A Generalized Model for Games of Cops and Robbers with Randomness

Frédéric Simard François Laviolette Josée Desharnais
Université Laval
Department of Computer Science and Software Engineering

Simard et al.

Introduction

Cops and Robbers games have been known as models for fully discretized perfect information pursuit games.
They assume

- two players oppose each other,
- discrete time,
- discrete space,
- players know everything that has been played.

Introduction

These games come in many instances

- the cop and robber game of Nowakowski, Winkler and Quilliot (solved in 1983),
- the k-cops and robber game (solved around 2012),
- the helicopter cops and robber (solved in 1993),
- the tandem-cops and robber (solved in 2005),
- etc.

The one model to rule them all

Instead of studying each game seperatly, one could want to regroup them under a single model. In fact, we note that

- each game is played on a fixed discrete structure,
- each turn is described with a precise configuration,
- each turn necessitates a defined way to modify the configuration,
- at the end of each turn we can verify if the robber is free.

Thus,

We should be able to describe all cops and robbers game with a single model!

The one model to rule them all

Bonato and MacGillivray's generalization
Bonato and MacGillivray described a generalization of cops and robbers games in a 2014. However it doesn't include random elements such as random walks, capture probabilities, etc.

The one model to rule them all

Indeed, we want to incorporate the cop and drunk robber game into our model.

Cop and drunk robber game

- Same rules as the classic game,
- the robber walks according to a transition matrix M.

It was solved recently with the following recurrence relation

$$
\begin{aligned}
& w_{0}(r, c):=1 \Longleftrightarrow r=c ; \text { otherwise it is } 0 ; \\
& w_{n}(r, c)= \begin{cases}1, & \text { if } c \in N[r] ; \\
\operatorname{cox}^{\prime} \in N[c] \\
\sum_{r^{\prime} \in N[r]} M\left(r, r^{\prime}\right) w_{n-1}\left(r^{\prime}, c^{\prime}\right), & \text { if } c \notin N[r] .\end{cases}
\end{aligned}
$$

The one model to rule them all

We wish to integrate stochasticity (random robbers, random captures, random events, etc.).
We thus talk abstractly of

- sets of game states;
- sets of actions;
- transition probabilities.

A Generalized Model for Games of Cops and Robbers with Randomness

A generalized Cops and Robbers game
We say $\mathcal{G}:=(S, I, F, A, T)$ is a Cops and Robbers game if

- \mathcal{G} is played with two-players (cops and robbers), with perfect information and turn-based;

A Generalized Model for Games of Cops and Robbers with Randomness

A generalized Cops and Robbers game
We say $\mathcal{G}:=(S, I, F, A, T)$ is a Cops and Robbers game if

- $S=S_{c} \times S_{r} \times S_{o}$ is the set of possible game states;

A Generalized Model for Games of Cops and Robbers with Randomness

A generalized Cops and Robbers game
We say $\mathcal{G}:=(S, I, F, A, T)$ is a Cops and Robbers game if

- $I \subset S$ is the set of initial states;

A Generalized Model for Games of Cops and Robbers with Randomness

A generalized Cops and Robbers game
We say $\mathcal{G}:=(S, I, F, A, T)$ is a Cops and Robbers game if

- $F \subset S$ is the set of final game states;

A Generalized Model for Games of Cops and Robbers with Randomness

A generalized Cops and Robbers game
We say $\mathcal{G}:=(S, I, F, A, T)$ is a Cops and Robbers game if

- $A_{c}(s), A_{r}\left(s^{\prime}\right)$ are the sets of playable actions from states s, s^{\prime};

A Generalized Model for Games of Cops and Robbers with Randomness

A generalized Cops and Robbers game
We say $\mathcal{G}:=(S, I, F, A, T)$ is a Cops and Robbers game if

- $T_{c}: S \times A_{c} \times S \rightarrow[0,1]$ and $T_{r}: S \times A_{r} \times S \rightarrow[0,1]$ are transition probabilities seen as $\mathbb{P}\left[s^{\prime} \mid s, a\right]$.

Let's recap

- $\mathcal{G}=(S, I, F, A, T)$ is an abstract game, said to be of cops and robbers if it is two-player, perfect information and turn-based.
- \mathcal{G} is described by a sequence of states $s \in S$. Two sets I, F are included in S.
\Rightarrow The game ends whenever the robbers cannot exit F !
- Each player must choose an action $a_{c} \in A_{c}(s), a_{r} \in A_{r}\left(s^{\prime}\right)$ defined from states s, s^{\prime}.
- Whenever a player $x \in\{r, c\}$ chooses an action a from state s, the resulting state s^{\prime} is chosen randomly according to $T_{x}\left(s, a, s^{\prime}\right)$.

Solving abstract games

The capture time
At each turn i is defined a random variable $X_{i} \in\{0,1\}$ such that $X_{i}=1$ if and only if at the end of turn i the current state is final. The robbers capture time is defined by

$$
T_{\omega_{c}, \omega_{r}}:= \begin{cases}\min _{n}\left(X_{n}=1 \mid \omega_{c}, \omega_{r}\right), & \text { if } n \text { exists } \\ \infty, & \text { otherwise }\end{cases}
$$

ω_{c}, ω_{r} are the cops' and the robbers' strategies.

The capture probability

The capture time

$$
T_{\omega_{c}, \omega_{r}}:= \begin{cases}\min _{n}\left(X_{n}=1 \mid \omega_{c}, \omega_{r}\right), & \text { if } n \text { exists, } \\ \infty, & \text { otherwise }\end{cases}
$$

Assume players play optimally and define the probability of capture in n turns as

$$
p_{n}^{*}:=\max _{\omega_{c}} \min _{\omega_{r}} \mathbb{P}\left[T_{\omega_{c}, \omega_{r}} \leq n\right] .
$$

The w_{n} recursion

In addition to our definition of \mathcal{G}, our main contribution is the definition of the following function $w_{n}: S \rightarrow[0,1]$.

The w_{n} recursion

$$
\begin{aligned}
& w_{0}(s):=1 \Longleftrightarrow s \in F \\
& w_{n}(s)= \begin{cases}1, & \text { if } s \in F \\
\max _{a_{c} \in A_{c}(s)} \sum_{s^{\prime} \in S} T_{c}\left(s, a_{c}, s^{\prime}\right) & \\
\min _{a_{r} \in A_{r}\left(s^{\prime}\right)} \sum_{s^{\prime \prime} \in S} T_{r}\left(s^{\prime}, a_{r}, s^{\prime \prime}\right) w_{n-1}\left(s^{\prime \prime}\right), & \text { otherwise. }\end{cases}
\end{aligned}
$$

$w_{n}(s)$ gives the probability a state s leads to a final state in n turns or less!

The w_{n} recursion

The capture probability

The probability the cops capture the robbers in at most n turns is

$$
p_{n}^{*}:=\max _{\omega_{c}} \min _{\omega_{r}} \mathbb{P}\left[T_{\omega_{c}, \omega_{r}} \leq n\right]
$$

A copwin theorem

The recursion w_{n} is adequatly defined and gives the probability the robbers get captured in n turns or less.

$$
\max _{s_{c} \in S_{c}} \min _{s_{r} \in S_{r}} w_{n}\left(s_{c}, s_{r}\right)=p_{n}^{*}
$$

Complexity results

The w_{n} function is computed using a dynamic programming approach.

Complexity

Say at most N turns are allowed in \mathcal{G}. Then computing w_{N} takes $O\left(|S|^{3}\left|A_{c}\right|\left|A_{r}\right|\right)$ time complexity and $O(N|S|)$ space complexity.

- N can be upper-bounded and the space complexity is linear in this upper-bound and $|S|$.
- When A_{c} and A_{r} are of size polynomial in S, then computing w_{N} takes polynomial time.

Some examples

Cop and Drunk Robber with detection probability

Let $G=(V, E)$ be a finite, undirected, reflexive, connected graph and let

$$
\begin{array}{ll}
S=V^{2} & F=\{(c, c) \in S\} \\
A_{c}(c, r)=N[c] & A_{r}(c, r)=N[r] .
\end{array}
$$

Now assume the robber moves uniformly at random and let

$$
\begin{aligned}
& T_{c}\left((c, r), c^{\prime},\left(c^{\prime}, r\right)\right)=1 \Longleftrightarrow c^{\prime} \in N[c] ; \\
& T_{r}\left((c, r), r^{\prime},(c, u)\right)= \begin{cases}\frac{\operatorname{pod}(r),}{\frac{(1-\operatorname{pod}(r))}{\operatorname{deg}(r)},}, & \text { if } c=r=u ; \\
\frac{1}{\operatorname{deg}(r)+1}, & \text { if } c \neq r, u \in N[r] ; \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

pod is the probability of detection on vertex r.

Some examples

Cop and Drunk Robber with detection probability

$$
\begin{aligned}
& w_{0}(c, r):=1 \Longleftrightarrow c=r ; \\
& w_{n}(c, r)=\left\{\begin{array}{l}
1, \text { if } c=r, \text { otherwise } \\
\max _{c^{\prime} \in N[c]} \min _{r^{\prime} \in N[r]} \sum_{u \in N[r]} T_{r}\left(\left(c^{\prime}, r\right), r^{\prime},\left(c^{\prime}, u\right)\right) w_{n-1}\left(c^{\prime}, u\right) .
\end{array}\right.
\end{aligned}
$$

Conclusion

In conclusion, we

- defined a general model of cops and robbers game with random elements,
- conceived of a recursion formula that solves this game,
- evaluated the complexity of this formula,
- showed how to model known games in our framework.

