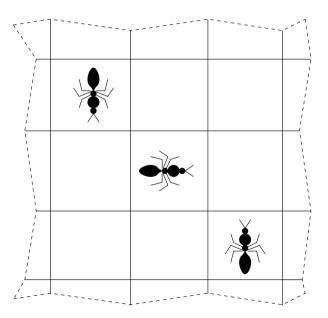
Cellular ANTomata: Principles and Progress

Arnold L. Rosenberg

Computer Science Northeastern University Boston, MA 02115, USA



The Cellular ANTomaton Model

The *parallel* component of the model:

- An $n \times n$ cellular AUTomaton:
- the $n \times n$ mesh \mathcal{M}_n with identical FSMs at each cell

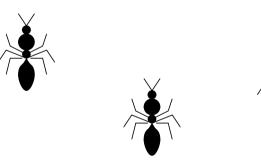
The Cellular ANTomaton Model

The *parallel* component of the model:

An $n \times n$ cellular AUTomaton

The *distributed* component of the model:

A (possibly heterogeneous) team of *mobile* FSMs — which we call ANTS



The Cellular ANTomaton Model

The *parallel* component of the model:

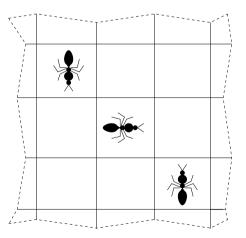
An $n \times n$ cellular AUTomaton

The *distributed* component of the model:

A (possibly heterogeneous) team of *mobile ANTS*

The Ants plus the cellular automaton equals —

A <u>Cellular ANTomaton</u>



Our Goals

We seek—

<u>SCALABLE</u> ALGORITHMS

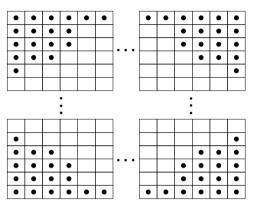
for reality-inspired problems

within the

Cellular ANTomaton model

A "Proof of Concept" Problem

THE *PARKING* PROBLEM FOR ROBOTIC ANTS



<u>Informal</u>

Have Ants congregate as compactly as possible in the closest corners of \mathcal{M}_n (measured at moment of initiation)

<u>Formal</u> (for the *southwest quadrant* of \mathcal{M}_n)

Minimize the *parking potential function*:

$$\Pi(t) \stackrel{\text{\tiny def}}{=} \sum_{k=0}^{2n-2} (k+1) \times (\text{number of Ants on diagonal } k \text{ at step } t).$$

Theorem

A Cellular ANTomaton can park Ants in \mathcal{M}_n in $O(n^2)$ steps.

This is a very conservative bound: Could O(n) steps be possible?

For perspective:

Theorem

It is impossible for discrete Ants on an unintelligent floor to park.

Theorem

A Cellular ANTomaton can park Ants in \mathcal{M}_n in $O(n^2)$ steps.

1. The Cellular ANTomaton quadrisects \mathcal{M}_n so each Ant knows its quadrant: Time: O(n) steps

Theorem

A Cellular ANTomaton can park Ants in \mathcal{M}_n in $O(n^2)$ steps.

- 1. The Cellular ANTomaton quadrisects \mathcal{M}_n so each Ant knows its quadrant: Time: O(n) steps
- 2. Ants move in a "wavefront" toward the correct corner: Time: O(n) steps

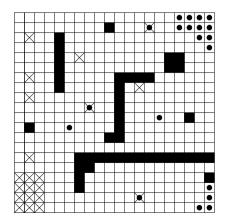
Theorem

A Cellular ANTomaton can park Ants in \mathcal{M}_n in $O(n^2)$ steps.

- 1. The Cellular ANTomaton quadrisects \mathcal{M}_n so each Ant knows its quadrant: Time: O(n) steps
- 2. Ants move in a "wavefront" toward the correct corner: Time: O(n) steps
- 3. Ants wander around their corner, to achieve a *compact* configuration Time: our procedure takes $\Theta(n^2)$ steps

A "Proof of Concept" Problem

THE *FOOD-SEEKING* PROBLEM FOR ROBOTIC ANTS



$$\begin{array}{rcl} \mathsf{CIRCLE} &=& \mathsf{Ant} \\ \mathsf{X} &=& \mathsf{Food} \\ \mathsf{Blackened\ cell} &=& \mathsf{Obstacle} \end{array}$$

 \mathcal{M}_n contains \underline{r} Ants and \underline{s} food items.

Goal. Match Ants and food items so that:

- if $r \ge s$, then some Ant will reach every food item;
- if $s \ge r$, then every Ant will get food.

 \mathcal{M}_n contains \underline{r} Ants and \underline{s} food items.

Goal. Match Ants and food items.

We have developed two algorithms that achieve this goal:

1. The Food-Initiated algorithm. **Time:** (r + O(1))n steps

 \mathcal{M}_n contains \underline{r} Ants and \underline{s} food items.

Goal. Match Ants and food items.

We have developed two algorithms that achieve this goal:

- 1. The Food-Initiated algorithm. **Time:** (r + O(1))n steps
- 2. The <u>Active-Ant algorithm</u>. Time: $O(n\sqrt{s})$ steps

 \mathcal{M}_n contains \underline{r} Ants and \underline{s} food items.

Goal. Match Ants and food items.

We have developed two algorithms that achieve this goal:

- 1. The Food-Initiated algorithm. **Time:** (r + O(1))n steps
- 2. The <u>Active-Ant algorithm</u>. **Time:** $O(n\sqrt{s})$ steps

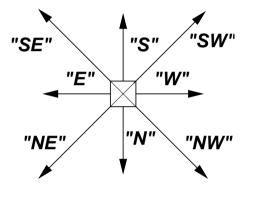
For perspective:

Theorem

A single intelligent Ant on an unintelligent floor requires, in the worst case, $\Omega(n^2)$ steps to find a single food item.

 \mathcal{M}_n contains \underline{r} Ants and \underline{s} food items.

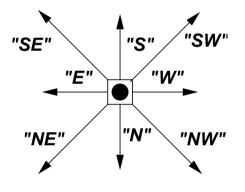
1. FSMs with food send *food-announcing message* to all neighbors.



"Food available"

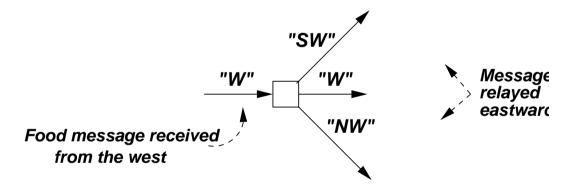
 \mathcal{M}_n contains \underline{r} Ants and \underline{s} food items.

- 1. FSMs with food send *food-announcing message* to all neighbors.
- 2. FSMs with Ants send *food-seeking message* to all neighbors.



"Food needed"

- \mathcal{M}_n contains \underline{r} Ants and \underline{s} food items.
- 1. FSMs with food send *food-announcing message* to all neighbors.
- 2. FSMs with Ants send *food-seeking message* to all neighbors.
- 3. All FSMs relay all messages (combining similar ones).

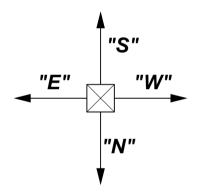


- \mathcal{M}_n contains r ants and s food items.
- 1. FSMs with food send *food-announcing message* to all neighbors.
- 2. FSMs with Ants send *food-seeking message* to all neighbors.
- 3. All FSMs relay all messages (combining similar ones).
- 4. FSMs send Ants in the direction of a food-announcing message.

 \mathcal{M}_n contains \underline{r} Ants and \underline{s} food items.

Goal. Match Ants and food items.

1. FSMs with food send *food-announcing message* on <u>NEWS</u> arcs.



"Food available'

 \mathcal{M}_n contains \underline{r} Ants and \underline{s} food items.

Goal. Match Ants and food items.

- 1. FSMs with food send *food-announcing message* on <u>NEWS</u> arcs.
- 2. All FSMs relay food-announcing messages on <u>NEWS</u> arcs.

- \mathcal{M}_n contains <u>r</u> Ants and <u>s</u> food items.
- Goal. Match Ants and food items.
- 1. FSMs with food send *food-announcing message* on <u>NEWS</u> arcs.
- 2. All FSMs relay food-announcing messages on <u>NEWS</u> arcs.
- 3. FSMs send Ants clockwise around perimeter of \mathcal{M}_n .

 \mathcal{M}_n contains <u>r</u> Ants and <u>s</u> food items.

Goal. Match Ants and food items.

- 1. FSMs with food send *food-announcing message* on <u>NEWS</u> arcs.
- 2. All FSMs relay food-announcing messages on <u>NEWS</u> arcs.
- 3. FSMs send Ants clockwise around perimeter of \mathcal{M}_n .
- 4. Ants (a) stay with food they encounter on way to perimeter
 - (b) follow messages to food from perimeter
 - -they rejoin the perimeter-walk if food has already been taken

A "Proof of Concept" Problem

THREE *PATTERN-MATCHING* PROBLEMS INSPIRED BY BIOINFORMATICS

 $\underline{\mathbf{Problem 1}}. \ \mathsf{A} \ \mathsf{CA} \ \mathcal{C} \ \mathsf{has:}$

- length-n master pattern Π along row 0
- length- $(m \le n)$ input pattern π left-justified along row n-1
- ${\mathcal C}$ identifies all positions in Π where a copy of π begins.

 $\underline{\mathbf{Problem 1}}. \ \mathsf{A} \ \mathsf{CA} \ \mathcal{C} \ \mathsf{has:}$

- length-n master pattern Π along row 0
- length- $(m \le n)$ input pattern π left-justified along row n-1

 ${\mathcal C}$ identifies all positions in Π where a copy of π begins.

Time: n + m steps

<u>Problem 1</u>. A CA C has:

- length-n master pattern Π along row 0
- length- $(m \le n)$ input pattern π left-justified along row n-1

 \mathcal{C} identifies all positions in Π where a copy of π begins.

Time: n + m steps

Problem 2. C solves a sequence of instances of **Problem 1** for pattern Π and a sequence of input patterns, π_1, \ldots, π_r of lengths $n \ge m_1 \ge \cdots \ge m_r$.

 $\underline{\mathbf{Problem}\ 1}.$ A CA $\mathcal C$ has:

- length-n master pattern Π along row 0
- length- $(m \le n)$ input pattern π left-justified along row n-1

 \mathcal{C} identifies all positions in Π where a copy of π begins.

Time: n + m steps

Problem 2. C solves a sequence of instances of **Problem 1** for pattern Π and a sequence of input patterns, π_1, \ldots, π_r of lengths $n \ge m_1 \ge \cdots \ge m_r$. **Time:** $n + m_1 + \cdots + m_r$ steps.

<u>Problem 1</u>. A CA C has:

- length-n master pattern Π along row 0
- length- $(m \le n)$ input pattern π left-justified along row n-1

 \mathcal{C} identifies all positions in Π where a copy of π begins.

Time: n + m steps

<u>Problem 2</u>. C solves a sequence of instances of Problem 1 for pattern Π and a sequence of input patterns, π_1, \ldots, π_r of lengths $n \ge m_1 \ge \cdots \ge m_r$. **Time:** $n + m_1 + \cdots + m_r$ steps.

Problem 3. Expand **Problem 1**: Allow occurrences of π to wrap around Π .

<u>Problem 1</u>. A CA C has:

- length-n master pattern Π along row 0
- length- $(m \le n)$ input pattern π left-justified along row n-1

 \mathcal{C} identifies all positions in Π where a copy of π begins.

Time: n + m steps

Problem 2. C solves a sequence of instances of **Problem 1** for pattern Π and a sequence of input patterns, π_1, \ldots, π_r of lengths $n \ge m_1 \ge \cdots \ge m_r$. **Time:** $n + m_1 + \cdots + m_r$ steps.

Problem 3. Expand **Problem 1**: Allow occurrences of π to *wrap around* Π (as if Π were a *ring of symbols*).

Problem 1. A CA C has:

- length-n master pattern Π along row 0
- length- $(m \le n)$ input pattern π left-justified along row n-1

 \mathcal{C} identifies all positions in Π where a copy of π begins.

Time: n + m steps

<u>**Problem 2**</u>. C solves a sequence of instances of <u>**Problem 1**</u> for pattern Π and a sequence of input patterns, π_1, \ldots, π_r of lengths $n \ge m_1 \ge \cdots \ge m_r$. **Time:** $n + m_1 + \cdots + m_r$ steps.

Problem 3. Expand **Problem 1**: Allow occurrences of π to wrap around Π . (as if Π were a ring of symbols). **Time:** O(n) steps.

Idea 1. Zip-matching

Idea 1. Zip-matching

The motivating challenge:

As ${\mathcal C}$ searches for all positions in Π where π begins, partial data "piles up."

σ_0	σ_1	σ_2	σ_3	•••
$ au_0$	$ au_1$	•••		
	$ au_0$	$ au_1$	•••	
		$ au_0$	$ au_1$	• • •

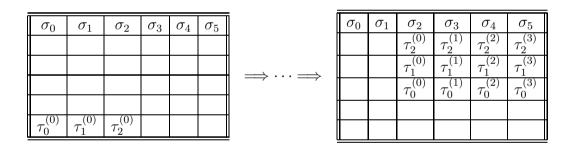
Each column represents one parallel comparison-step.

Idea 1. Zip-matching

The motivating challenge:

As ${\mathcal C}$ searches for all positions in Π where π occurs, partial data "piles up."

Zip-matching avoids this congestion



Idea 1. Zip-matching

The motivating challenge:

As ${\mathcal C}$ searches for all positions in Π where π occurs, partial data "piles up"

Zip-matching avoids this congestion

σ_0	σ_1	σ_2	σ_3	σ_4	σ_5	
		$ au_{2}^{(0)}$	$ au_{2}^{(1)}$	$ au_{2}^{(2)}$	$ au_{2}^{(3)}$	
		$ au_{1}^{(0)}$	$ au_{1}^{(1)}$	$ au_{1}^{(2)}$	$ au_{1}^{(3)}$	
		$ au_{0}^{(0)}$	$ au_{0}^{(1)}$	$ au_{0}^{(2)}$	$ au_{0}^{(3)}$	

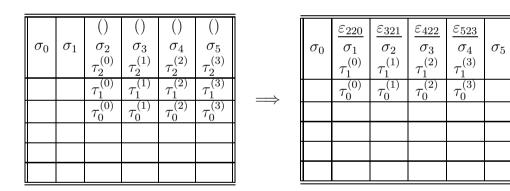
ſ			()	()	()	()
	σ_0	σ_1	$ \begin{array}{c} \sigma_2 \\ \tau_2^{(0)} \\ \tau_2^{(0)} \end{array} $	$\sigma_3 \ au^{(1)}$		$\sigma_5 \ au^{(3)}$
			$ au_{2}^{(0)}$		$ au_{2}^{(2)}$	
			/1	$ au_{1}^{(1)}$	$ au_{1}^{(2)}$	$ au_{1}^{(3)}$
			$\tau_0^{(0)}$	$ au_{0}^{(1)}$	$ au_{0}^{(2)}$	$ au_{0}^{(3)}$

Idea 1. Zip-matching

The motivating challenge:

As ${\mathcal C}$ searches for all positions in Π where π occurs, partial data "piles up"

Zip-matching avoids this congestion



Idea 1. Zip-matching

The motivating challenge:

As ${\mathcal C}$ searches for all positions in Π where π occurs, partial data "piles up"

Zip-matching avoids this congestion

σ_0	$\frac{\varepsilon_{220}}{\sigma_1} \\ \tau_1^{(0)}$	$\frac{\varepsilon_{321}}{\sigma_2} \\ \tau_1^{(1)}$	$\frac{\varepsilon_{422}}{\sigma_3} \\ \tau_1^{(2)}$	$\frac{\varepsilon_{523}}{\sigma_4} \\ \tau_1^{(3)}$	σ_5	
	$ au_{0}^{(0)}$	$ au_{0}^{(1)}$	$ au_{0}^{(2)}$	$ au_{0}^{(3)}$		\Rightarrow
						1

$ \begin{array}{c} \frac{\varepsilon_{220} \wedge \varepsilon_{110}}{\sigma_0} \\ \tau_0^{(0)} \end{array} \end{array} $	$\frac{\frac{\varepsilon_{321} \wedge \varepsilon_{211}}{\sigma_1}}{\tau_0^{(1)}}$	$\frac{\varepsilon_{422} \wedge \varepsilon_{312}}{\sigma_2} \\ \tau_0^{(2)}$	$\frac{\varepsilon_{523} \wedge \varepsilon_{413}}{\sigma_3} \\ \tau_0^{(3)}$	σ_4	σ_5

$Idea \ 1. \ {\sf Zip}{\sf -matching}$

The motivating challenge:

As ${\mathcal C}$ searches for all positions in Π where π occurs, partial data "piles up"

Zip-matching avoids this congestion

$ \begin{bmatrix} \frac{\varepsilon_{220} \wedge \varepsilon_{110}}{\sigma_0} \\ \tau_0^{(0)} \end{bmatrix} $	$\frac{\varepsilon_{321} \wedge \varepsilon_{211}}{\sigma_1} \\ \tau_0^{(1)}$	$\frac{\varepsilon_{422} \wedge \varepsilon_{312}}{\sigma_2} \\ \tau_0^{(2)}$	$\frac{\varepsilon_{523} \wedge \varepsilon_{413}}{\sigma_3} \\ \tau_0^{(3)}$	σ_4	σ_5	
						\implies

$\underline{\varepsilon_{220} \wedge \varepsilon_{110} \wedge \varepsilon_{000}}$	$\underline{\varepsilon_{321}} \wedge \underline{\varepsilon_{211}} \wedge \underline{\varepsilon_{101}}$	$\varepsilon_{422} \wedge \varepsilon_{312} \wedge \varepsilon_{202}$	$\underline{\varepsilon_{523}} \wedge \underline{\varepsilon_{413}} \wedge \underline{\varepsilon_{303}}$		
σ_0	σ_1	σ_2	σ_3	σ_4	σ_5

Idea 1. Zip-matching: Time: n + m steps

Zip-matching on length-n Π and length-($m \leq n)$ π can be done in n+m steps.

- Idea 1. Zip-matching: Time: n + m steps
- $\mathbf{Idea}~\mathbf{2}.$ Tracks and Layers

- Idea 1. Zip-matching: Time: n + m steps
- $\mathbf{Idea}~\mathbf{2}.$ Tracks and Layers

The symbols within FSMs' memories can have structure

Idea 1. Zip-matching: Time: n + m steps

Idea~2. Tracks and Layers

The symbols within FSMs' memories can have *structure* e.g., they can be *tuples* of atomic symbols: $\alpha = \langle \beta_1, \beta_2, \beta_3 \rangle$

Idea 1. Zip-matching: Time: n + m steps

Idea~2. Tracks and Layers

The symbols within FSMs' memories can have *structure* e.g., they can be *tuples* of atomic symbols: $\alpha = \langle \beta_1, \beta_2, \beta_3 \rangle$

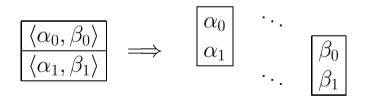
Thereby, we can endow a mesh's rows and columns with tracks

Idea 1. Zip-matching: Time: n + m steps

Idea~2. Tracks and Layers

The symbols within FSMs' memories can have *structure* e.g., they can be *tuples* of atomic symbols: $\alpha = \langle \beta_1, \beta_2, \beta_3 \rangle$

Thereby, we can endow a mesh's rows and columns with *tracks* —even to the point of endowing \mathcal{M}_n with complete *layers*:



- Idea 1. Zip-matching: Time: n + m steps
- Idea 2. Tracks and Layers: Time: O(n) steps
- C can implement Tracks and Layers on rows, columns, or all of \mathcal{M}_n by performing a barrier synchronization. The *Firing Squad Protocol* achieves this in time O(n).

- Idea 1. Zip-matching: Time: n + m steps
- Idea 2. Tracks and Layers: Time: O(n) steps
- Idea 3. The L-C transformation: Fast Cyclic Rotations

- Idea 1. Zip-matching: Time: n + m steps
- Idea 2. Tracks and Layers: Time: O(n) steps

Idea 3. The L-C transformation: Fast Cyclic Rotations

When one cyclically rotates a pattern, intersymbol distances can change a lot:

- Idea 1. Zip-matching: Time: n + m steps
- Idea 2. Tracks and Layers: Time: O(n) steps
- Idea 3. The L-C transformation: Fast Cyclic Rotations

When one cyclically rotates a pattern, intersymbol distances can change a lot: cf., σ_{n-1} and σ_{n-2} within $\Pi = \sigma_0 \cdots \sigma_{n-2} \sigma_{n-1}$ and $\rho(\Pi) = \sigma_{n-1} \sigma_0 \cdots \sigma_{n-2}$

- Idea 1. Zip-matching: Time: n + m steps
- Idea 2. Tracks and Layers: Time: O(n) steps
- Idea 3. The L-C transformation: Fast Cyclic Rotations
- When one cyclically rotates a pattern, inter-symbol distance can change a lot:
- The Linear-Cyclic (L-C) transformation avoids this: distances stay small!

- Idea 1. Zip-matching: Time: n + m steps
- Idea 2. Tracks and Layers: Time: O(n) steps
- Idea 3. The L-C transformation: Fast Cyclic Rotations
- When one cyclically rotates a pattern, inter-symbol distance can change a lot:
- The L-C transformation: Write $\sigma_0 \cdots \sigma_{n-1}$ by selecting symbols from alternating ends: $\lambda(\sigma_0 \sigma_1 \cdots \sigma_{n-2} \sigma_{n-1}) = \sigma_0 \sigma_{n-1} \sigma_1 \sigma_{n-2} \cdots$

- Idea 1. Zip-matching: Time: n + m steps
- Idea 2. Tracks and Layers: Time: O(n) steps

Idea 3. The L-C transformation: Fast Cyclic Rotations

When one cyclically rotates a pattern, inter-symbol distance can change a lot:

The L-C transformation:

Write $\sigma_0 \cdots \sigma_{n-1}$ by selecting symbols from alternating ends.

The interplay between the *rotation operator* ρ and the L-C operator λ (for both odd- and even- n):

ξ	=	$\sigma_0\sigma_1\sigma_2\sigma_3\sigma_4\sigma_5$	η	=	$\tau_0\tau_1\tau_2\tau_3\tau_4\tau_5\tau_6$
$\lambda(\xi)$	=	$\sigma_0 \sigma_5 \sigma_1 \sigma_4 \sigma_2 \sigma_3$	$\lambda(\eta)$	=	$\tau_0\tau_6\tau_1\tau_5\tau_2\tau_4\tau_3$
$ ho(\xi)$	=	$\sigma_5 \sigma_0 \sigma_1 \sigma_2 \sigma_3 \sigma_4$	$ ho(\eta)$	=	$\tau_6\tau_0\tau_1\tau_2\tau_3\tau_4\tau_5$
$\lambda(\rho(\xi))$	=	$\sigma_5\sigma_4\sigma_0\sigma_3\sigma_1\sigma_2$	$\lambda(\rho(\eta))$	=	$\tau_6\tau_5\tau_0\tau_4\tau_1\tau_3\tau_2$

- Idea 1. Zip-matching: Time: n + m steps
- Idea 2. Tracks and Layers: Time: O(n) steps
- Idea 3. The L-C transformation: Fast Cyclic Rotations: Time: O(n) steps The L-C transformation can be <u>done</u> and <u>undone</u> to a pattern Π in <u>linear time</u>.

<u>Problem 1</u>. The enabling tool is *Zip-Matching*

Problem 1.

The enabling tool is *Zip-Matching*

Turning π "on its head" and replicating it along row 0 is "tailor-made" for cellular automata.

<u>Problem 1</u>. Enabling tool: *Zip-Matching*; Time: n + m steps

<u>Problem 1</u>. Enabling tool: *Zip-Matching*; Time: n + m steps

Problem 2.

The enabling tool is *Pipelined Zip-Matching*

<u>Problem 1</u>. Enabling tool: *Zip-Matching*; Time: n + m steps

Problem 2.

The enabling tool is *Pipelined Zip-Matching* Time the pipeline must be done carefully — a straightforward challenge for cellular

automata

<u>Problem 1</u>. Enabling tool: *Zip-Matching*; Time: n + m steps

Problem 2. Enabling tool: Pipelined Zip-Matching; Time: $n + m_1 + \cdots + m_r$ steps

<u>Problem 1</u>. Enabling tool: *Zip-Matching*; Time: n + m steps

Problem 2. Enabling tool: Pipelined Zip-Matching; Time: $n + \Sigma_i m_i$ steps

<u>Problem 3</u>. (the most complex problem)

1. Establish 3 layers in \mathcal{M}_n : π -layer, Π -layer, flow-layer

<u>Problem 1</u>. Enabling tool: *Zip-Matching*; Time: n + m steps

Problem 2. Enabling tool: Pipelined Zip-Matching; Time: $n + \Sigma_i m_i$ steps

<u>Problem 3</u>. (the most complex problem)

- 1. Establish 3 layers in \mathcal{M}_n : π -layer, Π -layer, flow-layer
- 2. Populate the Π -layer with all cyclic rotations of Π , one per row

<u>Problem 1</u>. Enabling tool: *Zip-Matching*; Time: n + m steps

Problem 2. Enabling tool: Pipelined Zip-Matching; Time: $n + \Sigma_i m_i$ steps

<u>Problem 3</u>. (the most complex problem)

- 1. Establish 3 layers in \mathcal{M}_n : π -layer, Π -layer, flow-layer
- 2. Populate the Π -layer with all cyclic rotations of Π , one per row
- 3. Prepare π for Zip-Matching at row 0 within the π -layer

Problem 1. Enabling tool: *Zip-Matching*; Time: n + m steps

Problem 2. Enabling tool: Pipelined Zip-Matching; Time: $n + \Sigma_i m_i$ steps

<u>Problem 3</u>. (the most complex problem)

- 1. Establish 3 layers in \mathcal{M}_n : π -layer, Π -layer, flow-layer
- 2. Populate the Π -layer with all cyclic rotations of Π , one per row
- 3. Prepare π for Zip-Matching at row 0 within the π -layer
- 4. Inductively:
 - (a) as n-m copies of π (in the π -layer) get Zip-Matched to a cyclic rotation of Π (say at row k of the Π -layer),
 - (b) C sends a replica of the n m copies of π (in the flow layer) southward to the cyclic rotation of Π at row k + 1

<u>Problem 1</u>. Enabling tool: *Zip-Matching*; Time: n + m steps

Problem 2. Enabling tool: Pipelined Zip-Matching; Time: $n + \Sigma_i m_i$ steps

<u>Problem 3</u>. (the most complex problem)

- 1. Establish 3 layers in \mathcal{M}_n : π -layer, Π -layer, flow-layer
- 2. Populate the Π -layer with all cyclic rotations of Π , one per row
- 3. Prepare π for Zip-Matching at row 0 within the π -layer
- 4. Inductively:
 - (a) as n-m copies of π (in the π -layer) get Zip-Matched to a cyclic rotation of Π (say at row k of the Π -layer),
 - (b) C sends a replica of the n m copies of π (in the flow layer) southward to the cyclic rotation of Π at row k + 1

C enhances parallelism by orchestrating step 4 in the manner of a *Systolic Array*. Therefore, the entire solution of Problem 3 is accomplished within O(n) steps.

Bio-Inspired Pattern-Matching Summing Up

Problem 1. Enabling tool: *Zip-Matching*; Time: n + m steps

<u>Problem 2</u>. Enabling tool: Pipelined Zip-Matching; Time: $n + \Sigma_i m_i$ steps

Problem 3. Several tools; Time: O(n) steps