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Overview of the lecture

e General objective: revisit the classical question of finding
communities in networks using multiscale processing
methods on graphs.

e The things we will discuss:

e Recall the notion of community in networks and brief survey
of some aspects of community detection

¢ Introduce you to the emerging field of graph signal
processing

e Show a connexion between the two: detection of
communities with graph signal processing

¢ Organization:

1. A (short) lecture about communities in networks
2. Signal processing on networks; Spectral graph wavelets
3. Multiscale community mining with wavelets
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Introduction: on signals and graphs

e My own bias: | work in the SISYPHE (Signal, Systems
and Physics) group in statistical signal processing, located
in the Physics Laboratory of ENS de Lyon

¢ | have worked also on Internet traffic analysis also, and
studied some complex systems

e Strong bias: nonstationary and/or multiscale approaches

e You will then hear about
signal processing for network science
e Examples of topics that we study:

Technological networks (Internet, mobile phones, sensor
networks,...)

Social networks; Transportation networks (Vélo'v)
Biosignals: Human bran networks; genomic data; ECG
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Introduction: on signals and graphs

Why signal processing might be useful for network science ?

¢ Non-trivial estimation issues (e.g., non repeated measures;
variables with large distributions (or power-laws); ...)
— advanced statistical approaches

e large networks
— multiscale approaches

e dynamical networks
— nonstationary methods
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Examples of networks from our digital world

Vehicle Network

USA Power grld Web Graph Protein Network
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Examples of graph signals
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Minnesota Roads

Image Grid Color Point Cloud Image Database
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Communities in networks

e Networks are often inhomogeneous, made of communities
(or modules):
groups of nodes having a larger proportion of links inside
the group than with the outside

e This is observed in various types of networks: social,
technological, biological,...

e There exist several extensive surveys:
[S. Fortunato, Physic Reports, 2010]

[von Luxburg, Statistics and Computating, 2007]
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Purpose of community detection?
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Purpose of community detection?

1) Gives us a sketch of the network:

p.-9
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Purpose of community detection?
1) Gives us a sketch of the network:

2) Gives us intuition about its components:

e''=—1 @ Q?
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Some examples of networks with communities or
modules
e Social face-to-face interaction networks

(Lab. physique, ENSL, 2013) (école primaire, Sociopatterns)
e Brain networks [Bullmore, Achard, 2006]
Parcellation Cﬁﬁgiffe'?ﬂgy cereb?arlat?gfn%fctions

Time series

p. 10 GRAPHSIP project challenges

Challenge 1: Robustness and hierarchical Challenge 2: Brain networks clustering Challenge 3: Longitudinal study of brain networks
analysis of brain connectivity
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Some examples of networks with communities or
modules

e Mobile phones (The Belgium case, [Blondel et al., 2008])

e Scientometric (co)-citation (or publication) networks
[Jensen et al., 2011]
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Methods to find communities

| will not pretend to make a full survey... Some important
steps are:

Cut algorithms (legacy from computer science)

Spectral clustering (relaxed cut problem)

Modularity optimization (there arrive the physicists)
[Newman, Girvan , 2004]

Greedy modulatity optimization a la Louvain (computer
science strikes back) [Blondel et al., 2008]
Ideas from information compression [Rosvall, Bergstrom,
2008]
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From graph bisection to spectral clustering

Graph bisection (or cuts): find the partition in two (or more)
groups of nodes that minimize the cut size (i.e., the number
of links cut)

Exhaustive search can be computationally challenging

Also, the cut is not normalized correctly to find groups of
relevant sizes

Spectral interpretation: compute the cut as function of the
adjacency matrix A

Wait... What means spectral for networks ?
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Spectral analysis of networks

Spectral theory for network

This is the study of graphs through the spectral analysis
(eigenvalues, eigenvectors) of matrices related to the graph:
the adjacency matrix, the Laplacian matrices,.

Notations
G=(V,E,w) a weighted graph
N =|V| number of nodes
A adjacency matrix
o} vector of strengths
D matrix of strengths
f signal (vector) defined on V

A,'/' = W,'j
di =X jev Wj
D = diag(d)
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Definition of the Laplacian matrix of graphs

Laplacian matrix

L | laplacian matrix L=D-A
(A) | Lseigenvalues | 0 =X < A\ < X <. < Ay
(x:) | Ls eigenvectors Lx; = \ix
Note: xg = 1.

A simple example: the straight line

'V
—_
-
-
—_

A
Il vl ocococo
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| |
colnvloo
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-

For this regular line graph, L is the 1-D classical laplacian operator
(i.e. double derivative operator).
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Going back to spectral clustering

]
Let A= > A

i,j inFgroups
This is equal to the cut size between the two groups

Let us note s; = 41 the assignment of node 7 to group
labelled +1 or —1

1

Spectral7decomp03|t|on of the LapIaC|an

N—1
Lj= Z Me(xk)i(xk);
k=1
The optimal assignment vector (that minimizes R) would
be s; = (x1); ... if there were no constraints on the s;’s...

However, s; = +1 or —1.
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Spectral clustering

Problem with relaxed constraints:

ming s'Ls
such that sT1 =0, ||s||, = VN

Simplest solution of this spectral bisection: s; = sign((x1);)
This estimates communities that are close to x4 (known as
the the Fiedler vector)

This allows also for Spectral clustering of data represented
by networks

cf. [von Luxburg, Statistics and Computating, 2007]
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Spectral clustering

e Example of spectral bisection on an irregular mesh
@ ®

¢ Not really good for natural modules / communities
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Spectral clustering

e More general spectral clustering: Use all (or some) of the
eigenvectors y; of L

e For instance: use a classical K-means on the first K
non-null eigenvectors of L
(each node a having the (xx)4 avec features)

e If large heterogeneity of degrees: the normalized Laplacian
gives better results

Normalized Laplacian matrix

% | Laplacian matrix L =1-D12AD1/?
(N) | L’seigenvalues | 0 =X < Ay < A <o < Ao
(xi) | -£’s eigenvectors ZLxi = ANiXi
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Interpretation as random walks (part 1)

¢ A random walk on a graph can be described by means on
the adjacency operator. In particular, the occupancy
probability p(t) at time ¢t evolves like:

p(t) = AD""p(t —1) = Wp(t - 1)
e Transition matrix W has a symmetrized version
S = D—1/2AD1/2

which has same eigenvalues

e Many properties of random walks derives from the
normalized Laplacian (symmetric or not)

p. 20
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Interpretation as random walks (part 1)

Example 1: lazy random walk (which stays in place with
prob. 1/2) converges to equilibrium 7 in

IPa(t) = m(@ll <\ G (1= A (W)

and 1 — )\N,1(W) =\ (.,2”)
Example 2: relation to normalized cuts

s'Ls
M(Z) = (TTQ os' Ds
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Quality of a partition: the Modularity

e Problems with spectral clustering:
1) No assessment of the quality of the partitions
2) No reference to comparison to some null hypothesis (or
“mean field”) situation

e Improvement: the modularity [Newman, 2003]

1 did;

j
where 2m =}, d;.
e Qis between —1 and +1 (in fact, lower than 1 — 1/n¢ if n¢
groups)
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Quality of a partition: the Modularity

e Interpretation: digy is, for a null model as a Bernoulli

2m

random graph (with prob. 2m/N/(N — 1) of existence of
each edge), the fraction of edges expected between nodes
iandj.

(Note: in fact, it's best seen as a Chung-Lu model (2002))
Re-written in term of groups, it gives

Ne /C dc 2
(&)
where ¢ is the number of edges in group ¢ and d; is the
sum of degrees of nodes in group c.
Consequence: the larger Q is, the most pronounced the

communities are

Algebraic form: modularity matrix B = £ — % and

Q = Tr(c' Bc) for a partition matrix ¢ (size ne x N) of the
nodes.
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Community detection with modularity

e By optimization of Q

e For instance: by simulated annealing, by spectral
approaches,...

e Works well, better than spectral clustering.

¢ Better algorithm: the greedy (ascending) Louvain approach
(ok for millions of nodes !) [Blondel et al., 2008]
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Existence of multiscale community structure in a graph

finest scale (16 com.): fine scale (8 com.):

i :
ié/é: \%’ ‘fﬁ
vﬁt% ‘

coarser scale (4 com.): coarsest scale (2 com.):

Lep
A"




p. 26

Communities in networks

O@00000

Multiscale community structure in a graph

Classical community detection algorithms do not have this
“scale-vision“ of a graph. Modularity optimisation finds:

Where the modularity function reads:
didj
Q= 2k 5 |4y — S (i)
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Multiscale community structure in a graph
Q=0.80 : Q=0.83 :

1%?,@%

[
ln
4

All representations are correct but
modularity optimisation favours one. }

e Added to that: limit in resolution for modularity [Fortunato,
p. 27 Barthelemy, 2007]
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Integrate a scale into modularity

e [Arenas et al., 2008] Remplace Aby A+ rlin Q. Self-loops.

e [Reichardt and Bornholdt, 2006]

1 dd;
Q= ﬁz [Aij —’YZ’mj} i(ci, )

i
e Equivalent for regular graph if y =1 + é

e “Corrected Arenas modularity”. use Aj + rcgé,-j-;
equivalent to Reichardt and Bornholdt  [Lambiotte, 2010]
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Interpretation as random walks (part 2)
Let us recall that p(t) = AD'p(t — 1) = Wp(t — 1)

Equilibrium distribution: 7; = ﬁ

One step of random walk; the probability of staying in the
same community is

_ N [Ai g dg oy
At =3 [dem - ] stene) =@

Random walk after t steps (even if t continuous)

R(t) = Z [(et(pu\—/))ij 2Or,jn — (5;32} (;’%2

Ul

This is called stability.
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Interpretation as random walks (part 2)

didy  diq]
Ift=0,R0)=1->" (2;”32 (2;7732;

best partition = single nodes

If t small, R(t) ~ (1 — t)R(0) + tQc;

trade-off between single nodes and modularity; falls down
in the Reichardt and Bornholdt formulation

If t =1, classical modularity
If t large, the optimum partition is in 2 groups, as given by
spectral clustering (Fiedler vector)

In practice, optimization with same methods as for
modularity

It works well
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Referenced works on multiscale communities
e Lambiotte, "Multiscale modularity in complex networks” [ WiOpit,
2010]

e Schaub, Delvenne et al., "Markov dynamics as a zooming lens
for multiscale community detection: non clique-like communities
and the field-of-view limit” [PloS One, 2012]

e Arenas et al., "Analysis of the structure of complex networks at
different resolution levels” [New Journal of Physics, 2008]

¢ Reichardt and Bornholdt, "Statistical Mechanics of Community
Detection” [Physical Review E, 2006]

e Mucha et al., "Community Structure in Time-Dependent,
Multiscale, and Multiplex Networks” [ Science, 2010]

More on that later in the next part of the lecture
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Examples of graph signals
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Minnesota Roads

Image Grid Color Point Cloud Image Database
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Fourier transform of signals

“Signal processing 101”

The Fourier transform is of paramount importance:
Given a times series x,, n=1,2,..., N, let its Discrete Fourier

Transform (DFT) be

N-1
Vk € Z )A(k = Z Xne_’QWk”/N
n=0
Why ?
o Inversion: x, = 4 S0 fe~2mkn/N

e Best domain to define Filtering (operator is diagonal)

¢ Definition of the Spectal analysis (FT of the
autocorrelation)

¢ Alternate representation domains of signals are useful:
Fourier domain, DCT, time-frequency representations,
wavelets, chirplets,...
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Relating the Laplacian of graphs to Signal Processing

Laplacian matrix

L or Z | laplacian matrix L=D-A
(x;) | Ls eigenvectors Lxi = Aixi

A simple example: the straight line

.—-10 0 0 O

.2 -10 0 0

1 2 3 a 5 6 —t2-100
o o o o o—— <+ L= 0 -12-10
0o 0 -1 2 —1

0 0 0 -1 2

0 0 0 0 —

_

For this regular line graph, L is the 1-D classical laplacian operator
(i.e. double derivative operator):
its eigenvectors are the Fourier vectors, and its eigenvalues the
p. 34 associated (squared) frequencies
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Examples of graph signal processing
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Objective and Fundamental analogy
[Shuman et al., IEEE SP Mag, 2013]

Objective: Definition of a Fourier Transform adapted to
graph signals

f: signal definedonV. = +— f : Fourier transform of f

Fundamental analogy

On any graph, the eigenvectors y; of the Laplacian matrix L will
be considered as the Fourier vectors, and its eigenvalues ), the
associated (squared) frequencies.

o Works exactly for all regular graphs (+ Beltrami-Laplace)
e Conduct to natural generalizations of signal processing
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The graph Fourier transform

« fis obtained from f's decomposition on the eigenvectors y; :

< Xo, f >
N <X17f>
f= < Xo, f >

<xn_1,f>

Define x = (xol|x1|---Ixn-1) : f= XTf

¢ Reciprocally, the inverse Fourier transform reads: | f = x f

e The Parseval theorem is vAaIid:
¥(g,h) <g,h>=<g,h>

p. 36
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Fourier modes: examples in 1D and in graphs
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More Fourier modes
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Alternative fundamental spectral correspondance
e With the Normalized Laplacian matrix

L =1-D12AD"1/2

- Related to Ng. et al. normalized spectral clustering
- Good for degree heterogeneities
- Related to random walks
- For community detection
¢ With the random-walk Laplacian matrix (non symmetrized)

Lw=D"'L=1-D'W

- Better related to random walks
- Used by Shi-Malik spectral clustering (and graph cuts)
e Using the Adjacency matrix
- Wigner semi-circular law
- Discrete Signal Processing in Graphs (good for
undirected graphs) [Sandryhaila, Moura, IEEE TSP, 2013]
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Filtering

Definition of graph filtering

We define a filter function g in the Fourier space.
It is discrete and defined on the eigenvalues \; — g(\)).

#(0) g(%) gr) O 0 .. 0
% (1) g(M) P 0 g(\) 0 .. 0
AN-1)gOw — 1) 0 0 0 . glw-1)
In the node-space, the filtered signal 9 can be written:
f9=xGx'f J
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Spectral analysis: the x; and ), of a multiscale toy graph
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Typical problems for graph signal processing
[P. Vandergheynst, EPFL, 2013]

Compression /Visualization

=

P . " | r
‘ I, :,}.' L TII { 11 ]‘1

. — ’.. \ : ] ‘ Analysis / Information Extraction
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Recovery of signals on graphs
[P. Vandergheynst, EPFL, 2013]

e Denoising of a signal with Tikhonov regularization

argmin |f — Y3 +~fTLf

Original Denoised
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Recovery of signals on graphs
[P. Vandergheynst, EPFL, 2013]

¢ Denoising of a signal with Tikhonov regularization

argmin |f — Y3 +~fTLf

Denoised

Original
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Recovery of signals on graphs
[P. Vandergheynst, EPFL, 2013]

e Denoising of a signal with Wavelet regularization

arg min IW'a—y|5+1llalls

Original Denoised

o Wavelets will be described soon... Stay tuned.
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Writing Tikhonov denoising as a Graph filter
[P. Vandergheynst, EPFL, 2013]

e |tis easy to solve te regularization problem in the spectral
domain
7

argmin Z||f — y|§ + f7LF = Lf. + Z(f. —y) =0

e In the graph Fourier domain

LE () + 5(R() = () =0, ¥ie{0.1,.N~1}
e Solution: . -

e This is a 1st-order “low pass” filtering
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Generalized translations
[Shuman, Ricaud, Vandergheynst, 2014]
e Classical translation:

(Tg) () =gt —7) =) _g(&)e e 2 de
R

e Graph translations by fundamental analogy:

N—1
(Taf) (a) = Y H(i)x; (n)xi(a)
i=0

e Example on the Minnesota road networks
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Empirical mode decomposition on graphs

e Objective: decompose a graph signal in various
“elementary” modes in a data-driven approach

) "*{‘%‘é 3
o B :‘3‘:‘}'5 t

[N. Tremblay, P. Flandrin, P. Borgnat, 2014]
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A small pause

¢ This was an invitation to “The emerging field of signal
processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains”
See [Shuman, Narang, Frossard, Ortega, Vandergheynst,
IEEE SP Mag, 2013]

e Now, we still have on our program:
- The wavelet transform on graphs (hence a notion of
scaling)
- Make a connexion with community detection

http://perso.ens-lyon.fr/pierre.borgnat

Acknowledgements: thanks to Renaud Lambiotte, Pierre
Vandergheynst and Nicolas Tremblay for borrowing some of
their figures or slides.
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