A new model of mobile robots with lights and its computational power

Koichi Wada (Hosei University, Japan)

Joint work with Yoshiaki Katayama(Nagoya Institute of Technology, Japan) and Satoshi Terai (Hosei University) **Coordination of Autonomous Mobile Robots**

Autonomous Mobile Robots Multiple, Fully decentralized

- Coordination task of Mobile Robots
 Gathering, Convergence, Formation ...
- Challenges from the theoretical aspect
 Clarifying the "power of lights" to solve gathering problems

MAC2015 in Montreal 2015.10.22

- Robot: Point on an infinite 2D-space
 - Anonymous (No distinguished ID)
 - Oblivious(No persistent memory)
 - Deterministic
 - No communication (Observe the environment and Move)

Observation

Each robot has a local x-y coordinate system(LCS)

- The current position is the origin
- Agreement level of LCSs depends on the model (two axes, one axis, or chirality)

no agreement of axis and chirality

Execution of Robots (Behavior of each robot)

Wait-look-compute-move cycle

- Wait: Idle state
- Look: Take a snapshot of all robots' current locations (in terms of LCS)
- Compute: Deciding the next position
- Move to the next position
 - Rigid vs Non-Rigid(movement of δ>0)

Timing Model(How Cycles are Synchronized)

Async (or CORDA): No bound for length of each step

MAC2015 in Montreal 2015.10.22

- All schedulers are assumed to be fair
 - All robots are activated infinitely often
- Restricted Schedulers in Ssync
 - k-bounded
 - Between two cycles of any robot, other robots perform at most k cycles
 - Centralized
 - Robots perform one by one
 - Round-Robin
 - = centralized and 1-bounded

All robots meet at one point on a plane from any initial configuration n=2 : rendezvous

 Distinct gathering(D-gathering) All robots are located at distinct positions
 Self-Stabilizing gathering (SS-gathering) Some robots can be located at a same position

Unsolvability of Rendezvous problem

Schedulers	Initial Config.	Solvability
Fsync	any	Yes(trivial)
Centralized Ssync	any	Yes(trivial)
k-bounded Ssync $(k \ge 1)$	any	No[1]
Ssync	any	No(↑)
Async	any	No (↑)

[1] X D'efago, M Gradinariu, P Julien, C St'ephane, M Philippe, R Parv'edy, Fault and Byzantine Tolerant Self-stabilizing Mobile Robots Gathering — Feasibility Study —, DISC 2006, LNCS, 4167, pp 46-60.

Unsolvability of Gathering problem (n \geq 3)

Schedulers	Initial Config.	Solvability
Fsync	any	Yes(trivial)
Round-Robin Ssync	Distinct	OPEN
Round-Robin Ssync	SS	No [1]
2-bounded Ssync	Distinct	No [1]
Ssync	any	No (↑)
Async	any	No (↑)[2]

[1] X D'efago, M Gradinariu, P Julien, C St'ephane, M Philippe, R Parv'edy, Fault and Byzantine Tolerant Self-stabilizing Mobile Robots Gathering — Feasibility Study — , , DISC 2006, LNCS , 4167, pp 46-60, 2006.

[2] G. Prencipe, The effect of synchronicity on the behavior of autonomous mobile robots, Theory of Computing Systems, 38(5),539-558, 2005.

MAC2015 in Montreal 2015.10.22

Solvability with other assumptions

Multiplicity detection

- Strong multiplicity \rightarrow gathering (n \geq 3)
- Weak multiplicity \rightarrow gathering (odd n \geq 3)

Axis agreement

- Two-axis \rightarrow gathering on Async (n \geq 2)
- One-axis \rightarrow gathering on Async (n \geq 2)

• Chirality \rightarrow gathering(n \geq 3)

If Chirality is assumed, rendezvous problem has a special feature.

[3 I. Suzuki, M. Yamashita, SIAM J. Computing, 28, 4, 1347-1363, 1999.

MAC2015 in Montreal 2015.10.22

Robot with lights

light

O(1) bits of memory that can store robot's internal state. Light is classified by its visibility.

	my light	other's
full – light	0	0
<i>internal – light</i> (FSTATE[4])	0	×
<i>external – light</i> (FCOMM[4])	×	0

[4]P.Flocchini , N.Santoro , G.Viglietta , M.Yamashita , Rendezvous of Two robots with Constant Memory ,SIROCCO 2013), LNCS 8179, pp 189-200, 2013.

Solvability of Rendezvous problem

						_				
	[1]	schedule centralized		solvability	7					
				0	S.Das, P. Flocchini, G.Prend			•		
		k-bo	ounded	$l(k \ge 1)$	×	N. Santoro, M.Yamashit ICDCS (2012)				/12
	Rig	gid				Non-Rigi	d			
[4]	sched	ule	full	int.	ext.	schedule	full	int.	ext.	
Γ.]	AS	NC	≤ 4	?	12	ASYNC	4	?	3*	
	SSY	NC	2	6	≤ 3	SSYNC	2	3 *	3	
	FSY	NC	1	1	1	FSYNC	1	1	1	

 * with knowledge of δ

[1] X D'efago , M Gradinariu , P Julien , C St'ephane , M Philippe , R Parv'edy , Fault and Byzantine Tolerant Self-stabilizing Mobile Robots Gathering — Feasibility Study — , DISC 2006, LNCS , 4167 , pp 46-60, 2006.

[4] P.Flocchini , N.Santoro , G.Viglietta , M.Yamashita , Rendezvous of Two robots with Constant Memory , SIROCCO 2013 , LNCS 8179, pp 189-200, 2013.

External > Internal for Rendezvous

lights	schedulers	Rigidness	# of lights
Internal	Ssync	Rigid	6
External	Sysnc	Non-rigid	3

lights	Schedulers	Rigidness	# of lights
Internal	Ssync	Non-rigid(δ)	3
External	Sysnc	Non-rigid	3

lights	schedulers	Rigidness	# of lights
Internal	Ssync	Non-rigid(δ)	3
External	Aysnc	Non-rigid(δ)	3

Rigidness vs. Non-rigidness (δ)

Rigid > Non-Rigid

Non-rigid(δ) > Rigid

Rigidness	Schedulers	light	# of lights
Rigid	Ssync	internal	12
Non-Rigid(δ)	Async	internal	3
Rigidness	Schedulers	light	# of lights
Rigid	Ssync	internal	6
Non-Rigid(δ)	Ssync	internal	3

To solve gathering problem by robots with lights

- Chirality can not be assumed
 - If chirality is assumed then
 - Gathering \in (The set of patterns formable
 - by non-oblivious robots on Ssync)
 - =(The set of patterns formable
 - by oblivious robots on Ssync)
- How to look at lights of robots at the same location

How to look at lights of robots at the same location

Solvability of gathering problem(our result)

[1]	schedule	Initial config.	solvability
	2-bouded centralized	Distinct	×
	round-robin	SS	×

How to look of lights: set

schedule	full	int.	ext.
SSYNC	3 (non-rigid)	?	2(with δ)
centralized	≤ 2	?	2(non-rigid)
round-robin	≤ 2	2(rigid,SS)	≤ 2

[1] X D'efago, M Gradinariu, P Julien, C St'ephane, M Philippe, R Parv'edy, Fault and Byzantine Tolerant Self-stabilizing Mobile Robots Gathering — Feasibility Study —, DISC 2006, LNCS, 4167, pp 46-60.

Overview of algorithms

Algorithm 1^[4]: from initial configuration to 1 or 2 points Algorithm 2^[5]: extension of two-robot algorithms

[4] P.Flocchini , N.Santoro , G.Viglietta , M.Yamashita , Rendezvous of Two robots with Constant Memory , SIROCCO 2013 , LNCS 8179, pp 189-200, 2013.5
[5] T Izumi, Y Katayama, N Inuzuka, and K Wada, Gathering Autonomous Mobile Robots with Dynamic Compasses: An Optimal Result, DISC 2007, LNCS 4731, pp 298-312, 2007,

Example

Solvability of gathering problem(our result)

[1] X D'efago, M Gradinariu, P Julien, C St'ephane, M Philippe, R Parv'edy, Fault and Byzantine Tolerant Self-stabilizing Mobile Robots Gathering — Feasibility Study —, DISC 2006, LNCS, 4167, pp 46-60.

- We have revealed some solvability in assumptions that are not solvable without light.
- We have to investigate relationship between internal and external lights.
 - 2 robots: external >internal
 - $n(\geq 3)$ robots: external >>internal?

Thank you !

n-robot algorithm under unique LDS(1/2)

■ Robots are located at two points

 →All robots execute the two-robot algorithm

 ■ Robots are located at more than two points

 →All robots move to one of two endpoints of LDS

Correctness of Conditional n-robot Alg.

Lemma 3

- ∠LDSy = ∠ formed by LDS and the global y-axis < ε
- → Wait-Approach Relation is guaranteed
 - (regardless of the title angle of each robots)

Lemma 4

 At any round, ∠LDSy decreases by ε~2ε unless gathering is achieved

Unique LDS Election (1/2)

If two or more LDSs exist, each robot calculates the convex hull(CH)

- Robots on the boundary : Wait
- Inner robots : Moves to one of vertices
- Contracting the shortest edge of the CH

#edges of the CH decreases

 \rightarrow Eventually unique LDS is elected (or gathered)

Unique LDS Election(2/2)

- → Robots moves to the center-of-gravity of the CH
 - All robots simultaneously move → gathered
 - A part of robots move \rightarrow Symmetry is broken

Conclusion

- Tilt angle $\leq \pi/2-\varepsilon$ (Optimal)
- Semi-synchronous model
- Arbitrary #robots
- Open problem
 - Asynchronous model
 - $\pi/2 < Maximum Tilt angle < \pi/4$
 - **Recently**, two robots are solved for $<\pi/3$
 - #robots = 2, dynamic compass