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I I am playing with graph algorithms since ....

I Graphs or networks :
A. Sainte-Laguë, Les réseaux ou graphes, Gauthier-Villars,
Paris,1926.

I One of the main problems I am looking at :
What can you learn about the structure of a given graph using
a series of consecutive graph searches ?

I From now on :
Graphs are undirected and supposed to be finite and
connected.
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Graph searches

Graph searches are very well known and used in many
situations :

1. ”Fil d’ariane” in the Greek mythology.

2. Euler (1735) for solving the famous walk problem in
Kœnisberg city

3. Euler’s theorem proved by Hierholzer in 1873.

4. Tremaux (1882) and Tarry (1895) using DFS to solve maze
problems

5. Fleury, proposed a nice algorithm to compute an Euler Tour,
cited in E. Lucas, Récréations mathématiques, Paris, 1891.

6. Computer scientists from 1950, in particular in the 70’s,
Tarjan for new applications of DFS....

7. 4 points characterizations Corneil, Krueger (2008), and the
definition of LDFS a new interesting basic search.
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Graph searches

Umberto Eco, ”Il nome della rosa”, Roman, 1980
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Graph searches

Some definitions

Graph Search

The graph is supposed to be connected so as the set of visited
vertices. After choosing an initial vertex, a search of a connected
graph visits each of the vertices and edges of the graph such that a
new vertex is visited only if it is adjacent to some previously visited
vertex.
At any point there may be several vertices that may possibly be
visited next. To choose the next vertex we need a tie-break rule.
The breadth-first search (BFS) and depth-first search (DFS)
algorithms are the traditional strategies for determining the next
vertex to visit.
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Graph searches

Variations

Graph Traversal

The set of visited vertices is not supposed to be connected (used
for computing connected components for example)

Graph Searching for cops and robbers games on a graph

The name Graph searching is also used in this context, with a
slightly different meaning. Relationships with width graph
parameters such as treewidth.
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Graph searches

Our main question

Main Problem

What kind of knowledge can we learn about the structure of a
given graph via graph searching (i.e. with one or a series of
successive graph searches) ?

Goals

I Building bottom up graph algorithms from well-known graph
searches

I Develop basic theoretic tools for the structural analysis of
graphs

I Applications on huge graphs :
No need to store sophisticated data structures, just some
labels on each vertex,
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Graph searches

We can play with :

1. Find new uses of already known searches or describe new
interesting searches designed for special purpose

2. Seminal paper :
D.G. Corneil et R. M. Krueger, A unified view of graph
searching, SIAM J. Discrete Math, 22, Num 4 (2008)
1259-1276
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Graph searches

Basic graph searches

I Generic search, BFS, DFS

I LBFS, LDFS

I But also MNS, MCS
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Graph searches

Generic Search

1

Invariant

At each step, an edge between a visited vertex and a unvisited one
is selected
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Graph searches

Generic search

S ← {s}
for i ← 1 to n do

Pick an unumbered vertex v of S
σ(i)← v
foreach unumbered vertex w ∈ N(v) do

if w /∈ S then
Add w to S

end
end

end
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Graph searches

Generic question ?

Let a, b et c be 3 vertices such that ab /∈ E et ac ∈ E .

a cb

Under which condition could we visit first a then b and last c ?
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Graph searches

Property (Generic)

For an ordering σ on V , if a <σ b <σ c and ac ∈ E and ab /∈ E ,
then it must exist a vertex d such that d <σ b et db ∈ E

<

cba

d <

Theorem

For a graph G = (V ,E ), an ordering σ sur V is a generic search of
G iff σ satisfies property (Generic).
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Graph searches

Most of the searches that we will study are refinement of this
generic search
i.e. we just add new rules to follow for the choice of the next
vertex to be visited
Graph searches mainly differ by the management of the tie-break
set



Radius and diameter computations in huge graphs and some extensions,

Graph searches

Parcours en largeur (BFS)

Données: Un graphe G = (V ,E ) et un sommet source s

Résultat: Un ordre total σ de V
Initialiser la file S à s
pour i ← 1 à n faire

Extraire le sommet v de la tête de la file S
σ(i)← v
pour chaque sommet non-numéroté w ∈ N(v) faire

si w n’est pas dans S alors
Ajouter w en fin de la file S

fin
fin

fin
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Graph searches

Applications of BFS

1. Distance computations (unit length), diameter and centers

2. BFS provides a useful layered structure of the graph

3. Using BFS to search an augmenting path provides a
polynomial implementation of Ford-Fulkerson maximum flow
algorithm.
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Graph searches

Recent results

I LDFS Lexicographic Depth First Search with application to
hamiltonicity

I Some other Lexicographic Searches : LexUP, LexDown

I Recognition of cocomparability graphs using a series of LBFS

I Many questions about fixed points
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Diameter computations

Graph searches

Diameter computations

Computing diameter using fewest BFS possible

The Stanford Database

Recents results

Huge graphs

Consequences and perspectives



Radius and diameter computations in huge graphs and some extensions,

Diameter computations

Joint work with :
D. Corneil (Toronto), C. Paul (Montpellier), F. Dragan (Kent), V.
Chepoi (Marseille), B. Estrellon (Marseille), Y. Vaxes (Marseille),
Y. Xiang (Kent), C. Magnien (Paris), M. Latapy (Paris), P.
Crescenzi (Firenze), R. Grossi (Pisa), A. Marino (Pisa), J. Dusart
(Paris), R. Charpey (Paris), M. Borassi (Firence)
and discussion with many others . . .
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Diameter computations

Basics Definitions

Definitions :

Let G be an undirected graph :

I exc(x) = maxy∈G{distance(x , y)} excentricity

I diam(G ) = maxx∈G{exc(x)} diameter

I radius(G ) = minx∈G{exc(x)}
I x ∈ V is a center of G , if exc(x) = radius(G )

First remarks of the definitions

distance computed in # edges
If x and y belong to different connected components d(x , y) =∞.
diameter : Max Max Min
radius : Min Max Min
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Diameter computations

Trivial bounds

For any graph G :
radius(G ) ≤ diam(G ) ≤ 2radius(G ) and ∀e ∈ G ,
diam(G ) ≤ diam(G − e)

These bounds are tight

I If G is a path of length 2K, then diam(G ) = 2k = 2radius(G ),
and G admits a unique center, i.e. the middle of the path.

I If radius(G ) = diam(G ), then Center(G ) = V . All vertices are
centers (as for example in a cycle).
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Diameter computations

If 2.radius(G ) = diam(G ), then *roughly* G has a tree shape (at
least it works for trees).
But there is no nice characterization of this class of graphs.
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Diameter computations

Diameter

Applications

1. A graph parameter which measures the quality of services of a
network, in terms of worst cases, when all have a unitary cost.
Find critical edges e s.t. diam(G − e) > diam(G )

2. Many distributed algorithms can be analyzed with this
parameter (when a flooding technique is used to spread
information over the network or to construct routing tables).

3. Verify the small world hypothesis in some large social
networks, using J. Kleinberg’s definition of small world graphs.

4. Compute the diameter of the Internet graph, or some Web
graphs, i.e. massive data.
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Diameter computations

Frequently Asked Questions (FAQ)

Usual questions on diameter, centers and radius :

I What is the best Program (resp. algorithm) available ?

I What is the complexity of diameter, center and radius
computations ?

I How to compute or approximate the diameter of huge graphs ?

I Find a center (or all centers) in a network, (in order to install
serveurs).
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Diameter computations

Some notes

1. I was asked first this problem in 1980 by France Telecom for
the phone network (FT granted a PhD).

2. Marc Lesk obtained his PhD in 1984 with the title :
Couplages maximaux et diamètres de graphes.
Maximum matchings and diameter computations

3. But, with very little practical results for diameter
computations.
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Diameter computations

I Our aim is to design an algorithm or heuristic to compute the
diameter of very large graphs

I Any algorithm that computes all distances between all pairs of
vertices, complexity O(n3) or O(nm). As for example with |V |
successive Breadth First Searches in O(n(n + m)).

I Best known complexity for an exact algorithm is O( n3

log2n
), in

fact computing all shortest paths.

I But also with at most O(Diam(G )) matrix multiplications.
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Computing diameter using fewest BFS possible

I Clemence Magnien and M. Latapy asked me again (2006) this
question about diameter.

I But in the meantime, I met Derek Corneil and Feodor Dragan,
we proved some theorems about diameter and chordals graphs
but above all I had learned many properties of graph searches
from Derek Corneil.

I I answered to Olivier Gascuel’s usual question, how to
compute diameter of phylogenetic trees, using the following
algorithm.
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1. Let us consider the procedure called : 2 consecutive BFS 1

Data: A graph G = (V ,E )

Result: u, v two vertices

Choose a vertex w ∈ V
u ← BFS(w)
v ← BFS(u)

Where BFS stands for Breadth First Search.
Therefore it is a linear procedure

1. Proposed the first time by Handler 1973
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Intuition behind the procedure
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I Handler’s clasiscal result 73
If G is a tree, diam(G ) = d(u, v)
Easy using Jordan’s theorem.
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First theorem

Camille Jordan 1869 :

A tree admits one or two centers depending on the parity of its
diameter and furthermore all chains of maximum length starting at
any vertex contain this (resp. these) centers.

And radius(G ) = ddiam(G)
2 e
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Computing diameter using fewest BFS possible

Unfortunately it is not an algorithm !
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Computing diameter using fewest BFS possible

Certificates for the diameter

To give a certificate diam(G ) = k , it is enough to provide :

I two vertices x , y s.t. d(x , y) = k (diam(G ) ≥ k).

I a subgraph H ⊂ G with diam(H) = k (diam(G ) ≤ k).
H may belong to a class of graphs on which diameter
computations can be done in linear time, for example trees.
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Experimental results : M.H., M.Latapy, C. Magnien 2008

Randomized BFS procedure

Data: A graph G = (V ,E )

Result: u, v two vertices

Repeat α times :
Randomly Choose a vertex w ∈ V
u ← BFS(w)
v ← BFS(u)
Select the vertices u0, v0 s.t. distance(u0, v0) is maximal.
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Computing diameter using fewest BFS possible

1. This procedure gives a vertex u0 such that :
exc(u0) ≤ diam(G ) i.e. a lower bound of the diameter.

2. Use a spanning tree as a partial subgraph to obtain an upper
bound by computing its exact diameter in linear time.

3. Spanning trees given by the BFS.
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Computing diameter using fewest BFS possible

I The Program and some Data on Web graphs or P-2-P
networks can be found

I http://www-rp.lip6.fr/~magnien/Diameter

I 2 millions of vertices, diameter 32 within 1

I Further experimentations by Crescenzi, Grossi, Marino (in
ESA 2010)
which confirm the excellence of the lower bound using
BFS ! ! ! !

http://www-rp.lip6.fr/~magnien/Diameter
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Computing diameter using fewest BFS possible

I Since α is a constant (≤ 1000), this method is still in linear
time and works extremely well on huge graphs (Web graphs,
Internet . . .)

I How can we explain the success of such a method ?

I Due to the many counterexamples for the 2 consecutive BFS
procedure. An explanation is necessary !
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Computing diameter using fewest BFS possible

2 kind of explanations

The method is good or the data used was good.

Partial answer

The method also works on several models of random graphs.
So let us try to prove the first fact

Restriction

First we are going to focus our study on the 2 consecutive BFS.
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Computing diameter using fewest BFS possible

Chordal graphs

1. A graph is chordal if it has no chordless cycle of length ≥ 4 .

2. If G is a chordal graph, Corneil, Dragan, H., Paul 2001, using
a variant called 2 consecutive LexBFS
d(u, v) ≤ diam(G ) ≤ d(u, v) + 1

3. Generalized by Corneil, Dragan, Kohler 2003 using 2
consecutive BFS :
d(u, v) ≤ diam(G ) ≤ d(u, v) + 1
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Computing diameter using fewest BFS possible

The 4-sweep : Crescenzi, Grossi, MH, Lanzi, Marino 2011

Diam = max{ecc(a1), ecc(a2)} and Rad = min{ecc(r), ecc(m1)}
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Computing diameter using fewest BFS possible

Intuition behind the 4-sweep heuristics

I Chepoi and Dragan has proved that for chordal graphs that a
center is at distance at most one of the middle vertex (m1 in
the picture).

I Roughly, we have the same results with 4-sweep than with
1000 2-sweep.
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It is still not al algorithm ! !
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An exact algorithm !

Compute the excentricity of the leaves of a BFS rooted in m1

with a stop condition.
Complexity is O(nm) in the worst case, but often linear in practice.
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Simple Lemma

If for some x ∈ Level(i) of the tree, we have ecc(x) > 2(i − 1)
then we can stop the exploration.

Proof

Let us consider y ∈ L(j) with j < i . ∀z ∈ ∪1≤k≤i−1L(k)
dist(z , y) ≤ 2(i − 1)
Therefore ecc(y) ≤ ecc(x) or the extreme vertices from y belong
to lower layers and have already been considered.
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iFub an exact O(mn) algorithm
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Bad example
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Results :

Diametre Facebook = 41 ! Backstrom, Boldi, Rosa, Uganden,
Vigna 2011
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Comments

I Boldi and his group had to parallelize our algorithm and a
BFS on the giant connected component of Facebook would
take several hours. But only 17 BFS’s were needed.

I The 4-sweep method alway gives a lower bound of the
diameter not too far from the optimal,
the hard part is to obtain an upper bound with iFUB

I The worst examples are roadmap graphs with big treewidth
and big grids.



Radius and diameter computations in huge graphs and some extensions,

Computing diameter using fewest BFS possible

Comments

I Boldi and his group had to parallelize our algorithm and a
BFS on the giant connected component of Facebook would
take several hours. But only 17 BFS’s were needed.

I The 4-sweep method alway gives a lower bound of the
diameter not too far from the optimal,
the hard part is to obtain an upper bound with iFUB

I The worst examples are roadmap graphs with big treewidth
and big grids.



Radius and diameter computations in huge graphs and some extensions,

Computing diameter using fewest BFS possible

Comments

I Boldi and his group had to parallelize our algorithm and a
BFS on the giant connected component of Facebook would
take several hours. But only 17 BFS’s were needed.

I The 4-sweep method alway gives a lower bound of the
diameter not too far from the optimal,
the hard part is to obtain an upper bound with iFUB

I The worst examples are roadmap graphs with big treewidth
and big grids.



Radius and diameter computations in huge graphs and some extensions,

The Stanford Database

Graph searches

Diameter computations

Computing diameter using fewest BFS possible

The Stanford Database

Recents results

Huge graphs

Consequences and perspectives



Radius and diameter computations in huge graphs and some extensions,

The Stanford Database

Stanford Large Network Dataset Collection
http ://snap.stanford.edu/data/

I A very practical database for having large graphs to play with.

I Graphs are described that way : number of vertices, number of
edges (arcs), diameter.
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The Stanford Database

Graph diam SNAP diam 4-Sweep

soc-Epinions1 14 15

soc-pokec-relationships 11 14

soc-Slashdot0811 10 12

soc-Slashdot0902 11 13

com-lj.ungraph 17 21

com-youtube.ungraph 20 24

com-DBLP 21 23

com-amazon 44 47

email-Enron 11 13

wikiTalk 9 11

cit-HepPh 12 14

cit-HepTh 13 15

CA-CondMat 14 15

CA-HepTh 17 18

web-Google 21 24

Figure: 4-sweep versus SNAP
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The Stanford Database

Graph diam SNAP diam 4-Sweep

amazon0302 32 38

amazon0312 18 20

amazon0505 20 22

amazon0601 21 25

p2p-Gnutella04 9 10

p2p-Gnutella24 10 11

p2p-Gnutella25 10 11

p2p-Gnutella30 10 11

roadNet-CA 849 865

roadNet-TX 1054 1064

Gowalla-edges 14 16

BrightKite-edges 16 18
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The Stanford Database

How can I certify my results ?

I How can I beat the value of Stanford database ?

I Then some * explains in a little footnote that the SNAP value
is heuristically obtained by 1000 random BFS

I I like the idea that 4 searches totally dependant are better
that 1000 independant searches

I See the example of a long path.

I The last vertex of a BFS is not at all a random vertex
(NP-complete to decide : Charbit, MH, Mamcarz 2014 to
appear in DMTCS).
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The Stanford Database

How can I certify my results ?

I By certifying the longest path [x , y ] (as hard as computing a
BFS ?)

I Using another BFS programmed by others starting at x .

I Certifying that the computed BFS ordering is a legal BFS
ordering, using the 4-point condition. Which can be checked
in linear time for BFS and DFS.
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The Stanford Database

Graphe Vertices
Edges

Diameter iFUB Diam. FourSweep

CA-HepTh 0.190 18 18

CA-GrQc 0.181 17 17

CA-CondMat 0.124 15 15

CA-AstroPh 0.047 14 14

roadNet-CA 0.355 865 865

roadNet-PA 0.353 794 780

roadNet-TX 0.359 1064 1064

email-Enron 0.1 13 13

email-EuAll 0.631 14 14

com-amazon 0.361 47 47

Amazon0302 0.212 38 38

Amazon0312 0.125 20 20

Amazon0505 0.122 22 22

Amazon0601 0.119 25 25

Gowalla edges 0.207 25 16

Brightkite edges 0.272 18 18

soc-Epinions1 0.149 15 15

Figure: 4-Sweep Results
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Easy extensions

1. To weighted graphs by replacing BFS with Dijkstra’s algorithm

2. To directed graphs
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Recents results

A method symmetric for computing radius and diameter

M. Borassi, P. Crescenzi, R. Grossi, M.H., W. Kosters, A. Marino
and F. Takes, 2014

I A mixture with our approach and that of W. Kosters and F.
Takes in which a lower bound of the eccentricity of every
vertex is maintained at each BFS.

I It generalizes the 4-sweep to k-sweep.

I we generalize to maintain k values in each vertex.
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Recents results

A method with no name yet

I Given a random vertex v1 and setting i = 1, repeat k times
the following :

1. Perform a BFS from vi and choose the vertex vi+1 as the
vertex x maximizing

∑
i
j=1d(vj , x).

2. Increment i .

I The maximum eccentricity found, i.e. maxi=1,...,k exc(vi ), is a
lower bound for the diameter.

I Compute the eccentricity of w , the vertex minimizing∑k
i=1 d(w , vi ).

I The minimum eccentricity found,
i.e. min{mini=1,...,k exc(vi ), exc(w)}, is an upper bound for
the radius.
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Recents results

Replacing Sum by Max does not change.
To compute the exact values of radius and diameter, we use the
next lemmas.
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Recents results

Lemma 1

Let Diam(G ) be the diameter, let x and y be diametral vertices
(that is, d(x , y) = Diam(G )), and let v1, . . . , vk be k other
vertices. Then, Diam(G ) ≤ 2

k

∑k
i=1 d(x , vi ) or

Diam(G ) ≤ 2
k

∑k
i=1 d(vi , y).

proof

kDiam(G ) =
∑k

i=1 d(x , y) ≥
∑k

i=1 [d(x , vi ) + d(vi , y)] =∑k
i=1 d(x , vi ) +

∑k
i=1 d(vi , y).
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Recents results

Lemma 2

Let x ∈ V be a center and let v1, . . . , vk be k other vertices. Then
Radius(G ) ≥ 1/k

∑k
i=1 d(x , vi )

proof

Let y ∈ V such that : Radius(G ) = d(x , y)
Then kRadius(G ) =

∑k
i=1 d(x , y) ≥

∑k
i=1 [d(x , vi ) + d(vi , y)] =∑k

i=1 d(x , vi ) +
∑k

i=1 d(vi , y).
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This method generalizes the 4-sweep and seems to better handle
the cases where 1000 BFS was needed to find the exact value in
the previous method.
For the same examples it never goes further 10-100 BFS.
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With this method we were able to disprove conjectures inspired
from S. Milgram about the 6 degrees of separation

1. Kevin Bacon games on the actors graph

2. Diameter of Wikipedia (the Wiki Game)
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Kevin Bacon

His name was used for a popular TV game in US, The Six Degrees
of Kevin Bacon, in which the goal is to connect an actor to Kevin
Bacon in less than 6 edges.
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Actors graph 2014

I The 2014 graph has 1.797.446 in the biggest connected
component, a few more if we consider the whole graph. The
number of undirected edges in the biggest connected
component is 72.880.156.

I An actor with Bacon number 8 is Shemise Evans, and the
path can be found at http ://oracleofbacon.org/ by writing
Shemise Evans in the box. Even if their graph does not
coincide exactly with our graph, this is a shortest path in both
of them :
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Shemise Evans → Casual Friday (2008) → Deniz Buga
Deniz Buga → Walking While Sleeping (2009)→ Onur Karaoglu
Onur Karaoglu→ Kardesler (2004)→ Fatih Genckal
Fatih Genckal → Hasat (2012) → Mehmet Ünal
Mehmet Ünal→ Kayip özgürlük (2011)→ Aydin Orak
Aydin Orak → The Blue Man (2014)→Alex Dawe
Alex Dawe→ Taken 2 (2012)→ Rade Serbedzija
Rade Serbedzija→ X-Men : First Class (2011) → Kevin Bacon
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Relationships between diameter and δ-hyperbolicity

δ-Hyperbolic metric spaces have been defined by M. Gromov in
1987 via a simple 4-point condition :
for any four points u, v ,w , x , the two larger of the distance sums
d(u, v) + d(w , x), d(u,w) + d(v , x), d(u, x) + d(v ,w) differ by at
most 2δ.
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Theorem Chepoi, Dragan, Estellon, M.H., Vaxes 2008

If u is the last vertex of a 2-sweep then :
exc(u) ≥ diam(G )-2.δ(G ) and
radius(G ) ≤ d(d(u, v) + 1)/2e+ 3δ(G )
Furthermore the set of all centers C (G ) of G is contained in the
ball of radius 5δ(G ) + 1 centered at a middle vertex m of any
shortest path connecting u and v in G .

Consequences

The 2-sweep (resp 4-sweep) method failure is bounded by the
δ-hyperbolicity of the graph.
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Nice

Because many real networks have small δ-hyperbolicity.
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The difficulty of the certificate

δ-hyperbolicity and treewidth (existence of big grids as subgraphs)
must play a role.
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Graph searches

Diameter computations

Computing diameter using fewest BFS possible

The Stanford Database

Recents results

Huge graphs

Consequences and perspectives
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1. To handle huge graphs we already have : graph searches.

2. But BFS is not so easy to program in a distributed
environment

3. For example, using Map - Reduce operations as popularized
by Google.
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Restricted Families of Graphs 

No induced cycles of length >3 

No asteroidal triples 

No asteroidal triples and  

The intersection graph of 
intervals of a line 

No induced cycles of length >4 

asteroidal triple a,b,c 

b
c

a
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Answers to Frequently Asked Questions

I We can really compute the exact value of the diameter for big
graphs.

I Conjecture : the computation of radius(G) and ”diameter(G)
within one” have the same complexity.
”Within one” because of the case of split graphs.
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I For practical algorithms the rules are not exactly the same
that for classical algorithms in which only worst case
complexity matters.

I But we can have fun !
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”While theoretical work on models of computation and methods
for analyzing algorithms has had enormous payoffs, we are not
done. In many situations, simple algorithms do well. We don’t
understand why ! Developing means for predicting the performance
of algorithms and heuristics on real data and on real computers is
a grand challenge in algorithms.”
Challenges for Theory of Computing by :
CONDON, EDELSBRUNNER, EMERSON, FORTNOW, HABER,
KARP, LEIVANT, LIPTON, LYNCH, PARBERRY,
PAPADIMITRIOU, RABIN, ROSENBERG, ROYER, SAVAGE,
SELMAN, SMITH, TARDOS, AND VITTER,
Report for an NSF-sponsored workshop on research in theoretical
computer science.
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Consequences and perspectives

So we need to understand

I Why the 4-sweep method works so well (analogy with
Quicksort) ?

I Some partial results in : Michal Parnas and Dana Ron, Testing
the diameter of graphs, Random Struct. Algorithms, 2002.

I For which graphs one can avoid to use O(n) BFS’s to
compute the diameter ?
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Consequences and perspectives

General method used so far

1. Find a linear time algorithm proved for a wide class of graphs
containing trees, chordal graphs, . . .
(Most of these algorithms are based on graph searches)

2. So the study of graph classes could be useful for applications !

3. Make an heuristic out of this algorithm applicable on arbitrary
graphs

4. Provide certificates for partial solutions
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Consequences and perspectives

Hints for future work

I Uses a series of graph searches for preprocessing when faced
to hard combinatorial problems (already used in biological
applications of interval graphs and for quadratic integer
programming) Consecutive Ones property (C1P) (find a good
ordering of the columns of the matrix such that in each row
the ones are consecutive) A kind of filtering process !

I Develop approximation algorithms even for polynomial
problems but applied on huge data on which only linear time
algorithms can be processed.
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I Computation of δ-hyperbolicity of graphs. A Gromov’s
parameter which measures the distance to a tree in a metric
way. Polynomial to compute but not linearly.

I Develop similar heuristics for computing Betweenness
Centrality or other centrality parameters used in biology or
social networks analysis.

I Community detection in networks (using LexDFS ?)
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Theoretical aspects
I D. Corneil, F. Dragan, M. Habib, C. Paul, Diameter

determination on restricted families of graphs, Discrete
Applied Mathematic, Vol 113(2-3) : 143-166 (2001)

I V. Chepoi, F. Dragan, B. Estellon, M. Habib, Y. Vaxes,
Diameters, centers, and approximating trees of
delta-hyperbolic geodesic spaces and graphs, ACM
Symposium on Computational Geometry 2008 : 59-68.

I V. Chepoi, F. Dragan, B. Estellon, M. Habib, Y. Vaxes, Notes
on diameters, centers, and approximating trees of δ-hyperbolic
geodesic spaces and graphs, TGCT08 Paris, Electronic
Notes in Discrete Mathematics 31(2008)231-234.

I V. Chepoi, F. Dragan, B. Estrellon, M. Habib, Y. Vaxes et Y.
Xiang Additive Spanners and Distance and Routing Labeling
Schemes for Hyperbolic Graphs, Algorithmica 62-(3-4)
(2012) 713-732.
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Computational aspects

I C. Magnien, M. Latapy, M. Habib, Fast computation of
empirically tight bounds for the diameter of massive graphs,
Journal of Experimental Algorithmics, 13 (2008).

I P. Crescenzi, R. Grossi, M. Habib, L. Lanzi and A. Marino, On
Computing the Diameter of Real-World Undirected graphs,
Theor. Comput. Sci. 514 : 84-95 (2013).

I M. Borassi, P. Crescenzi, R. Grossi, M. Habib, W. Kosters, A.
Marino and F. Takes, On the Solvability of the Six Degrees of
Kevin Bacon Game. A Faster Graph Diameter and Radius
Computation Method, accepted at Fun with Algorithms,
june 2014
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Many thanks for your attention ! !
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