A new model of mobile robots with lights and its computational power

Koichi Wada (Hosei University, Japan)

Joint work with
Yoshiaki Katayama(Nagoya Institute of Technology, Japan)
and
Satoshi Terai (Hosei University)

Coordination of Autonomous Mobile Robots

- Autonomous Mobile Robots Multiple, Fully decentralized

■ Coordination task of Mobile Robots

- Gathering, Convergence, Formation ...
\square Challenges from the theoretical aspect
- Clarifying the "power of lights" to solve gathering problems

Autonomous Mobile Robots

■ Robot: Point on an infinite 2D-space

- Anonymous (No distinguished ID)
- Oblivious(No persistent memory)
- Deterministic
- No communication (Observe the environment and Move)

Observation

- Each robot has a local $x-y$ coordinate system(LCS)
- The current position is the origin
- Agreement level of LCSs depends on the model (two axes, one axis, or chirality) no agreement of axis and chirality

Execution of Robots (Behavior of each robot)

■ Wait-look-compute-move cycle

- Wait: Idle state
- Look: Take a snapshot of all robots' current locations (in terms of LCS)
- Compute: Deciding the next position
- Move: Move to the next position
- Rigid vs Non-Rigid(movement of $\delta>0$)

Timing Model(How Cycles are Synchronized)

- Async (or CORDA): No bound for length of each step

■ Ssync (SYm, ATOM): Synchronized Round

- Only a subset of all robots becomes active in each round

- Fsync: All robots are completely synchronized

Fairness and Restricted Schedulers in Ssync

\square All schedulers are assumed to be fair

- All robots are activated infinitely often

■ Restricted Schedulers in Ssync

- k-bounded
- Between two cycles of any robot, other robots perform at most k cycles
- Centralized
- Robots perform one by one
- Round-Robin
- = centralized and 1-bounded

Gathering Problem

\square All robots meet at one point on a plane from any initial configuration
$\mathrm{n}=2$: rendezvous

■ Distinct gathering(D-gathering)
All robots are located at distinct positions
■ Self-Stabilizing gathering (SS-gathering) Some robots can be located at a same position

Unsolvability of Rendezvous problem

Schedulers	Initial Config.	Solvability
Fsync	any	Yes(trivial)
Centralized Ssync	any	Yes(trivial)
k-bounded Ssync $(k \geqq 1)$	any	No[1]
Ssync	any	$\mathrm{No}(\uparrow)$
Async	any	No (\uparrow)

Unsolvability of Gathering problem ($\mathrm{n} \geqq 3$)

Schedulers
Fsync
Round-Robin Ssync
Round-Robin Ssync
2-bounded Ssync
Ssync
Async

Initial Config. Solvability

any
Distinct
SS
Distinct
any
any

Yes(trivial)
OPEN
No [1]
No [1]
No (\uparrow)
No (\uparrow)[2]
[1] X D'efago , M Gradinariu , P Julien , C St'ephane, M Philippe , R Parv'edy , Fault and Byzantine Tolerant Self-stabilizing Mobile Robots Gathering - Feasibility Study — , , DISC 2006, LNCS , 4167 , pp 46-60, 2006.
[2] G. Prencipe, The effect of synchronicity on the behavior of autonomous mobile robots, Theory of Computing Systems, 38(5),539-558, 2005.

Solvability with other assumptions

■ Multiplicity detection

- Strong multiplicity \rightarrow gathering ($\mathrm{n} \geqq 3$)
- Weak multiplicity \rightarrow gathering (odd $\mathrm{n} \geqq 3$)
\square Axis agreement
- Two-axis \rightarrow gathering on Async ($\mathrm{n} \geqq 2$)
- One-axis \rightarrow gathering on Async ($\mathrm{n} \geqq 2$)

■ Chirality \rightarrow gathering $(\mathrm{n} \geqq 3)$

Special feature of rendezvous problem

If Chirality is assumed, rendezvous problem has a special feature.

[3 I. Suzuki, M. Yamashita, SIAM J. Computing, 28, 4, 1347-1363, 1999.

Robot with lights

\square light
O (1) bits of memory that can store robot's internal state. Light is classified by its visibility.

	my light	other's
full-light	\bigcirc	\bigcirc
internal - light (FSTATE[4])	O	\times
external - light (FCOMM[4])	\times	\bigcirc

Solvability of Rendezvous problem

External-light vs. Internal-light

■ External > Internal for Rendezvous

| Iights | schedulers | Rigidness | \# of lights |
| :--- | :--- | :--- | :--- | :--- |
| Internal | Ssync | Rigid | 6 |
| External | Sysnc | Non-rigid | 3 |

lights	Schedulers	Rigidness	\# of lights
Internal	Ssync	Non-rigid $(\overline{)})$	3
External	Sysnc	Non-rigid	3

Iights	schedulers	Rigidness	\# of lights
Internal	Ssync	Non-rigid($(\mathbf{)}$	3
External	Aysnc	Non-rigid($(\mathbf{)}$	3

Rigidness vs. Non-rigidness ($\overline{\text {) }}$

■ Rigid > Non-Rigid

■ Non-rigid($\bar{\delta})>$ Rigid

Rigidness	Schedulers	light	\# of lights
Rigid	Ssync	internal	12
Non-Rigid(δ)	Async	internal	3
Rigidness	Schedulers	light	\# of lights
Rigid	Ssync	internal	6
Non-Rigid(δ)	Ssync	internal	3

Gathering problem for robots with lights

■ To solve gathering problem by robots with lights

- Chirality can not be assumed

If chirality is assumed then
Gathering \in (The set of patterns formable by non-oblivious robots on Ssync)
=(The set of patterns formable by oblivious robots on Ssync)

- How to look at lights of robots at the same location

How to look at lights of robots at the same location

Solvability of gathering problem(our result)

[1] sch	dule	Initial config. Distinct	solvability
2-bouded centralized			\times
round-robin		SS	\times
How to look of lights: set			
schedule	full	int.	ext.
SSYNC	$\begin{gathered} 3 \\ \text { (non-rigid) } \end{gathered}$?	2(with δ)
centralized	≤ 2	$?$	2 (non-rigid)
round-robin	≤ 2	2(rigid,SS)	≤ 2

[1] X D'efago , M Gradinariu , P Julien , C St'ephane, M Philippe , R Parv'edy , Fault and Byzantine Tolerant Self-stabilizing Mobile Robots Gathering - Feasibility Study — , DISC 2006, LNCS , 4167 , pp 46-60.

Overview of algorithms

Algorithm 1[4]: from initial configuration to 1 or 2 points Algorithm 2[5]: extension of two-robot algorithms

[4] P.Flocchini , N.Santoro , G.Viglietta , M.Yamashita , Rendezvous of Two robots with Constant Memory, SIROCCO 2013, LNCS 8179, pp 189-200, 2013.5
[5] T Izumi, Y Katayama, N Inuzuka, and K Wada, Gathering Autonomous Mobile Robots with Dynamic Compasses: An Optimal Result, DISC 2007, LNCS 4731, pp 298-312, 2007,

Example

- round-robin schedule

■ internal-light
l robots
m robots

Order of cycle:
$r_{1} \rightarrow r_{2} \rightarrow \cdots \rightarrow r_{n}$
Initial state: A
$r_{1} \sim r_{k}$ robots go to same point
$r_{k+1} \sim r_{n}$ robots go to a different point
$r_{1} \sim r_{k} \quad r_{k+1} \sim r_{n}$

- gathered

Solvability of gathering problem(our result)

[1] X D'efago , M Gradinariu , P Julien , C St'ephane, M Philippe , R Parv'edy , Fault and Byzantine Tolerant Self-stabilizing Mobile Robots Gathering — Feasibility Study — , DISC 2006, LNCS , 4167 , pp 46-60.

Concluding Remarks

- We have revealed some solvability in assumptions that are not solvable without light.
- We have to investigate relationship between internal and external lights.
- 2 robots: external >internal
- $\mathrm{n}(\geqq 3)$ robots: external >>internal?
- Robots are located at two points
\rightarrow All robots execute the two-robot algorithm
\square Robots are located at more than two points \rightarrow All robots move to one of two endpoints of LDS

Correctness of Conditional n-robot Alg.

- Lemma 3
- $\angle \mathrm{LDSy}=\angle$ formed by LDS and the global y-axis $<\varepsilon$
\rightarrow Wait-Approach Relation is guaranteed (regardless of the title angle of each robots)

■ Lemma 4

- At any round, \angle LDSy decreases by $\varepsilon \sim 2 \varepsilon$
unless gathering is achieved

Unique LDS Election (1/2)

- If two or more LDSs exist, each robot calculates the convex hull(CH)
- Robots on the boundary : Wait
- Inner robots: Moves to one of vertices
- Contracting the shortest edge of the CH

\#edges of the CH decreases
\rightarrow Eventually unique L LDS is elected (or gathered)

Unique LDS Election(2/2)

- If all edges have a same length
\rightarrow Robots moves to the center-of-gravity of the CH
- All robots simultaneously move \rightarrow gathered
- A part of robots move \rightarrow Symmetry is broken

OR

Conclusion

■ Gathering mobile robots with dynamic compasses

- Tilt angle $\leqq \pi / 2-\varepsilon$ (Optimal)
- Semi-synchronous model
- Arbitrary \#robots

■ Open problem

- Asynchronous model
$-\pi / 2$ < Maximum Tilt angle $<\pi / 4$
- Recently, two robots are solved for $<\pi / 3$
- \#robots = 2, dynamic compass

