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Expériences de recherche

e Condensed Matters Physics

eCritical dynamics of geometrically frustrated systems
eConformal invariance in strongly disordered systems
eSurface equivalence between disordered spin systems

® Processes on complex networks
eOptimal cooperation on scale-free networks
eNon-equilibrium phase transitions in scale-free networks
e|nfluence of temporal and topological correlations on information diffusion in social networks

e Temporal and dynamical networks
eEntropy of dynamical social networks
e\Mesoscopic analysis of community structures in large social networks
eCausal motifs in temporal networks
eEvolution of the structure of communication networks
eUniversal characteristics of correlated temporal behaviour

e Human dynamics and social contagion phenomena
eCircadian fluctuations and burstiness in human communication dynamics
eCorrelated dynamics of egocentric networks
eSpatio-temporal correlations of mobile service usage
eHeterogeneous evolution of egocentric networks in Skype
eRole of strong ties in information diffusion processes
eDynamics of online adoption spreading
eCascading behaviour of online adoption behaviour



Outline

Brief introduction to complex networks
The network representation

Basic network properties

Random networks - the Erd6s-Rényi model
Scale-free networks - the Barabasi-Albert model
Temporal networks

Spreading processes
- Examples and motivations
« General spreading models

Spreading processes on networks
- homogeneous networks
* heterogeneous networks
* Immunisation strategies

Spreading processes on temporal networks

 null model approach
- activity driven approach
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Brief introduction to
complex networks




Complex

[adj., v. kuh m-pleks, kom-pleks; n. kom-pleks]
—adjective
’

composed of many interconnected parts;

compound; composite: a complex highway
system.

2

characterized by a very complicated or
involved arrangement of parts, units, etc.:
complex machinery.

3.

so complicated or intricate as to be hard to
understand or deal with: a complex problem.

Complexity, a scientific theory which
asserts that some systems display
behavioral phenomena that are completely
inexplicable by any conventional analysis
of the systems’ constituent parts. These
phenomena, commonly referred to as
emergent behaviour, seem to occur in
many complex systems involving living
organisms, such as a stock market or the
human brain.

Complexity




Complex Systems

- Self-organised
* Evolving

» Adaptive

No central
organising mind

* No conventional
way of description




Complex Systems: how to approach

Statistical description

Systems with random features

One sample does not
characterise the typical
behaviour

Statistical averages of quantities

Analytical approach

Write down (coupled) differential
equations for interactions

Attempt to solve

Usually no closed-form
solutions; numerical solutions,
phase space analysis, etc

OR

Empirical data analysis

How to detect patterns and
structure in information?

How to characterize the system
instead of its building blocks?

Multivariate methods etc

Simulations

Postulate rules (e.g. the ant
raids)

Simulate and observe system
behaviour

Try to match empirical
observations



Complex Networks

...a way of mapping complexity

Each complex system can be interpreted as a complex
network, which identifies the interactions between the
interconnected components

The network approach
» Combines the elements of all the other approach

» Disregards (unnecessary) details of the system
» Focuses on the structure of interactions
- Statistical characterisation of system



The network approach

1. Measuring - make observations on Nature
2. Modelling - attempt to explain observations:
2.1. Choose the right level of coarse-graining
 Units: Vertices or nodes < interacting elements

 Edges or links < interactions

2.2. Strip the problem to its simplest form
. Interaction structure < evolution and behaviour of system

2.3. Formulate the problem in mathematical terms
e Statistical analysis of network structure
 Dynamics of processes taking place on networks
3. Validating - check if calculations or simulations can
e reproduce the observations
e explain the observations
4. Go backto 1. & 2. and rethink



Complex systems as networks

Networks are interpreted as graphs
G=(V, E)

Components < verticesve V

Interactions between components <
edges (u,v) EE

|dentification of vertices and edges
defines the type of the actual
network

o

person friendship
neuron synapse
WWW hyperlink
company ownership
gene regulation




Undirected networks

Opte project

G=(V E)
(uv) EE=0Hu €L

* The directions of edges do
not matter

* Interactions are possible
between connected entities
In both directions

\ The Internet: Nodes - routers, Links - physical wires




Directed networks

Moritz Stefaner, eigenfactor.com

G=(V E)
(u,v) €EE =z (vu) €EE

* The directions of
edges matter

* [nteractions are
possible between
connected entities
only in specified
directions

\ Citation network: Nodes - publications, Links - references



http://eigenfactor.com

Weighted networks

Onnela et.al. New Journal of Physics 9, 179 (2007).

G=(V, E, w)

w.: (u,v) = R

- Strength of
Interactions are
assigned by the
weight of links

Social interaction network: Nodes - individuals
Links - social interactions




Bipartite network
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Planar networks

Viana et.al. Nature Scientific Reports 3:3495 (2013)

Australian higthways network - UK rail systems

G:(I/, E, IOC) 1000 km I v ~ | 300 km

loc:v=(xy) nd | 10 '
* Nodes can be AR TR
embedded in a plane e Voo
. Bologna street network | Oxford street network
» Geo-localised |
networks
» Spatial networks
Nantes “island street network Nantes'island water network

Street networks:
Nodes - junctions, Links - streets



Multiplex and multilayer networks

G=(V E), i=1..M

* Nodes can be present in
multiple networks
simultaneously

* These networks are
connected (can influence
each other) via the
common nodes

Gomes et.al. Phys. Rev. Lett. 110, 028701 (2013)

Karsai et.al. (submitted)
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Skype adoption network
Nodes - users, Links - social ties,
Colours - service adoption/termination




Temporal and evolving networks
G=(V, Ey, (uvt,d) € E;

t - time of interaction (u,v)
d - duration of interaction (u,v,t)

» Temporal links encode time varying interactions

Mikko Kivela

G=(Vs, Er)
V() € Ve
(l/l,\/,l) EE;

» Dynamical nodes and
links encode the
evolution of the
network

» Usually t<<t’

Mobile communication network Mon Jan 1 00:01:51 2007
Nodes - individuals
Links - calls and SMS







Why?

e A common framework applicable to many systems
e Different systems can be studied with same methods
e A “birds-eye” view on the system

MANY NETWORKS SHARE SIMILAR CHARACTERISTICS
e Similar processes shape the networks

WE WILL NEVER UNDERSTAND COMPLEX SYSTEMS
UNLESS WE MAP OUT AND UNDERSTAND THE
NETWORKS BEHIND THEM 4 sarasssi



Why now?
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Slide from CCNR Complex Networks Course
A. L. Barabasi 2012



Why now?
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Why now?

e Data availablility - the Big Data Revolution
e Universality - similar features of very similar systems

e Urgent need to understand complexity
e Economic impact
e Drug design, metabolic engineering
e Human decease network
e Fighting, terrorism and military
e Epidemic forecast
e Brain research

Slide from CCNR Complex Networks Course
A. L. Barabasi 2012



Characteristics:
The node degree




Node degree
« Undirected network
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Degree-distribution

Number of nodes with % links

Bell Curve

o=

f '. Most nodes have

' the same number of links
FLJ\\XHIHI / f

| _+_4, \ No highly
/f)\/ .f‘ﬁ \/'d-. con m’ch’ld nodes

 Quasy-regular structures
- Random graphs

« Erdos-Rényi model

Number of nodes with % links

e

Power Law Distribution

Very many nodes

» | /Z// with only a few links

A few hubs with

|
.-

D Y ____j{__ %

T‘, " large mmzbrr of links
t A \
v W\

| / \

Most of real networks
Scale-free networks

Barabasi-Albert model



Random Graphs

Erdos-Rényi model: simple way to generate random graphs

0.1 p

* The G(n,p) definition 0.14 |
1. Take n disconnected nodes 0.12 |
2. Add an edge between any of the

nodes independently with DA
probabilityp 0.06 |

Alternatively: 0.04 |

0.02

. pick with probability p™(1 — p)(z)—"
a network from the set of all
networks with size n

N-1

Peak at: /’_\

k= (k) =p(N —1)

Binomial distribution Poisson distribution
" Peak at:
k= (k)

ox =p(1—-p)(N —-1)

Width (dispersion): =
or = (k)/?

10 15 20 25 30 39 40

Degree distribution

_ (B
Pk — Te

Poisson distribution



RGOS
Scale-free networks - first observations

Networks of scientific papers perek J. de Solla Price, Science (1965)
« Nodes: scientific papers, Links: citations between them
« Number of citations to scientific papers shows a heavy-tailed distribution

* It can be characterised as a Pareto distribution or power-law distribution

Structure of the WWW R. Albert, H. Jeong, A-L Barabasi, Nature (1999)
Nodes: WWW documents, Links: URL links

More than 3 billions of documents

Collection by a robot which explores all URL links in a document (web site) and
follow them recursively

They found a heavy-tailed degree distribution which could be well approximated
with a power-law function

Pk) ~ k™7

* |t is a scale-free network




Scale-free networks - first observations
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R. Albert, H. Jeong, A-L Barabasi, Nature (1999) =" e ‘
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RGOS

Scale-free networks - other examples

The Iinternet

- Nodes: routers
- Links: Physical wires

10000
"971108.out" ©
exp(7.68585) * x ** ( -2.15632)
1000 + ° 1
100 ¢ 1
10 + AN 1
1 Il
1 10 100

(a) Int-11-97

Faloutsos, Faloutsos and Faloutsos (1999)




RGOS
Scale-free networks - other examples

da

=]
[

—
=]

Guimera et.al. (2004)

=k
T—T T TTIm

Airline route map network

10°E
- Nodes: airports ?
- Links: airplane connections 10°F
1(1'3-

Cumulative distribution, P(>k/z)




RGOS

Scale-free networks - other examples

Scientific collaborations

Nodes: scientists (here geo-localised)

Links: common papers

Map of scientific collaboratlons from 2005 to 2009
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RGOS

Scale-free networks - other examples

Protein networks Jeong etal. 2001

- Nodes: proteins 0 S —
- Links: physical interactions-binding - 10 © BT T oy fohdntial @ -
) 2l 10'2;‘ |
,‘i‘é -+ 10 é_ I T T N B 7
b 0 R fes ° s
& s g2 - _
10 “ |
s 1 10 100 |

1 I I - I1I0 I I - Il(l)

k+k o
k+k
P(k) ~ (k + ky) ™ exp(==——)

T




Scale-free networks - other examples

Liljeros et.al. (2001)

Sexual-interaction networks

Nodes: individuals
Links: sexual incursion

Bearman et.al. (2004)

[he Structure of Romantic and Sexual Relations at "JelTerson High School”
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Each circle represents a student and Bnes connecting stxlents represent romantic relations cccuring withan the 6 months
preceding the interview. Numbers under the figure count the number of times that pattern was observed (1. we found 63
pawrs unconnected to anyone ¢bse)
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Cumulative distribution, P(ktgt)
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Scale-free networks - other examples

Online social networks

- Nodes: individuals
- Links: online interactions

Social network of Steam

http://85.25.226.110/mapper
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http://85.25.226.110/mapper

RGOS

Scale-free networks

Network Size (k) K Your Yin ~ real ‘rand ¢ pow Reference
WWW 325729 4.51 900 2.45 2.1 11.2 832 4.77 Albert, Jeong, and Barabasi 1999
WWW 4x107 7 2.38 2.1 Kumar et al., 1999
WWW 2% 108 7.5 4000 2.72 2.1 16 8.85 7.61 Broder et al., 2000
WWW, site 260 000 1.94 Huberman and Adamic, 2000
Internet, domain® 3015-4389 3.42-3.76 30-40 2.1-22 2.1-22 4 6.3 52 Faloutsos, 1999
Internet, router™ 3888 2.57 30 2.48 248 1215 875 7.67 Faloutsos, 1999
Internet, router™ 150 000 2.66 60 2.4 2.4 11 12.8 7.47 Govindan, 2000
Movie actors® 212250 28.78 900 2.3 2.3 454 3.65 4.01 Barabasi and Albert, 1999
Co-authors, SPIRES* 56 627 173 1100 1.2 1.2 4 212 1.95 Newman, 2001b
Co-authors, neuro.* 209293 11.54 400 2.1 2.1 6 5.01 3.86 Barabasi et al., 2001
Co-authors, math.™ 70 975 3.9 120 2.5 2.5 9.5 8.2 6.53 Barabasi et al., 2001
Sexual contacts™ 2810 3.4 34 Liljeros et al., 2001
Metabolic, E. coli 778 7.4 110 2.2 2.2 32 332 289 Jeong et al., 2000
Protein, S. cerev.™ 1870 2.39 2.4 2.4 Jeong, Mason, et al., 2001
Ythan estuary™ 134 8.7 35 1.05 1.05 243 226 1.71 Montoya and Sol€, 2000
Silwood Park* 154 4.75 27 1.13 1.13 34 323 2 Montoya and Sol€, 2000
Citation 783 339 8.57 3 Redner, 1998
Phone call 53x10° 3.16 2.1 2.1 Atello et al., 2000
Words, co-occurrence® 460902 70.13 2.7 2.7 Ferrer i Cancho and Solée, 2001
Words, synonyms™ 22311 13.48 2.8 2.8 Yook et al., 2001b
Albert, R. et.al. Rev. Mod. Phy. (2002)
Exponents of real-world networks are usually between 2 and 3




RGOS

Scale-free distribution - continuous formalism

P(k)=Ck”’ k=[K

min °

J Ptk =1 C = - (y - DK,
Kmi

P(k)=(y-DK" 'k

min




RGOS

Scale-free distribution - continuous formalism

m-th moment of the degree distribution: < k" >= fka(k)dk

K .

P(k)=(y-DKI k™ k=[K

min

< k" >=(y-DK" [k ak = =D Kialkm
| (m—-—y+1) K min

K

min

(y—D K

- - < k" >= — .
If m Y+1 <0: (m —y + 1) min

If m-y+1>0, the integral diverges.
For a fixed y this means that all moments with m>y-1 diverge.




RGOS

Scale-free distribution - continuous formalism

Network Size (k) K Your Yin
WWW 325729 4.51 900 2.45 2.1
WWW 4x107 7 2.38 2.1
WWW 2%x10° 7.5 4000  2.72 2.1
WWVW, site 260 000 1.94
Internet, domain®*  3015-4389 3.42-3.76 30-40 2.1-2.2 2.1-2.2
Internet, router™ 3888 2.57 30 2.48 2.48
Internet, router™ 150 000 2.66 60 2.4 2.4
Movie actors® 212250 28.78 900 2.3 2.3
Co-authors, SPIRES* 56 627 173 1100 1.2 1.2
Co-authors, neuro.* 209 293 11.54 400 2.1 2.1
Co-authors, math.™ 70975 3.9 120 2.5 2.5
Sexual contacts™ 2810 3.4 34
Metabolic, E. coli 778 7.4 110 2.2 2.2
Protein, S. cerev.™ 1870 2.39 2.4 2.4
Ythan estuary™ 134 8.7 35 1.05 1.05
Silwood Park* 154 4.75 27 1.13 1.13
Citation 783339 8.57 3
Phone call 53%x10° 3.16 2.1 2.1
Words, co-occurrence™ 460902 70.13 2.7 2.7
Words, synonyms™ 22311 13.48 2.8 2.8

Albert, R. et.al. Rev. Mod. Phy. (2002)

Exponents of real-world networks are
usually between 2 and 3

= <k’> diverges if N—w

Consequently:
o1, = (k%) = (k)*)'? = o0
k= (k) +op = (k) £ 00

Average values are meaningless since
the fluctuations are infinitely large



RGOS

Scale-free networks - summary
\

Ycollab
Ymatab
Yintern Ysynonyms
W W
Yl’” YactorY IUt Ycita Y5
I | A\ l’ VvV \ ¢ l’ S
Y=1 I Y=2 I ‘Y=3 I
<k?> diverges <k?> finite
<k> diverges <k> finite
Ultra small world behavior Small world

The scale-free behavior is Behaves like a
relevant random network

Slide from CCNR Complex Networks Course
A. L. Barabasi 2012




The Barabasi-Albert model

1. Start with my connected nodes / /]

2. At each timestep we add a new node with
m (< my) links that connect the new node to
m nodes already in the network.

3. The probability z(k) that one of the links of
the new node connects to node i depends
on the degree k; of node i as

k. 10° p
H(k@) — ’ 10'1;- .
=ik
- The emerging network will be scale-free with e eokon e
degree exponent y=3 independently from the
choice of mo and m =8 W,

108
10% 10l 102 103

AL Barabasi, Network Science Book (2013)



Spreading
processes




Spreading processes

Biological epidemic spreading

SARS (2008)

H1N1 (2011)

elpadiiIp



Spreading processes

Malware spreading
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Spreading processes

Social contagion

Adoption spreading (Skype)

Karsai et.al. (2014)

Rumour spreading
Karsai et.al. (2014)

Protest diffusion (Arabian spring)

eipadiyipn



Spreading processes

Why?

* High population density
* Interconnected and mixing population
- Dynamical mobility patterns

(110g) A19asoor ‘60jq Add

(6002) @so8.4

Why on networks?

« Spreading can happen only through interactions
between agents w U

« Geographic vicinity
* Physical connection

umouMun

» Social interaction

* etc.

» Network structure critically influence the
dynamics of spreading processes




Models of
Spreading
processes
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Spreading processes

Model assumptions of spreading processes

- Constant set of interacting agents
* Nodes are partitioned into distinct compartments based on their actual states

- States are defined by the distinct stages of the epidemics:

S+1+R=N

(8wW|OH ‘d 18ye) ‘suooueo s,007 ull 1IN

Susceptible (S) Infected (1) Recovered (R)
(Healthy) (Sick) (Removed, dead)
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Spreading processes

Simple spreading phenomena

- Lack of decision to become infected
- State change depends on the absolute number of stimuli coming from neighbours

- Examples: epidemic spreading, biological contagion, information spreading, etc.

(8wW|OH ‘d 18ye) ‘suooueo s,007 ull 1IN

-

Susceptible (S) Infected (1) Recovered (R)
(Healthy) (Sick) (Removed, dead)
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The S| model

Susceptible-Infected model

- Take a population of N nodes

- Assign by I the number of infected and by S the
number of susceptible nodes

» [+S=N any time
- We infect a single seed node thus at =0 /=1

f \
- 1

(sw|oH 'd 18ye) ‘suooned s 897 ull 1IN

Infected ()
(Sick)

Susceptible (S)
(Healthy)

Homogeneous mixing (no network)

- Each node has f contacts with
randomly selected other nodes
per unit time

- An infected node on average
contacts a susceptible with
probability SS/N

* Average number of infection per
unit time is SIS/N

« Consider the fractions instead of
absolute numbers:

s=S/N

such as s+i=1/

and i=I/N

=)
O
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The S| model

- Time evolution of the infected and susceptible fractions:

di(t)
dt

ds(t)

= (st = —Bs1

« Since s(t)+i(t)=1 the fraction of susceptible nodes can be written as s()=1-i(t)

d;(tt) =B(1—4)yi =P
dt di . .
ol i—i_(l—z’):ﬁdt = In(i) —In(l—1)+c=pFt
= Z,+c:5t - Z,:C’e*@t
1 —1 1—1
. . Bt
- If we take t=0 then C = ZO, and i(t) = ,206 :
1 — g 1 — 29 + igeP?

Logistic equation: a basic model of population growth




The S| model

 For large times

8
g i(t)—1
@
- For early times  © di(t) _,
(i(t) is small) % dt
d Bi =  Saturation
— 1 —
dt

exponential outbreak

i~ iget

S| model: in the end of the process always everyone get infected if >0
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The SIS model

Susceptible-Infected-Susceptible model

- Sl process + infected nodes recover with rate u per unit time

V,
| Infection ?‘J I

J
I/
]

(sw|oH 'd 18ye) ‘suooned s 897 ull 1IN

» Recovery l

Susceptible (S) Infected (1) 1 — /B —1ig :
(Healthy) Sick) e
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The SIS model

C (B—-w1
(0 =|1-"2 =
B )1+Ce'" "

1 | | | I I I

0.9  For large times

0.8 - Lt

i(t) — 1 — B
d1

= 01— i) — pi =0

0.7 -

0.6 -

05

04

03

i(t) fraction of infected nodes

0.2 -

0.1 +

0 | I I I I I 1
0 5 10 15 20 25 30 35 40

t

« For SIS model the saturation of infected nodes is below 1
- If it saturates to 1 then the model is equivalent with Sl (u=0)
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The SIS model
. u Ce(ﬁ—ﬂ)t
(1) :[1_ ﬁ]1+Ce(ﬁ/~l)t

Basic reproduction number A= P

- On average how many nodes will be infected by a single infected node in a fully
susceptible population

o0 O if A > 1 - outbreak
$is i

o0 O if A\c =1 - epidemic

1+S=2]1 |=I-1 threshold

if A <1 -vanish
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Spreading processes

Susceptible-Infected-Removed model

« Sl process + infected nodes removed with rate x4 per unit time

(8wW|OH ‘d 18ye) ‘suooueo s,007 ull 1IN

Susceptible (S) Infected (1) Recovered (R)
(Healthy) (Sick) (Removed, dead)



Spreading processes

Susceptible-Infected-Removed model

- Sl process + infected nodes removed with rate x4 per unit time

. Susceptible
% = —Bi(t)(1 — r(t) —i(t) 4
5 X
i (t) | | c_g Recovered
— = —pi(t) + Bi(t)(L —r(t) —i(t)) &
“ 0.5
r(t) . S
rt) _ ,uz(t) = Infected
dt £ 4
0

 Fraction of infected nodes peaks T
Ime t

- Fraction of removed nodes saturates
* Fraction of susceptible nodes not necessarily saturates to O




Epidemic spreading models

Basic properties

Early behaviour
Exponential growth of i(t)

Late behaviour

Epidemic threshold
A= pu

Sl SIS SIR
igelt . SB-ur | oB-ur

i(t)—1 uwﬁ1_% i(t)—0
IBZO iC — ] }vc — ]



Spreading
processes
on networks




Epidemic spreading on networks

Homogeneous mixing (on networks)

- Each node has k number of S| model
neighbours di ()
- Each infected node infects its o Bik)yi(t)[1 —i()]

susceptible neighbours with
probability Sdt in a unite time

* A susceptible node with degree k SIS model
will be infected with probability di (1)
pki(t)dt in a unite time P —ui(t) + Bk)i(®)[1 —i()]

First approximation (on homogeneous networks)

e k = {(k): The network has

homogeneous degree distribution SIR model
- E.g. random networks ds (1) . |
1 —pk)i(®)[1 —r(t) —i(?)]
di(t) . . ,
- = = i) + BRI [ = r () =i (1)]
dr ()




Epidemic spreading on heterogeneous networks

- In degree heterogeneous networks the k = <k)
approximation does not hold

- Solution: Degree Block Approximation

- Assumption: all nodes with the same degree are
statistically equivalent

 Look for infection/susceptible node densities in the
degree groups
oI . S
k= N, k= A

- Calculate the global average by a sum considering
the degree distribution

Z:ZP(k)Zk S:ZP(k)Sk

k

llllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllll

---------------------------------

llllllllllllllllllllllllllllllll

---------------------------------



S| process on heterogeneous networks

» Sl process: all nodes are infected in the end - no epidemic threshold
- Question: how degree heterogeneities influence the speed of spreading

y
’(’f) — 11 — i ()] kO (1)
/ T T \ Density of

Spreading _
rate Probability ~ Degree infected
that a node neighbours of
with degree a node with
Kk is not degree k

infected

* O(1): Probability that any neighbour of a node with degree k is infected

0.‘.’

‘ ‘ * In case of homogeneous networks: Ok(t)=i(t)

- | am a node with degree k=5 and | am susceptible

* Ok(t)=2/5 fraction of my neighbours are infected actually




RGOS
S| process on heterogeneous networks

* Assume: no degree-degree correlations in the network

» Probability that a node with degree k connects to a node with &’

a node can connect in k’
ways to a node with
degree K’

o TKPW) KPR
PER) =S~ 0Py = ()

» Using this G(t) can be written as

@
.5-;.‘

D (k"= 1) P(k")ip (1)

T (k)

k’-1 because the linked
infected node surely has
an infected neighbour,
thus the central node
can connect to it only in
k’-1 ways

O (1) =001) =
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The spreading curve regimes

i(t) A
| | S/
1. ............ EXponenﬁa| ........
growth
‘ Final regime \

SIS

SIR




RGOS

Early time behaviour of epidemic spreading

» Approximation: assume that i(?)<</ (early time behaviour)
Why is it important?

 Vaccination, cures, and medical interventions take years to develop
 Their application is the most effective during the outbreak of a disease
- The best way to stop epidemics
* early quarantine
- early vaccination
- Epidemics spreading shows exponential grows in the beginning of the process

» Vanishing epidemic thresholds




Early time
spreading
behaviour
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S| process on heterogeneous networks

» Approximation: assume that i(?)<</ (early time behaviour)

diy (7)

P = B[] —ix(2)] k@O (1) =~ 5k@k(t)

* Differentiation of G«(?) by t gives

d0() 2, (K=DPK) gi () 2, (K=DPK) > (K —k)P(K) o

" B i o PReO=0T ®)
dO@) [ (k?) , __ (k) time-scale

PR p (W - 1) O(1) Let’s denote T ,B(<k2>—<k>) oarameter
do(r) dt

=P  O1=Ce'" =P  Or=0)=C=j <k<>k;1

O 7T

IIIIIIIIIIIIIIIIIIIIIIIIIIIII

-----------------------------
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S| process on heterogeneous networks

00 pon  ermlle el

di;it ) - Bki, <k<>k§1 ' valid if i()<<1 (early time behaviour)

in(t) = /O | digt(t) dt ~ Bkio <kzk; : /O et — Bkig <k?k§ Lret/m

i (t) — io ~ Bkig <k2k_ 17‘(€t/T — 1) = Bkiy <k2k; ! ﬁ(<k2<>k>— ) (e/™ — 1) =
= ki <k<f>>__ <1k> (et/T —1)

llllllllllllllllllllllllllllllllllllllllllll

llllllllllllllllllllllllllllllllllllllllllll




S| process on heterogeneous networks

IIIIIIIIIIIIIIIIIIIIII

----------------------

* In degree
heterogeneous
networks, where

(k*) — o0

the Sl spreading
IS critically faster
than in degree
homogeneous
networks where

(k)

IS finite

i (t) = ig (lzli§];>__< ;; (e/™ — 1) + 1)

lllllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllllll

0,8

i(t)

0,4

0,21

1 . | . 1 !
3000 4000 5000 6000
t

Inset: BA networks with m=4,8,12,20 (from bottom to top)

L l L l 1
0 1000 2000
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SIR process on heterogeneous networks

Epidemic threshold

» To obtain an epidemic threshold we need to have 7> (0 (otherwise the epidemic
spreads instantaneously)

SIR on ER network

! >0— \= g > ! Threshold !
T — — = — RN resnola. — —
PR — o (k) A (k)
SIRon SF network i,
(k) 3 Threshold: § A, = —
_ S0—=A="2 >, reshold: : . = — :
TS0 50—t B) ) z w1

lllllllllllllllllllllll

0.4
 Threshold is vanishing for heterogeneous

03 F
networks

p 027 - Epidemics spread in any case

0.1

0.0 : ‘ :
0.0 0.2 0.4 0.6

A Pastor-Satorras &Vespignani, PRL 86, 3200(2001)
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S| and SIR processes on heterogeneous networks

g|- r — 2<k> - Time scale assigns the speed of infection spreading
BUKS) = (k) - The smaller T the faster the process evolving
SIR:  T= &
| Bk?) — (1 + B)(k)
* ER network « SF network
(k*) = (k)((k) — 1) f y<3and N — o0
| then (k%) — ocoand 7 — (
Sl: TER = M
1  For heterogeneous networks the
SIR: TER = 300 — 1 characteristic time vanishes
* The epidemics becomes
- The more connected the instantaneous
nefcévork- 'S, thf faster the * It is due to hubs who get infected
epidemic evolves first and disseminate the epidemics
to many other nodes




Late time
spreading
behaviour
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SIS process on heterogeneous networks

« Approximation: assume that r—oo (asymptotic large t behaviour)

SIS model digf) — —wip(f) + Bk 1 — ix ()] O (1)

Stationary state:
* ix(t) saturates

ot T | kBO
0.8 | - l —
e C T L+ kBO

0.6 -
05 +

04

sl | Stationary state: number of newly infected
0z | 1 nodes is equal to the number of recovering
o1 1 nodes per unite time

i(t) fraction of infected nodes




SIS process on heterogeneous networks

- kO We assume no degree-degree S K P(K i
k w+ kBO correlations in the network S )
1 k®
= — Z kP (k) P Self-consistent equation
(k) n+ kO
: : Z kP (k BkO
Graphical solution  y1(©) =© u + 3KkO
- Linear function Monotonously iIncreasing
function between y.(0)=0
and y2(1)<I
A B
A A Non-trivial solution

* The slope of y:(0) at { fommmmm e - A -
6=0 what matters A P

- We have to match the Slope>1

derivative of y;(6) and
V2 ( 9) _,,..---"'Slope <1




SIS process on heterogeneous networks

e
dy2(©) d 1 BkO -
d®  d6 ((k} zk:kp(k)u+ﬁk@> T
0=0
1 u+ BkO — ﬁk@) 1 L
= — S kP(k)Bk = — N kPk)BkL =
iy 2 hP )8 (G aor )= 2 kP(RIBE,
g1, (k%)
_ T 2y A
TGRS
(k%)
At the critical point the derivatives are equal: )\m =1
S < k> ..... - Topological fluctuations lower the
)\C = o1 threshold
<k > : + If (k2) &> othenAc— O

llllllllllllllllllllllll

Pastor-Satorras &Vespignani, PRL 86, 3200(2001)
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SIS process - scale free exponent

Normalised degree
distribution

P(k) = (y = VK k™7

main

2<y<3

3<yp<A4

There is non-zero
Ac=0 prevalence at the
i(A) &~ A BN stationary state for
any value of 4

Ac

0 Prevalence
approaches to O in
WA) == 2€ a continuous way

Ae>0
_ v —3 1/(y—3)
46 (A " Kpin() 2))
Ae>0 Homogeneous
vy—3 mixing model is

1(A) =~ A —
(A) Komin(y — 2) recovered



Real networks

Guimera et.al. (2004) - airplane network Liljeros et.al. (2001) - human sexual networks

DEH T T T F oo T T T T TTI T ™3 b100@ QAI'I”

o
T

—
':::Il

—t
LRI L L]

10_1 3

Cumulative distribution, P(ktgt)

Cumulative distribution, P(>k/z)

10 - 102 ' E
10°F 107 E O Females A’
- L A Males
103 PP Y E— S T LA [ T/
Scaled degree, k/z Total number of partners, ki,
(k) Many real networks have broad degree
A= ) —(8) distribution with small exponent and

vanishing epidemic threshold
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Immunisation and control

How to control epidemics?

 Transmission reduced intervention

. face masks These strategies may reduce the

transmission rate if applied for the
- gloves, hand washing majority of the population

- Contact reducing interventions

 quarantaines These strategies make the
_ networks sparser and may
* closing schools increase the critical transmission

- reduce travels and mobility rate (and they are very expensive)

« VVaccination: remove nodes from

the network |
These strategies suppress the

» Question: who should we population below the epidemic
vaccinate? threshold
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Immunisation strategies

Random immunisation

* Immunise g fraction of nodes randomly
selected from the population

* This strategy does not make difference
between nodes of different degrees

* |t is rescaling the spreading rate

p—pl-g)
- A critical immunised population size can be defined
B (k)

—(=g)=77% : o=
u <k2> where g, must be g.=1

- If not as <k2) — oo the threshold still goes Ac = 0, only the
epidemics will be slower

- Random immunisation cannot prevent the outbreak




RGOS

Immunisation strategies

Targeted immunisation

* Rank nodes by their degrees and introduce a @
fraction with the highest degree

* By removing a g fraction of highest degrees the
degree distribution will change - fluctuations of (k)
will be reduced

* There will be a critical g fraction which will stop
the epidemics as threshold will became larger than

zero
<k>gc . é
o 1.0& , , : :
<k2>gc 1% O—O Uniform
O0—3 Targeted _|
- The leading term of the critical fraction (for a BA o g
network with y=3): 0.6
8c ~ exp(—=2u/mp) - o
» This is the point where the network becomes 0'2_ )
“disconnected” regarding the diffusion of epidemics

* Problem: this immunisation strategy requires 9
complete knowledge about the network (what we Pastor-Satorras &Vespignani, (2002)
usually do not have!)




Immunisation strategies

Immunisation without global knowledge

« Exploit degree heterogeneity and that a randomly
selected link connects to a large degree node with
higher probability

¢ MethOd: .
« Select a random node (~P(k)) .
« Select a random link of the randomly selected node @
and immunise (~kP(k))
1 &
S 0.8F
S - E‘jc”c?ﬁ;TiO/ « Considerably out-performs the
‘%q;) 0.6F random strategy
S8 Links - It performs worse compared to the
= 04p 4 selection - targeted strategy
'c_; I u vaccmetlon ] .
S ook : . * Does not require global knowledge
S %k about the network structure
L J
25 3 35

y

Dear Xponen
egree exponent R. Cohen et al, Phys. Rev. Lett 91, 247901 (2003)



Spreading
processes
on temporal

networks
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Temporal networks

* Interactions between nodes are very fast and repetitive on established links
» Description of networks on the level of single nodes and events

- Challenge: Understand which microscopic correlations are responsible for the emergence of
global structure

- Structural properties: measures must be re-defined with time considered
 Microscopic level: temporal centrality and time respecting paths
« Mezoscopic level: temporal and recurrent motifs
- Macroscopic level: circadian fluctuations, ...
» Dynamical processes
* co-evolving with the network: processes and interactions are evolving on the same time-scales
- Effect of spatial, topological and temporal correlations are amplified

Challenge: completely new concept which need to build on novel methodology

/
2 vs 1
~ :,/
A S Pavy N
P3N <
oo =0
! K \
e I \
hY B Y
~ s
\ 1 \ A e

Karsai et.al. (2013)
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ol 1l I | |
 Person-to-person communication o N X AT
time in days
¢ MObile_phone Calls BGTS 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0
 Email communication Co] Il1] [ |
» Face-to-face interactions [ ow e | SR .
- - - At o LT INIC I 1 O
* One-to-many information dissemination o T B e B
. ) Temporal networks of mobile call communication
* Information broadcasting M. Karsai, et.al. (2012)
 Microblogging - | i
e Distributed computing pran Ml N 11 1|
. . . . Tisse (days)
« Communication between computational units
* |nfrastructural systems
* Transportation ® ——— ——
' 4 Temporal network of sex buyers and sellers
¢ Ce” b|O|0gy w%: L. E. C. Rocha, et.al. (2010
. . . . -ﬂg 0 O O o= - O O O
* Protein-protein interactions ' v o B——ooege oo o of & oo o o ogao% gE
« Gene regulatory networks S B-BEHEE. B_’a’ aNCT gEEE F EE
. 0 F L HELNELL =
5 10 15 20 25 30 35 40
time (days)
Temporal network of zebras  C. Tantipathananandh, et.al. (2007)
Human proximity Van der Broeck et.al. (2011)
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Information spreading on temporal networks

Earlier assumptions:

« The network structure is static

- Every node and link are present in the network from the very beginning
- Dynamical process evolving on the top of the static structure

- It is only effected by the (heterogeneous) topology of the network

Observation: information spreading can be very slow on temporal
networks

. 1.0
Role of evolving structure (a)
« The slow evolution of the network structure effects = 0.8
the dynamics of any collective phenomena — 0.0
- Nothing can spread on the network globally without O 0 4k
the emergence of a large connected component S |
- O : 2 B e ML

- Speed of the LCC evolution sets up an upper limit o
for the speed of spreading phenomena 00 E—

I I
0 500 1OtOO 1500 200




Spreading on temporal networks

Earlier assumptions:
- Because every link is presented always they allow to spread information at any time

MLotat m=RPStat

i M| R P

Role of temporal interactions 08 T
- In reality information can spread between 06
nodes only at the time of their interactions -
* The order of interactions determine the 0.4
possible time respecting paths which along 0.2
the information can be transmitted 00
0 10000
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Spreading on temporal networks

Role of temporal interactions

« Network: snow-ball

a0 s | sample of a mobile call
| networks
2 | oL/ L - Interactions: mobile calls

» Process: Sl process
initiated from a single

* seed
A PRRE T * Information spread
8 | SR gl TN between interacting
AL A X individuals with B=1
g 15 5

~520 days
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Temporal network models

Temporal network models are still very rare and their introduction
IS an actual challenge...

Randomised reference models
- Take an empirical network
- Remove some characteristic correlations by random shuffling
- Static networks: Configuration model and its variances
» Temporal networks: ...

Contact network models
- Take a set of nodes
 Define a dynamics which drives their (temporal) interactions
» Evolving networks: Barabasi-Albert model
» Temporal networks: ...
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Spreading on temporal networks

Data-driven model experiment
Take the sequence of mobile communication events

Initiate an Sl process from a randomly selected nodes at a randomly selected time

Allow spreading with =1 only between interacting individuals at the time of their
interactions (independent of the direction of the communication)

Once you reached the last event apply a periodic temporal boundary condition
(jump to the beginning of the sequence)

Perform the process until everyone is reached in the network by the information

Repeat the experiment on randomised reference model with certain correlations
removed

Why SI?
This is the simplest model of information spreading

No critical threshold: the process always reach 100% prevalence

Since B=1 it gives the fastest possible scenario of information spreading




Original event sequence

e Time ordered sequence of original call events
e |t contains all possible correlations which take place in the system

e Measure

I(t
i(t) = —( )
N
1.0l
WT BD LL CS 25%m 0.8}
Original v Y Y Y 337
0.6/
<
0.4}
0.2
005 50 100 150 200 250 300

t (in days)



Randomised reference model

Community structure
e Densely connected subgroups

Shuffling

Original
network

Random network

e (Configuration model

e Random network




Time shuffled configuration network

e Using configuration model to destroy community structure, but keep N, IEl and the
network connected

e Shuffle the event times to destroy bursty dynamics

e No correlation takes place in

the system
1.0
WT BD LL CS 25%m
0.8}
Original 33,7
TimeConf ---- 6.4
=Y
=
0.4+
0.2
- Qriginal sequence
time shuffled configuration network
0'OO 50 100 150 200 250 300

t (in days)



Randomised reference model

Bursty dynamical behavior ‘\ A
e FEvents are clustered in time |

(J.Phys.A 41,224015(2008))

Shuffling
e Shuffle the event times of calls and destroy temporal bt
heterogeneties bz, = e

e keep P(w), P(k), P(s), w-top correlations

e destroy P(tie), link-link correlations




Time shuffled network

e Using the original links and network

e Bursty dynamical behaviour and link-link correlations are destroyed

e The infection speed is slowed
down by bursty dynamics

1.0

WT BD LL CS 25%m
Original v Y Y Y 337
TimeConf X X X X |64 0.6l

Time v IX X v 229

0.8}

i(?)

0.4r

0.2}

- original sequence
- time shuffled
time shuffled configuration network

0 50 100 150 200 250 300
t (in days)

0.0



Randomised reference model

Weight-topology correlations
e (Granovetter’s Theorem (PNAS 104, 7332 (2007))

N

Shuffling ) PR
e (Change complete call sequences of individuals ty ta tu

regardless of their edge weight

e keep P(w), P(k), P(ti)

ti2 to th2

tap
tia
th

e destroy P(s), link-link correlations, w-top correlations 1,k sequence shuffling



Link sequence shuffled event sequence

e Shuffle link call sequences between randomly chosen links

e Link-link and weight-topology correlations are switched off

e \Weight-topology correlations also
slow down the dynamics

1.0f
WT BD LL CS 25%m .
Original v v Y Y 337 |
TimeConf X X X X 164 0.6
0.
Time v X X v 229 =
Lnk X v [X v 275 0.4|
0.2r — c?riginal sequence

0.05- 50 100 150 200 250 300

t (in days)
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Randomised reference model

Link-link correlations

e (Causality between consecutive calls

Shuffling p .

e Change complete call sequences of individuals N B B

t12 t22 tN2

o keep P(w), P(k), P(s), P(tie), w-top correlations

top

e destroy link-link correlations ti tun
Eq.-w. link-seq. shuffling




Equal link sequence shuffled event sequence

e Shuffle call sequences between links having the same weight

e Only link-link correlations are destroyed

e Multilink correlations accelerate
the spreading process

Original
TimeConf
Time

Link

Equal link

WT BD LL
v v v
X X X
v X X
X v X
v v X

CS 25%m
v 33,7
X 164
v 229
v 275
v 353

i(?)

1.0

0.8}

0.6

0.4r

0.2}

0.0

— original sequence

-— time shuffled

— equal link sequence shuffled
- link sequence shuffled

time shuffled configuration network

50 100 150 200
t (in days)

250

300



Long temporal behaviour

0.02 — . . . . .
e Measure the distribution of complete 2
infection time B
e Clear evidence for influence of oot | :
different correlations at late time =
stage = _
R |
e Multilink correlations play a \/
contrary role than at early time 0.00 I

Stage ' 30 400 500 600 700 300 900
Full infection time (in Days)

Weight-topology correlations and bursty temporal behaviour are responsible mostly
for the slow spreading

M Karsai, M Kivela, RK Pan, K Kaski, J Kertész, AL Barabasi, J Saramaki, PRE(R) 83, 056125 (2011)

M Kiveld, RK Pan, K Kaski, J Kertész, J Saraméaki, M Karsai, J. Stat. Mech. PO3005 (2012)

Similar results with SIR: G Miritello, E Moro and R Lara, PRE(R) 83 045102 (2011)



http://arxiv.org/find/physics/1/au:+Karsai_M/0/1/0/all/0/1
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