomous system) level, each

FIG. 1. Network structure of the World Wide Web and the
Internet. Upper panel: the nodes of the World Wide Web are
web documents, connected with directed hyperlinks (URL’s).
Lower panel: on the Internet the nodes are the routers and
computers, and the edges are the wires and cables that physi-
cally connect them. Figure courtesy of István Albert.

TABLE II. The scaling exponents characterizing the degree distribution of several scale-free networks, for which P(k) follows a
power law (2). We indicate the size of the network, its average degree !k", and the cutoff # for the power-law scaling. For directed
networks we list separately the indegree ($ in) and outdegree ($out) exponents, while for the undirected networks, marked with an
asterisk (*), these values are identical. The columns lreal , lrand , and lpow compare the average path lengths of real networks with
power-law degree distribution and the predictions of random-graph theory (17) and of Newman, Strogatz, and Watts (2001) [also
see Eq. (63) above], as discussed in Sec. V. The numbers in the last column are keyed to the symbols in Figs. 8 and 9.

Network Size !k" # $out $ in l real l rand l pow Reference Nr.

WWW 325 729 4.51 900 2.45 2.1 11.2 8.32 4.77 Albert, Jeong, and Barabási 1999 1
WWW 4!107 7 2.38 2.1 Kumar et al., 1999 2
WWW 2!108 7.5 4000 2.72 2.1 16 8.85 7.61 Broder et al., 2000 3

WWW, site 260 000 1.94 Huberman and Adamic, 2000 4
Internet, domain* 3015–4389 3.42–3.76 30–40 2.1–2.2 2.1–2.2 4 6.3 5.2 Faloutsos, 1999 5
Internet, router* 3888 2.57 30 2.48 2.48 12.15 8.75 7.67 Faloutsos, 1999 6
Internet, router* 150 000 2.66 60 2.4 2.4 11 12.8 7.47 Govindan, 2000 7

Movie actors* 212 250 28.78 900 2.3 2.3 4.54 3.65 4.01 Barabási and Albert, 1999 8
Co-authors, SPIRES* 56 627 173 1100 1.2 1.2 4 2.12 1.95 Newman, 2001b 9
Co-authors, neuro.* 209 293 11.54 400 2.1 2.1 6 5.01 3.86 Barabási et al., 2001 10
Co-authors, math.* 70 975 3.9 120 2.5 2.5 9.5 8.2 6.53 Barabási et al., 2001 11

Sexual contacts* 2810 3.4 3.4 Liljeros et al., 2001 12
Metabolic, E. coli 778 7.4 110 2.2 2.2 3.2 3.32 2.89 Jeong et al., 2000 13
Protein, S. cerev.* 1870 2.39 2.4 2.4 Jeong, Mason, et al., 2001 14

Ythan estuary* 134 8.7 35 1.05 1.05 2.43 2.26 1.71 Montoya and Solé, 2000 14
Silwood Park* 154 4.75 27 1.13 1.13 3.4 3.23 2 Montoya and Solé, 2000 16

Citation 783 339 8.57 3 Redner, 1998 17
Phone call 53!106 3.16 2.1 2.1 Aiello et al., 2000 18

Words, co-occurrence* 460 902 70.13 2.7 2.7 Ferrer i Cancho and Solé, 2001 19
Words, synonyms* 22 311 13.48 2.8 2.8 Yook et al., 2001b 20

FIG. 2. Degree distribution of the World Wide Web from two
different measurements: !, the 325 729-node sample of Albert
et al. (1999); ", the measurements of over 200 million pages by
Broder et al. (2000); (a) degree distribution of the outgoing
edges; (b) degree distribution of the incoming edges. The data
have been binned logarithmically to reduce noise. Courtesy of
Altavista and Andrew Tomkins. The authors wish to thank
Luis Amaral for correcting a mistake in a previous version of
this figure (see Mossa et al., 2001).

51R. Albert and A.-L. Barabási: Statistical mechanics of complex networks

Rev. Mod. Phys., Vol. 74, No. 1, January 2002



Scale-free distribution - continuous formalism
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Scale-free distribution - continuous formalism
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For a fixed γ this means that all moments with    m>γ-1  diverge.   
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Scale-free distribution - continuous formalism

Albert, R. et.al. Rev. Mod. Phy. (2002)

• Exponents of real-world networks are 
usually between 2 and 3!

• ⇒ <k2> diverges if N→∞!

• Consequently:

�k = (hk2i � hki2)1/2 ! 1

k = hki± �k = hki±1

• Average values are meaningless since 
the fluctuations are infinitely large 

1). The topology of the Internet is studied at two differ-
ent levels. At the router level, the nodes are the routers,
and edges are the physical connections between them.
At the interdomain (or autonomous system) level, each

FIG. 1. Network structure of the World Wide Web and the
Internet. Upper panel: the nodes of the World Wide Web are
web documents, connected with directed hyperlinks (URL’s).
Lower panel: on the Internet the nodes are the routers and
computers, and the edges are the wires and cables that physi-
cally connect them. Figure courtesy of István Albert.

TABLE II. The scaling exponents characterizing the degree distribution of several scale-free networks, for which P(k) follows a
power law (2). We indicate the size of the network, its average degree !k", and the cutoff # for the power-law scaling. For directed
networks we list separately the indegree ($ in) and outdegree ($out) exponents, while for the undirected networks, marked with an
asterisk (*), these values are identical. The columns lreal , lrand , and lpow compare the average path lengths of real networks with
power-law degree distribution and the predictions of random-graph theory (17) and of Newman, Strogatz, and Watts (2001) [also
see Eq. (63) above], as discussed in Sec. V. The numbers in the last column are keyed to the symbols in Figs. 8 and 9.

Network Size !k" # $out $ in l real l rand l pow Reference Nr.

WWW 325 729 4.51 900 2.45 2.1 11.2 8.32 4.77 Albert, Jeong, and Barabási 1999 1
WWW 4!107 7 2.38 2.1 Kumar et al., 1999 2
WWW 2!108 7.5 4000 2.72 2.1 16 8.85 7.61 Broder et al., 2000 3

WWW, site 260 000 1.94 Huberman and Adamic, 2000 4
Internet, domain* 3015–4389 3.42–3.76 30–40 2.1–2.2 2.1–2.2 4 6.3 5.2 Faloutsos, 1999 5
Internet, router* 3888 2.57 30 2.48 2.48 12.15 8.75 7.67 Faloutsos, 1999 6
Internet, router* 150 000 2.66 60 2.4 2.4 11 12.8 7.47 Govindan, 2000 7

Movie actors* 212 250 28.78 900 2.3 2.3 4.54 3.65 4.01 Barabási and Albert, 1999 8
Co-authors, SPIRES* 56 627 173 1100 1.2 1.2 4 2.12 1.95 Newman, 2001b 9
Co-authors, neuro.* 209 293 11.54 400 2.1 2.1 6 5.01 3.86 Barabási et al., 2001 10
Co-authors, math.* 70 975 3.9 120 2.5 2.5 9.5 8.2 6.53 Barabási et al., 2001 11

Sexual contacts* 2810 3.4 3.4 Liljeros et al., 2001 12
Metabolic, E. coli 778 7.4 110 2.2 2.2 3.2 3.32 2.89 Jeong et al., 2000 13
Protein, S. cerev.* 1870 2.39 2.4 2.4 Jeong, Mason, et al., 2001 14

Ythan estuary* 134 8.7 35 1.05 1.05 2.43 2.26 1.71 Montoya and Solé, 2000 14
Silwood Park* 154 4.75 27 1.13 1.13 3.4 3.23 2 Montoya and Solé, 2000 16

Citation 783 339 8.57 3 Redner, 1998 17
Phone call 53!106 3.16 2.1 2.1 Aiello et al., 2000 18

Words, co-occurrence* 460 902 70.13 2.7 2.7 Ferrer i Cancho and Solé, 2001 19
Words, synonyms* 22 311 13.48 2.8 2.8 Yook et al., 2001b 20

FIG. 2. Degree distribution of the World Wide Web from two
different measurements: !, the 325 729-node sample of Albert
et al. (1999); ", the measurements of over 200 million pages by
Broder et al. (2000); (a) degree distribution of the outgoing
edges; (b) degree distribution of the incoming edges. The data
have been binned logarithmically to reduce noise. Courtesy of
Altavista and Andrew Tomkins. The authors wish to thank
Luis Amaral for correcting a mistake in a previous version of
this figure (see Mossa et al., 2001).

51R. Albert and A.-L. Barabási: Statistical mechanics of complex networks

Rev. Mod. Phys., Vol. 74, No. 1, January 2002



Scale-free networks - summary

Slide from CCNR Complex Networks Course!
A. L. Barabási 2012

γ=1 γ=2 γ=3 

<k2> diverges <k2> finite 

<k> diverges <k> finite 

Ultra small world behavior Small world 

Behaves like a 
random network 

The scale-free behavior is 
relevant 

Regime full of anomalies… 
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The Barabási-Albert model

1. Start with m0 connected nodes!

2. At each timestep we add a new node with 
m (≤ m0) links that connect the new node to 
m  nodes already in the network.!

3. The probability π(k) that one of the links of 
the new node connects to node i depends 
on the degree ki of node i as

THE BARABÁSI-ALBERT
MODEL

SECTION 5.2

The recognition that growth and preferential attachment coexist in 
real networks has lead to the introduction of a minimal model capable of 
generating networks with power-law degree distribution [1]. The model is 
defined as follows:

We start with m0 nodes, the links between which are chosen arbitrarily, 
as long as each node has at least one link. The network develops following 
two steps Fig. 5.3:

(A) GROWTH

At each timestep we add a new node with m (≤ m0) links that connect 
the new node to m nodes already in the network.

(B)  PREFERENTIAL ATTACHMENT

The probability ʌ(k) that one of the links of the new node connects to 
node i depends on the degree ki of node i as

Preferential attachment is a probabilistic rule: a new node is free to 
connect to any node in the network, whether it is a hub or has a single 
link. Eq. 5.1 implies, however, that if a new node has a choice between a de-
gree-two and a degree-four node, it is twice as likely that it connects to 
the degree-four node. The model defined by steps (A) and (B) is called the 
Barabási-Albert model after the authors of the paper that introduced it in 
1999 [1]. One may also encounter it in the literature as the BA model or the 
scale-free model. After t timesteps the Barabási-Albert model generates a 
network with N = t + m0 nodes and m0 + mt links.  As Fig. 5.4 shows, the net-
work generated by the model has a power-law degree distribution, a with a 
degree exponent ਠ=3. 

As Fig. 5.3 indicates, while most nodes in the network have only a few 
links, a few gradually turn into hubs. The hubs are the result of a rich-gets-

THE BARABÁSI-ALBERT MODEL 8

Figure 5.3 
Time evolution of the Barabási-Albert model

The sequence of images shows the gradual 
emergence of a few highly connected nodes, 
or hubs, through growth and preferential at-
tachment. White circles mark the newly add-
ed node to the network, which decides where 
to connect its two links (m=2) through prefer-
ential attachment Eq. 5.1. After [9].

(5.1)
k k

k
( ) .i

i

j
j∑

Π =

⇧(ki) =
kiP
j kj

• The emerging network will be scale-free with 
degree exponent γ=3 independently from the 
choice of m0 and m

The degree distribution of a network gen-
erated by the Barabási-Albert model. The 
plot shows pk for a single network of size 
N=100,000 and m=3. It shows both the lin-
early-binned (red symbols) as well as the 
log-binned version (green symbols) of pk. The 
straight line is added to guide the eye and has 
slope ਠ=3, corresponding to the resulting net-
work’s degree distribution.

Figure 5.4
The degree distribution

richer phenomenon: due to preferential attachment new nodes are more 
likely to connect to the more connected nodes than to the smaller degree 
nodes. Hence, the more connected nodes will acquire links at the expense 
of the less connected nodes, eventually turning into hubs.

In summary, the Barabási-Albert model indicates that two simple 
mechanisms, growth and preferential attachment, are responsible for the 
emergence of networks with a power-law degree distribution. The origin 
of the power law and the associated hubs is a rich-gets-richer phenomena 
induced by the coexistence of these two ingredients. Yet, to understand the 
model’s behavior and to quantify the emergence of the scale-free proper-
ty, we need to describe the model’s mathematical properties, which is the 
subject of the next section.

9THE BARABÁSI-ALBERT MODEL THE BARABÁSI-ALBERT MODEL
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Spreading processes
Biological epidemic spreading

The great plague (14th century)
HIV (2008)

H1N1 (2011)SARS (2008)

W
ikipedia



Spreading processes
Malware spreading

Botnet infections (2010) Mobile malware (2011)

■ 	 	 

■ 	 	 

■ 	 	 

■ 	 	 

■ 	 	 

■ 	 	 

Hypponen M. Scientific American Nov. 70-77 (2006).	





Spreading processes
Social contagion

Information spreading Rumour spreading

Karsai et.al. (2014)	


Adoption spreading (Skype) Protest diffusion (Arabian spring)

(a) (b)

(a) (b)

W
ikipedia

Karsai et.al. (2014)	





Spreading processes
Why?!

• High population density!
• Interconnected and mixing population!
• Dynamical mobility patterns!
!

Why on networks?!

• Spreading can happen only through interactions 
between agents!

• Geographic vicinity!
• Physical connection!
• Social interaction!
• etc.!

• Network structure critically influence the 
dynamics of spreading processes

PPD
 blog, Jooseery (2011)

Freese (2009)
U

nknow
n
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Spreading processes
Model assumptions of spreading processes!

• Constant set of interacting agents!
• Nodes are partitioned into distinct compartments based on their actual states!
• States are defined by the distinct stages of the epidemics:

Susceptible (S)!
(Healthy)

Infected (I)!
(Sick)

Recovered (R)!
(Removed, dead)

M
i jin Lee’s cartoons, (after P. H

olm
e)

S+I+R=N



Spreading processes

Susceptible (S)!
(Healthy)

Infected (I)!
(Sick)

Recovered (R)!
(Removed, dead)

M
i jin Lee’s cartoons, (after P. H

olm
e)

Recovery

Recovery

Infection Removal

Simple spreading phenomena!
• Lack of decision to become infected!
• State change depends on the absolute number of stimuli coming from neighbours!
• Examples: epidemic spreading, biological contagion, information spreading, etc.



The SI model

Susceptible (S)!
(Healthy)

Infected (I)!
(Sick)

M
i jin Lee’s cartoons, (after P. H

olm
e)

Infection

Susceptible-Infected model!
• Take a population of N nodes!
• Assign by I the number of infected and by S the 

number of susceptible nodes!
• I+S=N any time!
• We infect a single seed node thus at t=0 I=1

• Each node has β contacts with 
randomly selected other nodes 
per unit time!

• An infected node on average 
contacts a susceptible with 
probability βS/N!

• Average number of infection per 
unit time is βIS/N!

• Consider the fractions instead of 
absolute numbers:!

s=S/N     and     i=I/N!
     such as s+i=1

Homogeneous mixing (no network)



The SI model
• Time evolution of the infected and susceptible fractions:

di(t)

dt
= �si

ds(t)

dt
= ��si

• Since s(t)+i(t)=1 the fraction of susceptible nodes can be written as s(t)=1-i(t)

di(t)

dt
= �(1� i)i

di

i
+

di

(1� i)
= �dt ln(i)� ln(1� i) + c = �t

ln
i

1� i
+ c = �t

• If we take t=0 then

i

1� i
= Ce�t

C =
i0

1� i0
and i(t) =

i0e�t

1� i0 + i0e�t

Logistic equation: a basic model of population growth	





The SI model
di(t)

dt
= �(1� i)i i(t) =

i0e�t

1� i0 + i0e�t

di

dt
⇡ �i

i ⇡ i0e
�t

• For early times 
(i(t) is small)

exponential outbreak

• For large times !

        i(t)→1

di(t)

dt
= 0

• Saturation

SI model: in the end of the process always everyone get infected if β>0 



The SIS model

Susceptible (S)!
(Healthy)

Infected (I)!
(Sick)

M
i jin Lee’s cartoons, (after P. H

olm
e)

Infection

Susceptible-Infected-Susceptible model!
• SI process + infected nodes recover with rate µ per unit time

Recovery

di

dt
= �i(1� i)� µi = i(� � µ� �i)

S→I I→S

SIS Model!
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The SIS model

SIS Model!
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• For SIS model the saturation of infected nodes is below 1!
• If it saturates to 1 then the model is equivalent with SI (μ=0)

i(t)! 1� µ

�
di
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= �i(1� i)� µi = 0

i(t)! 1� µ
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SIS Model!
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if λ > 1 - outbreak

if λ < 1 - vanish
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Spreading processes

Susceptible (S)!
(Healthy)

Infected (I)!
(Sick)

Recovered (R)!
(Removed, dead)

M
i jin Lee’s cartoons, (after P. H

olm
e)

Infection Removal

Susceptible-Infected-Removed model!
• SI process + infected nodes removed with rate µ per unit time



Spreading processes
Susceptible-Infected-Removed model!
• SI process + infected nodes removed with rate µ per unit time

s(t)
dt

= ��i(t)(1� r(t)� i(t))

i(t)
dt

= �µi(t) + �i(t)(1� r(t)� i(t))

r(t)
dt

= µi(t)

• Fraction of infected nodes peaks!
• Fraction of removed nodes saturates!
• Fraction of susceptible nodes not necessarily saturates to 0 

Recovered

Infected

Susceptible

Time t

Fr
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Epidemic spreading models
Basic properties

Early behaviour!
Exponential growth of i(t)

Late behaviour

Epidemic threshold

SI SIS SIR

i(t) =
i0e�t

1� i0 + i0e�t

SIS Model!
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Epidemic spreading on networks

• Each node has k number of 
neighbours!

• Each infected node infects its 
susceptible neighbours with 
probability βdt in a unite time!

• A susceptible node with degree k 
will be infected with probability 
βki(t)dt in a unite time

Homogeneous mixing (on networks)

First approximation (on homogeneous networks)

• k ≃ ⟨k⟩: The network has 
homogeneous degree distribution!

• E.g. random networks

SI model

184 Epidemic spreading in population networks

This general framework easily allows us to derive the dynamical equations of
the three basic models which are commonly used to illustrate the general prop-
erties of epidemic spreading processes. The simplest epidemiological model one
can consider is the susceptible–infected (SI) model in which infected individuals
can only exist in two discrete states, namely, susceptible and infected. The prob-
ability that a susceptible vertex acquires the infection from any given neighbor in
an infinitesimal time interval dt is β dt , where β defines the pathogen spreading
rate. Individuals that enter the infected class remain permanently infectious. The
epidemics can only grow as the number of infectious individuals I (t) is constantly
increasing and the seed of infectious individuals placed at time t = 0 will therefore
ultimately infect the rest of the population. The evolution of the SI model is there-
fore completely defined by the number of infected individuals I (t) or equivalently
the corresponding density i(t) = I (t)/N .

In the homogeneous assumption, the force of the infection (the per capita rate
of acquisition of the disease for the susceptible individuals) is proportional to the
average number of contacts with infected individuals, which for a total number of
contacts k is approximated as ki . In a more microscopic perspective – which is at
the basis of many numerical simulations of these processes – this can be understood
by the following argument (see also Chapter 4). Since each infected individual
attempts to infect a connected susceptible vertex with probability β dt , a suscepti-
ble vertex with n infected neighbors will have a total probability of getting infected
during the time interval dt given by 1 − (1 − β dt)n . Neglecting fluctuations, each
susceptible vertex with k connections will have on average n = ki infected neigh-
bors, yielding at the leading order in β dt ≪ 1 an infection acquisition probability
1 − (1 − β dt)ki ≃ βki dt and the per capita acquisition rate βki .1 This approach
makes explicit the dependence of the spreading rate with the number of contacts k
of each individual, which will be very useful later in extending the calculation in
the case of heterogeneous systems. As a first approximation, let us consider that
each individual/vertex has the same number of contacts/edges, k ≃ ⟨k⟩. The con-
tinuous and deterministic reaction rate equation describing the evolution of the SI
model then reads as

di(t)
dt

= β⟨k⟩i(t) [1 − i(t)] . (9.5)

The above equation states that the growth rate of infected individuals is propor-
tional to the spreading rate β⟨k⟩, the density of susceptible vertices that may
become infected, s(t) = 1−i(t), where s(t) = S(t)/N , and the number of infected
individuals in contact with any susceptible individual.

1 Sometimes alternative definitions of the infection mechanism refer to β dt as the probability of acquiring
the infection if one or more neighbors are infected. In this case the total acquisition probability is given by
β dt[1 − (1 − i)k ], i.e. the spreading probability times the probability that at least one neighbor is infected.
Also in this case, for β dt ≪ 1 and i ≪ 1 an acquisition rate βki is recovered at the leading order.

SIS model
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The susceptible–infected–susceptible (SIS) model is mainly used as a paradig-
matic model for the study of infectious diseases leading to an endemic state with a
stationary and constant value for the prevalence of infected individuals, i.e. the
degree to which the infection is widespread in the population as measured by
the density of those infected. In the SIS model, individuals exist in the suscepti-
ble and infected classes only. The disease transmission is described as in the SI
model, but infected individuals may recover and become susceptible again with
probability µdt , where µ is the recovery rate. Individuals thus run stochastically
through the cycle susceptible → infected → susceptible, hence the name of the
model. The equation describing the evolution of the SIS model therefore contains
a spontaneous transition term and reads as

di(t)
dt

= −µi(t) + β⟨k⟩i(t) [1 − i(t)] . (9.6)

The usual normalization condition s(t) = 1 − i(t) has to be valid at all times.
The SIS model does not take into account the possibility of an individ-

ual’s removal through death or acquired immunization, which would lead to the
so-called susceptible–infected–removed (SIR) model (Anderson and May, 1992;
Murray, 2005). The SIR model, in fact, assumes that infected individuals disap-
pear permanently from the network with rate µ and enter a new compartment R of
removed individuals, whose density in the population is r(t) = R(t)/N . The intro-
duction of a new compartment yields the following system of equations describing
the dynamics:

ds(t)
dt

= −β⟨k⟩i(t) [1 − r(t) − i(t)]

di(t)
dt

= −µi(t) + β⟨k⟩i(t) [1 − r(t) − i(t)] (9.7)

dr(t)
dt

= µi(t). (9.8)

Through these dynamics, all infected individuals will sooner or later enter the
recovered compartment, so that it is clear that in the infinite time limit the epi-
demics must fade away. It is interesting to note that both the SIS and SIR models
introduce a time scale 1/µ governing the self-recovery of individuals. We can think
of two extreme cases. If 1/µ is smaller than the spreading time scale 1/β, then the
process is dominated by the natural recovery of infected to susceptible or removed
individuals. This situation is less interesting since it corresponds to a dynamical
process governed by the decay into a healthy state and the interaction with neigh-
bors plays a minor role. The other extreme case is in the regime 1/µ ≫ 1/β,
i.e. a spreading time scale much smaller than the recovery time scale. In this
case, as a first approximation, we can neglect the individual recovery that will

SIR model
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The susceptible–infected–susceptible (SIS) model is mainly used as a paradig-
matic model for the study of infectious diseases leading to an endemic state with a
stationary and constant value for the prevalence of infected individuals, i.e. the
degree to which the infection is widespread in the population as measured by
the density of those infected. In the SIS model, individuals exist in the suscepti-
ble and infected classes only. The disease transmission is described as in the SI
model, but infected individuals may recover and become susceptible again with
probability µdt , where µ is the recovery rate. Individuals thus run stochastically
through the cycle susceptible → infected → susceptible, hence the name of the
model. The equation describing the evolution of the SIS model therefore contains
a spontaneous transition term and reads as

di(t)
dt

= −µi(t) + β⟨k⟩i(t) [1 − i(t)] . (9.6)

The usual normalization condition s(t) = 1 − i(t) has to be valid at all times.
The SIS model does not take into account the possibility of an individ-

ual’s removal through death or acquired immunization, which would lead to the
so-called susceptible–infected–removed (SIR) model (Anderson and May, 1992;
Murray, 2005). The SIR model, in fact, assumes that infected individuals disap-
pear permanently from the network with rate µ and enter a new compartment R of
removed individuals, whose density in the population is r(t) = R(t)/N . The intro-
duction of a new compartment yields the following system of equations describing
the dynamics:

ds(t)
dt

= −β⟨k⟩i(t) [1 − r(t) − i(t)]

di(t)
dt

= −µi(t) + β⟨k⟩i(t) [1 − r(t) − i(t)] (9.7)

dr(t)
dt

= µi(t). (9.8)

Through these dynamics, all infected individuals will sooner or later enter the
recovered compartment, so that it is clear that in the infinite time limit the epi-
demics must fade away. It is interesting to note that both the SIS and SIR models
introduce a time scale 1/µ governing the self-recovery of individuals. We can think
of two extreme cases. If 1/µ is smaller than the spreading time scale 1/β, then the
process is dominated by the natural recovery of infected to susceptible or removed
individuals. This situation is less interesting since it corresponds to a dynamical
process governed by the decay into a healthy state and the interaction with neigh-
bors plays a minor role. The other extreme case is in the regime 1/µ ≫ 1/β,
i.e. a spreading time scale much smaller than the recovery time scale. In this
case, as a first approximation, we can neglect the individual recovery that will



Epidemic spreading on heterogeneous networks
• In degree heterogeneous networks the k ≃ ⟨k⟩ 

approximation does not hold!
!

• Solution: Degree Block Approximation!
• Assumption: all nodes with the same degree are 

statistically equivalent!
• Look for infection/susceptible node densities in the 

degree groups!
!
!

• Calculate the global average by a sum considering 
the degree distribution

ik =
Ik
Nk

sk =
Sk

Nk

i =
X

k

P (k)ik s =
X

k

P (k)sk

Node class with degree k=1

Node class with degree k=2

Node class with degree k=3



SI process on heterogeneous networks
• SI process: all nodes are infected in the end - no epidemic threshold!
• Question: how degree heterogeneities influence the speed of spreading
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degree ⟨k⟩ is no longer the relevant variable. One then expects the fluctuations
to play the main role in determining the epidemic properties. Examples of such
networks relevant to epidemics studies include several mobility networks and the
web of sexual contacts. Furthermore, computer virus spreading can be described
in the same framework as biological epidemics (Kephart, White and Chess, 1993;
Kephart et al., 1997; Pastor-Satorras and Vespignani, 2001b; Aron et al., 2001;
Pastor-Satorras and Vespignani, 2004).

The presence of topological fluctuations virtually acting at all scales calls for
a mathematical analysis where the degree variables explicitly enter the descrip-
tion of the system. This can be done by considering a degree block approximation
that assumes that all nodes with the same degree are statistically equivalent. This
assumption allows the grouping of nodes in the same degree class k, yielding the
convenient representation of the system by quantities such as the density of infected
nodes and susceptible nodes in the degree class k

ik = Ik

Nk
; sk = Sk

Nk
, (9.17)

where Nk is the number of nodes with degree k and Ik and Sk are the number
of infected and susceptible nodes in that class, respectively. Clearly, the global
averages are then given by the expressions

i =
∑

k

P(k)ik; s =
∑

k

P(k)sk . (9.18)

This formalism is extremely convenient in networks where the connectivity pat-
tern dominates the system’s behavior. When other attributes such as time or space
become relevant, they must be added to the system’s description: for instance, the
time dependence is simply introduced through the time-dependent quantities ik(t)
and sk(t).

9.2.1 The SI model

As a first assessment of the effect of the network heterogeneities, let us consider the
simple SI model. In this case we know that the system is eventually totally infected
whatever the spreading rate of the infection, but it is interesting to see the effect of
topological fluctuations on the spreading velocity. In the case of the SI model the
evolution equations read

dik(t)
dt

= β [1 − ik(t)] k!k(t), (9.19)

where the creation term is proportional to the spreading rate β, the degree k, the
probability 1 − ik that a vertex with degree k is not infected, and the density !k

Barrat, Barthelem
y, Vespignani book

Spreading 
rate Probability 

that a node 
with degree 
k is not 
infected

Degree
Density of 
infected 
neighbours of 
a node with 
degree k

•Θk(t): Probability that any neighbour of a node with degree k is infected

• I am a node with degree k=5 and I am susceptible!
•Θk(t)=2/5 fraction of my neighbours are infected actually!
• In case of homogeneous networks: Θk(t)=i(t)



SI process on heterogeneous networks

• Assume: no degree-degree correlations in the network!
• Probability that a node with degree k connects to a node with k’

Barrat, Barthelem
y, Vespignani book

P (k0|k) = k0P (k0)P
k0 k0P (k0)

=
k0P (k0)

hki

• Using this Θk(t) can be written as
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of infected neighbors of vertices of degree k. The latter term is thus the average
probability that any given neighbor of a vertex of degree k is infected. This is a
new and unknown quantity that in the homogeneous assumption is equal to the
density of infected nodes. In a heterogeneous network, however, this is a compli-
cated expression that must take into account the different degree classes and their
connections.

The simplest situation we can face corresponds to a complete lack of degree
correlations. As already discussed in the previous chapters, a network is said to
have no degree correlations when the probability that an edge departing from a
vertex of degree k arrives at a vertex of degree k ′ is independent from the degree
of the initial vertex k. In this case, the conditional probability does not depend
on the originating node and it is possible to show that P(k ′|k) = k ′ P(k ′)/⟨k⟩
(see Chapter 1 and Appendix 1). This relation simply states that any edge has a
probability of pointing to a node with degree k ′ which is proportional to k ′. By
considering that at least one of the edges of each infected vertex points to another
infected vertex from which the infection has been transmitted, one obtains

!k(t) = !(t) =
∑

k′(k ′ − 1)P(k ′)ik′(t)
⟨k⟩

, (9.20)

where ⟨k⟩ =
∑

k′ k ′ P(k ′) is the proper normalization factor dictated by the total
number of edges. Thanks to the absence of correlations between the degrees of
neighboring vertices, !k(t) is then independent of k.

Combining Equations (9.19) and (9.20) one obtains the evolution equation for
!(t). In the initial epidemic stages, neglecting terms of order O(i2), the equations
read

dik(t)
dt

= βk!(t), (9.21)

d!(t)
dt

= β

(⟨k2⟩
⟨k⟩

− 1
)

!(t). (9.22)

These equations can be solved and in the case of a uniform initial condition ik(t =
0) = i0, the prevalence of nodes of degree k reads as

ik(t) = i0

[
1 + k(⟨k⟩ − 1)

⟨k2⟩ − ⟨k⟩
(et/τ − 1)

]
, (9.23)

with

τ = ⟨k⟩
β(⟨k2⟩ − ⟨k⟩)

. (9.24)

The prevalence therefore increases exponentially fast, and larger degree nodes
display larger prevalence levels. The total average prevalence is also obtained as
i(t) =

∑
k P(k)ik(t),

k’-1 because the linked 
infected node surely  has 
an infected neighbour, 
thus the central node 
can connect to it only in 
k’-1 ways

a node can connect in k’ 
ways to a node with 
degree k’



The spreading curve regimes
Barrat, Barthelem

y, Vespignani book

188 Epidemic spreading in population networks

t1 t2

i(t )

t

Final regime

Noisy
regime

Exponential
growth

SIS

SIR

Fig. 9.2. Typical profile of the density of infected individuals i(t) versus time
on a given realization of the network. In the first regime t < t1, the outbreak is
subject to strong statistical fluctuations. In the second regime, t1 < t < t2 there is
an exponential growth characterized by the reproductive number R0. In the final
regime (t > t2), the density of infected either converges to a constant for the SIS
model or to zero for the SIR model. In individuals the SI model the epidemics
will eventually pervade the whole population.

This cannot happen in the SIR and SIS model where individuals recover from the
disease. The SIR model will inevitably enter a clean-up stage, since the susceptible
compartment becomes depleted of individuals that flow into the removed compart-
ment after the infectious period, and the epidemics will ultimately disappear. The
SIS model will enter a stationary state in which the infectious individuals density
is fixed by the balance of the spreading and recovery rate. However, it is worth
stressing that while the outbreak will occur with finite probability if the parame-
ters poise the system above the epidemic threshold, this probability is not equal to
1. Actually the stochastic fluctuations may lead to the extinction of the epidemics
even well above the epidemic threshold. In general it is possible to estimate that the
extinction probability of an epidemic starting with n infected individuals is equal
to R−n

0 (Bailey, 1975). For instance, in the case of a single infected individual, even
for values of R0 as high as 2 the outbreak probability is just 50%.

The concept of epidemic threshold is very general and a key property of epi-
demic models. For instance, the addition of extra compartments such as latent
or asymptomatic individuals defines models whose epidemic thresholds can still
be calculated from the basic transition rates among compartments. Also, clus-
tered but homogeneous connectivity patterns between individuals, such as regular
lattices, meshes and even the Watts–Strogatz network, do not alter this sce-
nario and just provide a different scaling behavior of the prevalence close to
the threshold (Anderson and May, 1992; Marro and Dickman, 1999; Moore and
Newman, 2000; Kuperman and Abramson, 2001). The relevance of the epidemic

SI
1

0



Early time behaviour of epidemic spreading

Why is it important?!
!
• Vaccination, cures, and medical interventions take years to develop!

• Their application is the most effective during the outbreak of a disease!

• The best way to stop epidemics!

• early quarantine!

• early vaccination !

• Epidemics spreading shows exponential grows in the beginning of the process!

• Vanishing epidemic thresholds

• Approximation: assume that i(t)<<1 (early time behaviour)
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SI process on heterogeneous networks
• Approximation: assume that i(t)<<1 (early time behaviour)
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degree ⟨k⟩ is no longer the relevant variable. One then expects the fluctuations
to play the main role in determining the epidemic properties. Examples of such
networks relevant to epidemics studies include several mobility networks and the
web of sexual contacts. Furthermore, computer virus spreading can be described
in the same framework as biological epidemics (Kephart, White and Chess, 1993;
Kephart et al., 1997; Pastor-Satorras and Vespignani, 2001b; Aron et al., 2001;
Pastor-Satorras and Vespignani, 2004).

The presence of topological fluctuations virtually acting at all scales calls for
a mathematical analysis where the degree variables explicitly enter the descrip-
tion of the system. This can be done by considering a degree block approximation
that assumes that all nodes with the same degree are statistically equivalent. This
assumption allows the grouping of nodes in the same degree class k, yielding the
convenient representation of the system by quantities such as the density of infected
nodes and susceptible nodes in the degree class k

ik = Ik

Nk
; sk = Sk

Nk
, (9.17)

where Nk is the number of nodes with degree k and Ik and Sk are the number
of infected and susceptible nodes in that class, respectively. Clearly, the global
averages are then given by the expressions

i =
∑

k

P(k)ik; s =
∑

k

P(k)sk . (9.18)

This formalism is extremely convenient in networks where the connectivity pat-
tern dominates the system’s behavior. When other attributes such as time or space
become relevant, they must be added to the system’s description: for instance, the
time dependence is simply introduced through the time-dependent quantities ik(t)
and sk(t).

9.2.1 The SI model

As a first assessment of the effect of the network heterogeneities, let us consider the
simple SI model. In this case we know that the system is eventually totally infected
whatever the spreading rate of the infection, but it is interesting to see the effect of
topological fluctuations on the spreading velocity. In the case of the SI model the
evolution equations read

dik(t)
dt

= β [1 − ik(t)] k!k(t), (9.19)

where the creation term is proportional to the spreading rate β, the degree k, the
probability 1 − ik that a vertex with degree k is not infected, and the density !k

⇡ �k⇥k(t)

• Differentiation of Θk(t) by t gives
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of infected neighbors of vertices of degree k. The latter term is thus the average
probability that any given neighbor of a vertex of degree k is infected. This is a
new and unknown quantity that in the homogeneous assumption is equal to the
density of infected nodes. In a heterogeneous network, however, this is a compli-
cated expression that must take into account the different degree classes and their
connections.

The simplest situation we can face corresponds to a complete lack of degree
correlations. As already discussed in the previous chapters, a network is said to
have no degree correlations when the probability that an edge departing from a
vertex of degree k arrives at a vertex of degree k ′ is independent from the degree
of the initial vertex k. In this case, the conditional probability does not depend
on the originating node and it is possible to show that P(k ′|k) = k ′ P(k ′)/⟨k⟩
(see Chapter 1 and Appendix 1). This relation simply states that any edge has a
probability of pointing to a node with degree k ′ which is proportional to k ′. By
considering that at least one of the edges of each infected vertex points to another
infected vertex from which the infection has been transmitted, one obtains

!k(t) = !(t) =
∑

k′(k ′ − 1)P(k ′)ik′(t)
⟨k⟩

, (9.20)

where ⟨k⟩ =
∑

k′ k ′ P(k ′) is the proper normalization factor dictated by the total
number of edges. Thanks to the absence of correlations between the degrees of
neighboring vertices, !k(t) is then independent of k.

Combining Equations (9.19) and (9.20) one obtains the evolution equation for
!(t). In the initial epidemic stages, neglecting terms of order O(i2), the equations
read

dik(t)
dt

= βk!(t), (9.21)

d!(t)
dt

= β

(⟨k2⟩
⟨k⟩

− 1
)

!(t). (9.22)

These equations can be solved and in the case of a uniform initial condition ik(t =
0) = i0, the prevalence of nodes of degree k reads as

ik(t) = i0

[
1 + k(⟨k⟩ − 1)

⟨k2⟩ − ⟨k⟩
(et/τ − 1)

]
, (9.23)

with

τ = ⟨k⟩
β(⟨k2⟩ − ⟨k⟩)

. (9.24)

The prevalence therefore increases exponentially fast, and larger degree nodes
display larger prevalence levels. The total average prevalence is also obtained as
i(t) =

∑
k P(k)ik(t),
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Inset: BA networks with m=4,8,12,20 (from bottom to top)  

valid if i(t)<<1 (early time behaviour)
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Epidemic threshold!
• To obtain an epidemic threshold we need to have τ>0 (otherwise the epidemic 

spreads instantaneously)

SIR on ER network
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• Threshold is vanishing for heterogeneous 
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• Time scale assigns the speed of infection spreading!
• The smaller τ the faster the process evolving 

• ER network
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• The more connected the 
network is, the faster the 
epidemic evolves

• SF network

hk2i ! 1

� < 3 N !1• If                 and

then                      and

• For heterogeneous networks the 
characteristic time vanishes!

• The epidemics becomes 
instantaneous!

• It is due to hubs who get infected 
first and disseminate the epidemics 
to many other nodes

⌧ ! 0
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of infected neighbors of vertices of degree k. The latter term is thus the average
probability that any given neighbor of a vertex of degree k is infected. This is a
new and unknown quantity that in the homogeneous assumption is equal to the
density of infected nodes. In a heterogeneous network, however, this is a compli-
cated expression that must take into account the different degree classes and their
connections.

The simplest situation we can face corresponds to a complete lack of degree
correlations. As already discussed in the previous chapters, a network is said to
have no degree correlations when the probability that an edge departing from a
vertex of degree k arrives at a vertex of degree k ′ is independent from the degree
of the initial vertex k. In this case, the conditional probability does not depend
on the originating node and it is possible to show that P(k ′|k) = k ′ P(k ′)/⟨k⟩
(see Chapter 1 and Appendix 1). This relation simply states that any edge has a
probability of pointing to a node with degree k ′ which is proportional to k ′. By
considering that at least one of the edges of each infected vertex points to another
infected vertex from which the infection has been transmitted, one obtains

!k(t) = !(t) =
∑

k′(k ′ − 1)P(k ′)ik′(t)
⟨k⟩

, (9.20)

where ⟨k⟩ =
∑

k′ k ′ P(k ′) is the proper normalization factor dictated by the total
number of edges. Thanks to the absence of correlations between the degrees of
neighboring vertices, !k(t) is then independent of k.

Combining Equations (9.19) and (9.20) one obtains the evolution equation for
!(t). In the initial epidemic stages, neglecting terms of order O(i2), the equations
read

dik(t)
dt

= βk!(t), (9.21)

d!(t)
dt

= β

(⟨k2⟩
⟨k⟩

− 1
)

!(t). (9.22)

These equations can be solved and in the case of a uniform initial condition ik(t =
0) = i0, the prevalence of nodes of degree k reads as

ik(t) = i0

[
1 + k(⟨k⟩ − 1)

⟨k2⟩ − ⟨k⟩
(et/τ − 1)

]
, (9.23)

with

τ = ⟨k⟩
β(⟨k2⟩ − ⟨k⟩)

. (9.24)

The prevalence therefore increases exponentially fast, and larger degree nodes
display larger prevalence levels. The total average prevalence is also obtained as
i(t) =

∑
k P(k)ik(t),
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i(t) = i0

[
1 + ⟨k⟩2 − ⟨k⟩

⟨k2⟩ − ⟨k⟩
(et/τ − 1)

]
. (9.25)

The result (9.24) for uncorrelated networks implies that the growth time scale
of an epidemic outbreak is related to the graph heterogeneity as measured by
the heterogeneity ratio κ = ⟨k2⟩/⟨k⟩ (see Chapter 2). In homogeneous networks
with a Poisson degree distribution, in which κ = ⟨k⟩ + 1, we recover the result
τ = (β⟨k⟩)−1, corresponding to the homogeneous mixing hypothesis. In networks
with very heterogeneous connectivity patterns, on the other hand, κ is very large
and the outbreak time scale τ is very small, signaling a very fast diffusion of the
infection. In particular, in scale-free networks characterized by a degree exponent
2 < γ ≤ 3 we have that κ ∼ ⟨k2⟩ → ∞ for networks of size N → ∞. There-
fore in uncorrelated scale-free networks we face a virtually instantaneous rise of
the epidemic incidence. The physical reason is that once the disease has reached
the hubs, it can spread very rapidly among the network following a “cascade” of
decreasing degree classes (Barthélemy et al., 2004; 2005).

9.2.2 The SIR and SIS models

The above results can be easily extended to the SIS and the SIR models. In the case
of uncorrelated networks, Equation (9.19) contains, for both the SIS and the SIR
models, an extra term −µik(t) defining the rate at which infected individuals of
degree k recover and become again susceptible or permanently immune (and thus
removed from the population), respectively:

dik(t)
dt

= βksk(t)!k(t) − µik(t). (9.26)

In the SIS model we have, as usual, sk(t) = 1 − ik(t). In the SIR model, on the
other hand, the normalization imposes that sk(t) = 1 − ik(t) − rk(t), where rk(t) is
the density of removed individuals of degree k. The inclusion of the decaying term
−µik , however, does not change the picture obtained in the SI model. By using the
same approximations, the time scale for the SIR is found to behave as

τ = ⟨k⟩
β⟨k2⟩ − (µ + β)⟨k⟩

. (9.27)

In the case of diverging fluctuations the time scale behavior is therefore still dom-
inated by ⟨k2⟩ and the spreading is faster for higher network heterogeneity. This

SI:

⌧ER =
1

�hki � µ
SIR:
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• Approximation: assume that t→∞ (asymptotic large t behaviour)
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9.3.1 The SIS model

The complete evolution equation for the SIS model on a network with arbitrary
degree distribution can be written as

dik(t)
dt

= −µik(t) + βk [1 − ik(t)] !k(t). (9.36)

The creation term considers the density 1 − ik(t) of susceptible vertices with k
edges that might get the infection via a neighboring vertex. Let us first consider for
the sake of simplicity the case in which the underlying network is a generalized
random graph with no degree correlations. As already described in Sections 9.2.1
and 9.2.2, the calculation of !k is then straightforward, as the average density of
infected vertices pointed by any given edge that reads as

!k = 1
⟨k⟩

∑

k′

k ′ P(k ′)ik′, (9.37)

which does not depend on k: !k = !. Information on the t → ∞ limit can be
easily obtained by imposing the stationarity condition dik(t)/dt = 0

ik = kβ!

µ + kβ!
. (9.38)

This set of equations shows that the higher a vertex degree, the higher its probabil-
ity to be in an infected state. Injecting Equation (9.38) into (9.37), it is possible to
obtain the self-consistent equation

! = 1
⟨k⟩

∑

k

k P(k)
βk!

µ + βk!
, (9.39)

whose solution allows the calculation of ! as a function of the disease parameters
β and µ (Pastor-Satorras and Vespignani, 2001a; 2001b).

The epidemic threshold can be explicitly calculated from Equation (9.39) by
just noting that the condition is given by the value of β and µ for which it is pos-
sible to obtain a non-zero solution !∗. Using a geometrical argument, as for the
analysis of percolation theory in random graphs in Chapter 6, the solution of Equa-
tion (9.39) follows from the intersection of the curves y1(!) = ! and y2(!) =
(1/⟨k⟩)

∑
k k P(k)βk!/(µ + βk!). The latter is a monotonously increasing func-

tion of ! between the limits y2(0) = 0 and y2(1) = (1/⟨k⟩)
∑

k k P(k)βk/(µ +
βk) < 1. In order to have a solution !∗ ̸= 0, the slope of y2(!) at the point ! = 0
must be larger than or equal to 1 (see Figure 9.5). This condition can be written as

d
d!

(
1

⟨k⟩
∑

k

k P(k)
βk!

µ + βk!

)∣∣∣∣∣
!=0

= β

µ

⟨k2⟩
⟨k⟩

≥ 1. (9.40)

SIS model

Stationary state:  !
• ik(t) saturates dik(t)

dt
= 0

0 = �(1� ik(t))k⇥(t)� µik(t)
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t→∞

Stationary state: number of newly infected 
nodes is equal to the number of recovering 
nodes per unite time
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Self-consistent equation

Graphical solution y1(⇥) = ⇥ y2(⇥) =
1
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A

Slope < 1

Θ1

1

y2(Θ)

B

Θ1

1

Θ∗

y2(Θ)

Fig. 9.5. Graphical solution of Equation (9.39). A, If the slope of the function
y2(!) at ! = 0 is smaller than 1, the only solution of the equation is ! = 0. B,
When the slope is larger than 1, a non-trivial solution !∗ ̸= 0 can be found.

The value of the disease parameters yielding the equality in Equation (9.40)
defines the epidemic threshold condition that reads as

β

µ
= ⟨k⟩

⟨k2⟩
. (9.41)

This condition recovers the results obtained from the linear approximation
at short times and confirms that topological fluctuations lower the epidemic
threshold.

It is moreover possible to compute explicitly the behavior of the stationary
density of infected individuals i∞ = limt→∞ i(t) as a function of the disease
parameters in random uncorrelated scale-free networks where the heavy-tailed
character is modeled by a power-law degree distribution with arbitrary expo-
nent γ (Pastor-Satorras and Vespignani, 2001b). Consider a network which, in
the continuous k approximation, has a normalized degree distribution P(k) =
(γ − 1)mγ−1k−γ and average degree ⟨k⟩ = (γ − 1)m/(γ − 2), where m is the
minimum degree of any vertex. According to the general result (9.41), the epi-
demic threshold for infinite networks depends on the second moment of the degree
distribution and is given, as a function of γ , by

β

µ
=

⎧
⎨

⎩

γ − 3
m(γ − 2)

if γ > 3

0 if γ ≤ 3
. (9.42)

The behavior of the density of infected individuals in the stationary state may be
found by solving explicitly the self-consistent equation for ! in the limit of β/µ

approaching the epidemic threshold. The full calculation yields different cases as a
function of the exponent γ (Pastor-Satorras and Vespignani, 2001a):

(a) 2 < γ < 3

• The slope of y2(θ) at 
θ=0 what matters!

• We have to match the 
derivative of y1(θ) and 
y2(θ)

Slope>1

Non-trivial solution
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Unlike clearly defined ‘real-world’ net-
works1, social networks tend to be
subjective to some extent2,3 because

the perception of what constitutes a social
link may differ between individuals. One
unambiguous type of connection, however,
is sexual contact, and here we analyse the
sexual behaviour of a random sample of
individuals4 to reveal the mathematical fea-
tures of a sexual-contact network. We find
that the cumulative distribution of the
number of different sexual partners in one
year decays as a scale-free power law that
has a similar exponent for males and
females. The scale-free nature of the web of
human sexual contacts indicates that strat-
egic safe-sex campaigns are likely to be the
most efficient way to prevent the spread of
sexually transmitted diseases.

Many real-world networks1 typify the
‘small-world’ phenomenon5, so called
because of the surprisingly small average
path lengths between nodes6,7 in the 
presence of a large degree of clustering3,6

(Fig. 1). Small-world networks are classed
as single-scale, broad-scale or scale-free,
depending on their connectivity distribu-
tion, P(k), where k is the number of links
connected to a node8. Scale-free networks,
which are characterized by a power-law
decay of the cumulative distribution
P(k)!k!", may be formed as a result of
preferential attachment of new links
between highly connected nodes9,10.

We analysed the data gathered in a 1996
Swedish survey of sexual behaviour4. The
survey involved a random sample of 4,781
Swedes (aged 18–74 years) and used struc-
tured personal interviews and question-

naires. The response rate was 59%, which
corresponds to 2,810 respondents. Two
independent analyses of non-response error
revealed that elderly people, particularly
women, are under-represented in the sam-
ple; apart from this skew, the sample is rep-
resentative in all demographic dimensions.

Connections in the network of sexual
contacts appear and disappear as sexual
relations are initiated and terminated. To
investigate the connectivity of this dynamic
network, in which links may be short-lived,
we first analysed the number, k, of sex part-
ners over a relatively short time period —
the 12 months before the survey. Figure 2a
shows the cumulative distribution, P(k), for
female and male respondents. The data
closely follow a straight line in a double-
logarithmic plot, which is consistent with 
a power-law dependence. Males report a
larger number of sexual partners 
than females11, but both show the same 
scaling properties.

These results contrast with the exponen-
tial or gaussian distributions — for which
there is a well-defined scale — found for
friendship networks8. Plausible explana-
tions for the structure of the sexual-contact
network described here include increased
skill in acquiring new partners as the num-
ber of previous partners grows, varying
degrees of attractiveness, and the motiva-
tion to have many new partners to sustain
self-image. Our results are consistent with
the preferential-attachment mechanism of
scale-free networks: evidently, in sexual-
contact networks, as in other scale-free 
networks, ‘the rich get richer’9,10.

We next analysed the total number of

partners, ktot, in the respondent’s life up to
the time of the survey. This value is not 
relevant to the instantaneous structure of
the network, but may help to elucidate the
mechanisms responsible for the distribu-
tion of number of partners. Figure 2b shows
the cumulative distribution, P(ktot): for
ktot#20, the data follow a straight line in a
double-logarithmic plot, which is consis-
tent with a power-law dependence in the
tails of the distribution.

Our most important finding is the scale-
free nature of the connectivity of an 
objectively defined, non-professional social
network. This result indicates that the 
concept of the ‘core group’ considered in
epidemiological studies12 must be arbitrary,
because there is no well-defined threshold
or boundary that separates the core group
from other individuals (as there would be
for a bimodal distribution).

Our results may have epidemiological
implications, as epidemics arise and propa-
gate much faster in scale-free networks 
than in single-scale networks6,13. Also, the
measures adopted to contain or stop the
propagation of diseases in a network need
to be radically different for scale-free net-
works. Single-scale networks are not sus-
ceptible to attack at even the most
connected nodes, whereas scale-free net-
works are resilient to random failure but are
highly susceptible to destruction of the
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The web of human sexual contacts
Pro m isc u o us in d ivid u a ls are th e vu ln era b le n o d e s to targ e t in sa f e -s e x c a m p a ig ns.

Figure 1 It’s a small world: social networks have small average
path lengths between connections and show a large degree of
clustering. Painting by Idahlia Stanley.

Figure 2 Scale-free distribution of the number of sexual partners for females and males. a, Distribution of number of partners, k, in the
previous 12 months. Note the larger average number of partners for male respondents: this difference may be due to ‘measurement bias’
— social expectations may lead males to inflate their reported number of sexual partners. Note that the distributions are both linear, 
indicating scale-free power-law behaviour. Moreover, the two curves are roughly parallel, indicating similar scaling exponents. For
females, "$2.54%0.2 in the range k#4, and for males, "$2.31%0.2 in the range k#5. b, Distribution of the total number of part-
ners ktot over respondents’ entire lifetimes. For females, "tot$2.1%0.3 in the range ktot#20, and for males, "tot$1.6%0.3 in the
range 20&ktot&400. Estimates for females and males agree within statistical uncertainty.
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Guimera et.al. (2004) - airplane network!

where ! ! 0.9 " 0.1 is the power law exponent, g(u) is a
truncation function, and b# is a crossover value that depends on
the size of the network.

A question prompted by the previous results regarding the
degree and the centrality of cities is: ‘‘Are the most connected cities
also the most central?’’ To answer this question, we analyzed first the
network obtained by randomizing the worldwide air transportation
network (Fig. 1b). We found that the distribution of betweennesses
still decays as a power law but, in this case, with a much larger
exponent value, ! ! 1.5 " 0.1. This finding indicates the existence
of anomalously large betweenness centralities in the air transpor-
tation network.

For the randomized network, the degree of a node and its
betweenness centrality are strongly correlated; i.e., highly con-
nected nodes are also the most central (Fig. 2a). In contrast, for the
worldwide air transportation network, it turns out that there are
cities that are not hubs, i.e., have small degrees but that nonetheless
have very large betweennesses (Fig. 2a).

To better illustrate this finding, we plotted the 25 most connected
cities and contrasted such a plot with another of the 25 most central
cities according to their betweenness (Fig. 2 b and c). Although the
most connected cities are located mostly in Western Europe and
North America, the most central cities are distributed uniformly
across all of the continents. Significantly, each continent has at least

one central city, which is typically highly connected when compared
with other cities in the continent, i.e., Johannesburg in Africa or
Buenos Aires and São Paulo, Brazil, in South America. Interest-
ingly, besides these cities with relatively large degree, there are
others, such as Anchorage (AK) and Port Moresby (Papua New
Guinea), that, despite having small degrees, are among the most
central in the network (Table 2).

Degree-Betweenness Anomalies and Multicommunity
Networks
Nodes with small degree and large centrality can be regarded as
anomalies. Other complex networks that have been described in the

Fig. 1. Degree and betweenness distributions of the worldwide air transpor-
tationnetwork. (a)Cumulativedegreedistributionplotted indouble-logarithmic
scale. The degree k is scaled by the average degree z of the network. The
distribution displays a truncated power-law behavior with exponent " ! 1.0 "
0.1. (b) Cumulative distribution of normalized betweennesses plotted in double-
logarithmic scale. The distribution displays a truncated power-law behavior with
exponent ! ! 0.9 " 0.1. For a randomized network with exactly the same degree
distribution as the original air transportation network, the betweenness distri-
bution decays with an exponent ! ! 1.5 " 0.1. A comparison of the two cases
clearly shows the existence of an excessive number of large betweenness values
in the air transportation network. Fig. 2. Most-connected versus most-central cities in the worldwide air

transportation network. (a) Betweenness as a function of the degree for the
cities in the worldwide air transportation network (circles). For the random-
ized network, the betweenness is well described as a quadratic function of the
degree (dashed line) with 95% of all data falling inside the gray region. In
contrast to the strong correlation between degree and betweenness found
for randomized networks, the air transportation network comprises many
cities that are highly connected but have small betweenness and, conversely,
many cities with small degree and large betweenness. We define a blue region
containing the 25 most central cities in the world and a yellow region con-
taining the 25 most connected cities. Surprisingly, we find there are only a few
cities with large betweenness and degree (green region, which is the inter-
section of the blue and yellow regions). (b) The 25 most connected cities in the
world. (c) The 25 most central cities in the world.

7796 ! www.pnas.org"cgi"doi"10.1073"pnas.0407994102 Guimerà et al.

Liljeros et.al. (2001) - human sexual networks!

Human sexual network 
Email network 

Lilijeros et al., Nature (2001),  
Schneeberger et al. STD (2004) 

Ebel et al. (2002) 

Air transportation network 

Colizza et al., PNAS 2006 

SIS Model – Absence of Epidemic Threshold!

Many(networks(will(have(vanishing(epidemic(threshold!(

� 

λc =
k

k 2 − k

Many real networks have broad degree 
distribution with small exponent and 
vanishing epidemic threshold



Immunisation and control
Barrat, Barthelem

y, Vespignani book

How to control epidemics?!

• Transmission reduced intervention!
• face masks!
• gloves, hand washing!

• Contact reducing interventions!
• quarantaines!
• closing schools!
• reduce travels and mobility!

• Vaccination: remove nodes from 
the network!

• Question: who should we 
vaccinate?

These strategies may reduce the 
transmission rate if applied for the 
majority of the population

These strategies make the 
networks sparser and may 
increase the critical transmission 
rate (and they are very expensive)

These strategies suppress the 
population below the epidemic 
threshold



Immunisation strategies
Barrat, Barthelem

y, Vespignani book

Random immunisation!

• Immunise g fraction of nodes randomly 
selected from the population!

• This strategy does not make difference 
between nodes of different degrees!

• It is rescaling the spreading rate!

Immunization strategies!

� 

β →β(1− g)

A density g individuals are randomly chosen to be immunized.  

� 

β
µ
(1− gc ) =

k
k 2

� 

k 2 →∞, Random immunization cannot prevent the outbreak. If  

Immunized  
Immunization strategies!

� 

β →β(1− g)

A density g individuals are randomly chosen to be immunized.  

� 

β
µ
(1− gc ) =

k
k 2

� 

k 2 →∞, Random immunization cannot prevent the outbreak. If  

Immunized  

• A critical immunised population size can be defined!
!
!
!

• If not as ⟨k2⟩ → ∞ the threshold still goes λc → 0, only the 
epidemics will be slower!

• Random immunisation cannot prevent the outbreak

where gc must be gc=1



Immunisation strategies
Barrat, Barthelem

y, Vespignani book

Targeted immunisation!
• Rank nodes by their degrees and introduce a g 

fraction with the highest degree!
• By removing a g fraction of highest degrees the 

degree distribution will change - fluctuations of ⟨k2⟩ 
will be reduced!

• There will be a critical gc fraction which will stop 
the epidemics as threshold will became larger than 
zero!
!

!
• The leading term of the critical fraction (for a BA 

network with γ=3):!
!

!
• This is the point where the network becomes 

“disconnected” regarding the diffusion of epidemics!
• Problem: this immunisation strategy requires 

complete knowledge about the network (what we 
usually do not have!)

9.4 Immunization of heterogeneous networks 209

degree k > kc(g) are immune. At the same time, the infective agent cannot prop-
agate along all the edges emanating from immune vertices, which translates into
a probability r(g) of deleting any individual contacts in the network. The elimi-
nation of edges and vertices for the spreading purposes yields a new connectivity
pattern whose degree distribution and relative moments ⟨k⟩g and ⟨k2⟩g can be com-
puted as a function of the density of immunized individuals (see the analogous
calculation for the targeted removal of vertices in Section 6.5). The protection of
the network will be achieved when the effective network on which the epidemic
spreads satisfies the inequality ⟨k⟩g/⟨k2⟩g ≥ β/µ, yielding the implicit equation
for the immunization threshold

⟨k⟩gc

⟨k2⟩gc

= β

µ
. (9.63)

The immunization threshold is therefore an implicit function gc(β/µ) and its
analytic form will depend on the original degree distribution of the network.

In order to assess the efficiency of the targeted immunization scheme it is pos-
sible to perform the explicit calculation for an uncorrelated network with degree
exponent γ = 3 (Pastor-Satorras and Vespignani, 2002b). In this case the leading
order solution for the immunization threshold in the case of targeted immunization
reads as

gc ∼ exp(−2µ/mβ), (9.64)

where m is the minimum degree of the network. This clearly indicates that the
targeted immunization program is extremely convenient, with a critical immu-
nization threshold that is exponentially small in a wide range of spreading rates.
This theoretical prediction can be tested by performing direct numerical simula-
tions of the SIS model on Barabási–Albert networks in the presence of targeted
immunization. In Figure 9.8 the results of the targeted immunization are com-
pared with simulations made with a uniform immunization (Pastor-Satorras and
Vespignani, 2002b). The plot shows the reduced prevalence ig/ i0, where ig is the
stationary prevalence in the network with immunization density g and i0 is the
stationary prevalence in the non-immunized network, at a fixed spreading rate
β/µ = 0.25. This plot indicates that, for uniform immunization, the prevalence
decays very slowly when increasing g, and will be effectively null only for g → 1,
as predicted by Equation (9.62).4 On the other hand, for the targeted immunization
scheme, the prevalence shows a very sharp drop and exhibits the onset of a sharp
immunization threshold above which the system is infection-free. A linear regres-
sion from the largest values of g yields an approximate immunization threshold

4 The threshold is not exactly 1 because of the usual finite size effects present even in the simulations which are
performed on networks of size N = 107.
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Fig. 9.8. Reduced prevalence ig/ i0 from numerical simulations of the SIS model
in the Barabási–Albert network (with m = 2) with uniform and targeted immu-
nization, at a fixed spreading rate β/µ = 0.25. A linear extrapolation from the
largest values of g yields an estimate of the threshold gc ≃ 0.06 for targeted
immunization. From Pastor-Satorras and Vespignani (2002b).

gc ≃ 0.06, that definitely proves that scale-free networks are very sensitive to the
targeted immunization of a very small fraction of the most connected vertices.

Let us finally mention that, in a similar spirit, Dezsö and Barabási (2002) propose
a level of safety and protection policy, which is proportional to the importance of
the vertex measured as a function of its local degree. This implies that high degree
vertices are cured with a rate proportional to their degree, or more generally to kα.
At the theoretical level it is possible to show that any α > 0 reintroduces a finite
epidemic threshold.

9.4.3 Immunization without global knowledge

While the targeted strategy is very effective, it suffers from a practical drawback
in its real-world application. Its implementation requires a complete knowledge
of the network structure in order to identify and immunize the most connected
vertices. For this reason, several strategies to overcome this problem have been
proposed, mainly relying just on a local, rather than a global, knowledge of the
network. In particular, an ingenious immunization strategy was put forward by
Cohen, Havlin and ben Avraham (2003), levering on a local exploration mecha-
nism (see also Madar et al. [2004]). In this scheme, a fraction g of vertices are
selected at random and each one is asked to point to one of its neighbors. The
neighbors, rather than the selected vertices, are chosen for immunization. Since
by following edges at random it is more probable to point to high degree vertices

Pastor-Satorras &Vespignani, (2002)



Immunisation strategies
Barrat, Barthelem

y, Vespignani book

Immunisation without global knowledge!
• Exploit degree heterogeneity and that a randomly 

selected link connects to a large degree node with 
higher probability!

• Method:!
• Select a random node (~P(k))!
• Select a random link of the randomly selected node 

and immunise (~kP(k))

R. Cohen et al, Phys. Rev. Lett 91, 247901 (2003)

Efficient Immunization Strategies for Computer Networks and Populations

Reuven Cohen,1,* Shlomo Havlin,1 and Daniel ben-Avraham2

1Minerva Center and Department of Physics, Bar-Ilan University, Ramat-Gan, 52900, Israel
2Department of Physics, Clarkson University, Potsdam New York 13699-5820, USA

(Received 24 April 2003; published 9 December 2003)

We present an effective immunization strategy for computer networks and populations with broad
and, in particular, scale-free degree distributions. The proposed strategy, acquaintance immunization,
calls for the immunization of random acquaintances of random nodes (individuals). The strategy
requires no knowledge of the node degrees or any other global knowledge, as do targeted immunization
strategies. We study analytically the critical threshold for complete immunization. We also study the
strategy with respect to the susceptible-infected-removed epidemiological model. We show that the
immunization threshold is dramatically reduced with the suggested strategy, for all studied cases.

DOI: 10.1103/PhysRevLett.91.247901 PACS numbers: 89.75.Hc, 64.60.Ak, 87.19.Xx

It is well established that random immunization re-
quires immunizing a very large fraction of a computer
network, or population, in order to arrest epidemics that
spread upon contact between infected nodes (or individu-
als) [1–7]. Many diseases require 80%–100% immuniza-
tion (for example, measles requires 95% of the population
to be immunized [1]). The same is correct for the Internet,
where stopping computer viruses requires almost 100%
immunization [5–7]. On the other hand, targeted immu-
nization of the most highly connected individuals [1,5,8–
11], while effective, requires global information about the
network in question, rendering it impractical in many
cases. Here, we develop a mathematical model and pro-
pose an effective strategy, based on the immunization of a
small fraction of random acquaintances of randomly
selected nodes. In this way, the most highly connected
nodes are immunized, and the process prevents epidemics
with a small finite immunization threshold and without
requiring specific knowledge of the network.

Social networks are known to possess a broad distribu-
tion of the number of links (contacts), k, emanating from
a node (an individual) [12–14]. Examples are the web of
sexual contacts [15], movie-actor networks, science cita-
tions, and cooperation networks [16,17], etc. Computer
networks, both physical (such as the Internet [18]) and
logical (such as the World Wide Web [19], and email [20]
and trust networks [21]) are also known to possess wide,
scale-free, distributions. Studies of percolation on broad-
scale networks show that a large fraction fc of the nodes
need to be removed (immunized) before the integrity of
the network is compromised. This is particularly true for
scale-free networks, P!k" # ck$! (k % m), where 2<
!< 3, the case of most known networks [12–14], where
the percolation threshold fc ! 1, and the network re-
mains connected (contagious) even after removal of
most of its nodes [6]. In other words, with a random
immunization strategy almost all of the nodes need to
be immunized before an epidemic is arrested (see Fig. 1).

When the most highly connected nodes are targeted
first, removal of just a small fraction of the nodes results

in the network’s disintegration [5,10,11]. This has led to
the suggestion of targeted immunization of the HUBs
(the most highly connected nodes in the network) [8,22].
However, this approach requires a complete, or at least
fairly good knowledge of the degree of each node in the
network. Such global information often proves hard to
gather, and may not even be well defined (as in social
networks, where the number of social relations depends
on subjective judging). The acquaintance immunization
strategy proposed herein works at low immunization
rates, f, and obviates the need for global information.

In our approach, we choose a random fraction p of the
N nodes and look for a random acquaintance with whom
they are in contact (thus, the strategy is purely local,
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λ

0

0.2

0.4

0.6

0.8

1

fc

FIG. 1 (color online). Critical probability, fc, as a function of
! in scale-free networks (with m # 1), for the random immu-
nization (top curve and open circles), acquaintance immuniza-
tion (middle curve and top full circles), and double
acquaintance immunization (bottom curve and bottom full
circles) strategies. Curves represent analytical results (an ap-
proximate one for double acquaintance), while data points
represent simulation data, for a population N # 106. (Because
of the population’s finite size, fc < 1 for random immunization
even when !< 3.) Squares are for random (open) and acquain-
tance immunization (full) of assortatively mixed networks
[where links between sites of degree k1 and k2 !> k1" are
rejected with probability 0:7&1$ !k1=k2"' ].
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• Considerably out-performs the 
random strategy !

• It performs worse compared to the 
targeted strategy!

• Does not require global knowledge 
about the network structure



Spreading 
processes!

on temporal 
networks



Temporal networks
• Interactions between nodes are very fast and repetitive on established links!

• Description of networks on the level of single nodes and events!
• Challenge: Understand which microscopic correlations are responsible for the emergence of 

global structure!
• Structural properties: measures must be re-defined with time considered!

• Microscopic level: temporal centrality and time respecting paths!
• Mezoscopic level: temporal and recurrent motifs!
• Macroscopic level: circadian fluctuations, …!

• Dynamical processes!
• co-evolving with the network: processes and interactions are evolving on the same time-scales!
• Effect of spatial, topological and temporal correlations are amplified!

Challenge: completely new concept which need to build on novel methodology

(a) (b) (c) Karsai et.al. (2013)



Examples for temporal networks

C. Tantipathananandh, et.al. (2007)!Temporal network of zebras

Temporal network of sex buyers and sellers

A

B

C

D

Temporal networks of mobile call communication
M. Karsai, et.al. (2012)!

L. E. C. Rocha, et.al.  (2010!

• Person-to-person communication 
• Mobile-phone calls 
• Email communication 
• Face-to-face interactions 

• One-to-many information dissemination 
• Information broadcasting 
• Microblogging 

• Distributed computing 
• Communication between computational units 

• Infrastructural systems 
• Transportation 

• Cell biology 
• Protein-protein interactions 
• Gene regulatory networks 

• …

Human proximity Van der Broeck et.al. (2011)



Information spreading on temporal networks

Observation: information spreading can be very slow on temporal 
networks

Role of evolving structure!
• The slow evolution of the network structure effects 

the dynamics of any collective phenomena!
• Nothing can spread on the network globally without 

the emergence of a large connected component!
• Speed of the LCC evolution sets up an upper limit 

for the speed of spreading phenomena

Earlier assumptions:!
• The network structure is static!

• Every node and link are present in the network from the very beginning!
• Dynamical process evolving on the top of the static structure!

• It is only effected by the (heterogeneous) topology of the network



Spreading on temporal networks

Role of temporal interactions!
• In reality information can spread between 

nodes only at the time of their interactions!
• The order of interactions determine the 

possible time respecting paths which along 
the information can be transmitted

Earlier assumptions:!
• Because every link is presented always they allow to spread information at any time

a

b

c

d
e



Spreading on temporal networks
Role of temporal interactions

• Network: snow-ball 
sample of a mobile call 
networks!

• Interactions: mobile calls!
• Process: SI process 

initiated from a single 
seed!

• Information spread 
between interacting 
individuals with β=1

~520 days



Temporal network models
Temporal network models are still very rare and their introduction 
is an actual challenge…!
!

Randomised reference models!
• Take an empirical network!
• Remove some characteristic correlations by random shuffling!
• Static networks: Configuration model and its variances!
• Temporal networks: …!
!

Contact network models!
• Take a set of nodes!
• Define a dynamics which drives their (temporal) interactions!
• Evolving networks: Barabási-Albert model!
• Temporal networks: …



Spreading on temporal networks
Data-driven model experiment!

• Take the sequence of mobile communication events!

• Initiate an SI process from a randomly selected nodes at a randomly selected time!

• Allow spreading with β=1 only between interacting individuals at the time of their 
interactions (independent of the direction of the communication)!

• Once you reached the last event apply a periodic temporal boundary condition 
(jump to the beginning of the sequence)!

• Perform the process until everyone is reached in the network by the information!

• Repeat the experiment on randomised reference model with certain correlations 
removed

Why SI?!
• This is the simplest model of information spreading!

• No critical threshold: the process always reach 100% prevalence!

• Since β=1 it gives the fastest possible scenario of information spreading!



Original event sequence

• Time ordered sequence of original call events!

• It contains all possible correlations which take place in the system !

• Measure

WT BD LL CS 25%m

Original ✓ ✓ ✓ ✓ 33,7

i(t) =
I(t)

N

i(t
)



Randomised reference model

Weight-topology correlations

Bursty dynamical behavior

Link-link correlations

Community structure

• Granovetter’s Theorem (PNAS 104, 7332 (2007))

• Events are clustered in time !
         (J.Phys.A 41,224015(2008)) 

• Causality between consecutive calls

• Densely connected subgroups

Shuffling

• Configuration model !

• Random network

A!

Original
network

Original spanning tree

Configured network

Random spanning tree

Random network

Configured network reference

Random network reference

• Take the minimal spanning tree of 
the original network

• Configure the rest of the edges

• Communities are destroyed BUT 
the degree distribution remains

• Redistribute communication with 
original event sequence

• Take a random spanning tree

• Insert randomly the rest of the 
edges

• Degree distribution and 
communities are destroyed

Wednesday, March 24, 2010

A!

Original
network

Original spanning tree

Configured network

Random spanning tree

Random network

Configured network reference

Random network reference

• Take the minimal spanning tree of 
the original network

• Configure the rest of the edges

• Communities are destroyed BUT 
the degree distribution remains

• Redistribute communication with 
original event sequence

• Take a random spanning tree

• Insert randomly the rest of the 
edges

• Degree distribution and 
communities are destroyed

Wednesday, March 24, 2010

A!

Original
network

Original spanning tree

Configured network

Random spanning tree

Random network

Configured network reference

Random network reference

• Take the minimal spanning tree of 
the original network

• Configure the rest of the edges

• Communities are destroyed BUT 
the degree distribution remains

• Redistribute communication with 
original event sequence

• Take a random spanning tree

• Insert randomly the rest of the 
edges

• Degree distribution and 
communities are destroyed

Wednesday, March 24, 2010

Configuration model

Random network



Time shuffled configuration network

• Using configuration model to destroy community structure, but keep N, |E| and the 
network connected!

• Shuffle the event times to destroy bursty dynamics

WT BD LL CS 25%m

Original ✓ ✓ ✓ ✓ 33,7

TimeConf
.

✕ ✕ ✕ ✕ 16,4

• No correlation takes place in 
the system

i(t
)



Randomised reference model

Shuffling

• Shuffle the event times of calls and destroy temporal 
heterogeneties!

• keep P(w), P(k), P(s), w-top correlations!

• destroy P(tie), link-link correlations
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Weight-topology correlations

Bursty dynamical behavior

Link-link correlations

Community structure

• Granovetter’s Theorem (PNAS 104, 7332 (2007))

• Events are clustered in time !
         (J.Phys.A 41,224015(2008)) 

• Causality between consecutive calls

• Densely connected subgroups



Time shuffled network

• Using  the original links and network!

• Bursty dynamical behaviour and link-link correlations are destroyed

• The infection speed is slowed 
down by bursty dynamics

WT BD LL CS 25%m

Original ✓ ✓ ✓ ✓ 33,7

TimeConf
.

✕ ✕ ✕ ✕ 16,4

Time ✓ ✕ ✕ ✓ 22,9 i(t
)



Randomised reference model

Shuffling

• Change complete call sequences of individuals 
regardless of their edge weight!

• keep P(w), P(k), P(tie)!

• destroy P(s), link-link correlations, w-top correlations
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Weight-topology correlations

Bursty dynamical behavior

Link-link correlations

Community structure

• Granovetter’s Theorem (PNAS 104, 7332 (2007))

• Events are clustered in time !
         (J.Phys.A 41,224015(2008)) 

• Causality between consecutive calls

• Densely connected subgroups



Link sequence shuffled event sequence

• Shuffle link call sequences between randomly chosen links!

• Link-link and weight-topology correlations are switched off

• Weight-topology correlations also 
slow down the dynamics

WT BD LL CS 25%m

Original ✓ ✓ ✓ ✓ 33,7

TimeConf
.

✕ ✕ ✕ ✕ 16,4

Time ✓ ✕ ✕ ✓ 22,9

Link ✕ ✓ ✕ ✓ 27,5

i(t
)



Randomised reference model

Shuffling

• Change complete call sequences of individuals!

• keep P(w), P(k), P(s), P(tie), w-top correlations!

• destroy link-link correlations
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Equal link sequence shuffled event sequence

• Shuffle call sequences between links having the same weight!

• Only link-link correlations are destroyed

• Multilink correlations accelerate 
the spreading process

WT BD LL CS 25%m
Original ✓ ✓ ✓ ✓ 33,7
TimeConf
.

✕ ✕ ✕ ✕ 16,4
Time ✓ ✕ ✕ ✓ 22,9
Link ✕ ✓ ✕ ✓ 27,5
Equal link ✓ ✓ ✕ ✓ 35,3

i(t
)



Long temporal behaviour

• Measure the distribution of complete 
infection time

• Clear evidence for influence of 
different correlations at late time 
stage!

• Multilink correlations play a 
contrary role than at early time 
stage

Weight-topology correlations and  bursty temporal behaviour are responsible mostly 
for the slow spreading!

            M Karsai, M Kivelä, RK Pan, K Kaski, J Kertész, AL Barabási, J Saramäki, PRE(R) 83, 056125 (2011)!

                M Kivelä, RK Pan, K Kaski, J Kertész, J Saramäki, M Karsai, J. Stat. Mech. P03005 (2012)!

                Similar results with SIR: G Miritello, E Moro and R Lara, PRE(R) 83 045102 (2011)
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Statistical mechanics of complex networks

Réka Albert* and Albert-László Barabási
Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556

(Published 30 January 2002)

Complex networks describe a wide range of systems in nature and society. Frequently cited examples
include the cell, a network of chemicals linked by chemical reactions, and the Internet, a network of
routers and computers connected by physical links. While traditionally these systems have been
modeled as random graphs, it is increasingly recognized that the topology and evolution of real
networks are governed by robust organizing principles. This article reviews the recent advances in the
field of complex networks, focusing on the statistical mechanics of network topology and dynamics.
After reviewing the empirical data that motivated the recent interest in networks, the authors discuss
the main models and analytical tools, covering random graphs, small-world and scale-free networks,
the emerging theory of evolving networks, and the interplay between topology and the network’s
robustness against failures and attacks.
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The Structure and Function of
Complex Networks∗

M. E. J. Newman†

Abstract. Inspired by empirical studies of networked systems such as the Internet, social networks,
and biological networks, researchers have in recent years developed a variety of techniques
and models to help us understand or predict the behavior of these systems. Here we
review developments in this field, including such concepts as the small-world effect, degree
distributions, clustering, network correlations, random graph models, models of network
growth and preferential attachment, and dynamical processes taking place on networks.
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a b s t r a c t

The modern science of networks has brought significant advances to our understanding of
complex systems. One of the most relevant features of graphs representing real systems
is community structure, or clustering, i.e. the organization of vertices in clusters, with
many edges joining vertices of the same cluster and comparatively few edges joining
vertices of different clusters. Such clusters, or communities, can be considered as fairly
independent compartments of a graph, playing a similar role like, e.g., the tissues or the
organs in the human body. Detecting communities is of great importance in sociology,
biology and computer science, disciplines where systems are often represented as graphs.
This problem is very hard and not yet satisfactorily solved, despite the huge effort of a
large interdisciplinary community of scientists working on it over the past few years. We
will attempt a thorough exposition of the topic, from the definition of the main elements
of the problem, to the presentation of most methods developed, with a special focus on
techniques designed by statistical physicists, from the discussion of crucial issues like the
significance of clustering and how methods should be tested and compared against each
other, to the description of applications to real networks.

© 2009 Elsevier B.V. All rights reserved.
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a b s t r a c t

A great variety of systems in nature, society and technology – from the web of sexual
contacts to the Internet, from the nervous system to power grids – can be modeled as
graphs of vertices coupled by edges. The network structure, describing how the graph is
wired, helps us understand, predict and optimize the behavior of dynamical systems. In
many cases, however, the edges are not continuously active. As an example, in networks
of communication via e-mail, text messages, or phone calls, edges represent sequences
of instantaneous or practically instantaneous contacts. In some cases, edges are active for
non-negligible periods of time: e.g., the proximity patterns of inpatients at hospitals can
be represented by a graph where an edge between two individuals is on throughout the
time they are at the same ward. Like network topology, the temporal structure of edge
activations can affect dynamics of systems interacting through the network, from disease
contagion on the network of patients to information diffusion over an e-mail network. In
this review, we present the emergent field of temporal networks, and discuss methods
for analyzing topological and temporal structure and models for elucidating their relation
to the behavior of dynamical systems. In the light of traditional network theory, one can
see this framework as moving the information of when things happen from the dynamical
system on the network, to the network itself. Since fundamental properties, such as the
transitivity of edges, do not necessarily hold in temporal networks, many of thesemethods
need to be quite different from those for static networks. The study of temporal networks is
very interdisciplinary in nature. Reflecting this, even the object of study has many names—
temporal graphs, evolving graphs, time-varying graphs, time-aggregated graphs, time-
stamped graphs, dynamic networks, dynamic graphs, dynamical graphs, and so on. This
review covers different fields where temporal graphs are considered, but does not attempt
to unify related terminology—rather, we want to make papers readable across disciplines.
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