
Cellular ANTomata:

Principles and Progress

Arnold L. Rosenberg

Computer Science

Northeastern University

Boston, MA 02115, USA



The Cellular ANTomaton Model

The parallel component of the model:

An n× n cellular AUTomaton:

— the n× n mesh Mn with identical FSMs at each cell



The Cellular ANTomaton Model

The parallel component of the model:

An n× n cellular AUTomaton

The distributed component of the model:

A (possibly heterogeneous) team of mobile FSMs

— which we call ANTS



The Cellular ANTomaton Model

The parallel component of the model:

An n× n cellular AUTomaton

The distributed component of the model:

A (possibly heterogeneous) team of mobile ANTS

The Ants plus the cellular automaton equals —

A Cellular ANTomaton



Our Goals

We seek—

SCALABLE ALGORITHMS

for reality-inspired problems

within the

Cellular ANTomaton model



A “Proof of Concept” Problem

THE PARKING PROBLEM

FOR ROBOTIC ANTS



The Parking Problem for Robotic Ants

.
 
.
 
.

. . .

.
 
.
 
.

. . .

Informal

Have Ants congregate as compactly as possible in the closest corners of Mn

(measured at moment of initiation)

Formal (for the southwest quadrant of Mn)

Minimize the parking potential function:

Π(t)
def

=
2n−2∑

k=0

(k + 1) × (number of Ants on diagonal k at step t).



The Parking Problem for Robotic Ants

Theorem

A Cellular ANTomaton can park Ants in Mn in O(n2) steps.

This is a very conservative bound: Could O(n) steps be possible?

For perspective:

Theorem

It is impossible for discrete Ants on an unintelligent floor to park.



The Parking Problem for Robotic Ants

Theorem

A Cellular ANTomaton can park Ants in Mn in O(n2) steps.

1. The Cellular ANTomaton quadrisects Mn so each Ant knows its quadrant:

Time: O(n) steps



The Parking Problem for Robotic Ants

Theorem

A Cellular ANTomaton can park Ants in Mn in O(n2) steps.

1. The Cellular ANTomaton quadrisects Mn so each Ant knows its quadrant:

Time: O(n) steps

2. Ants move in a “wavefront” toward the correct corner:

Time: O(n) steps



The Parking Problem for Robotic Ants

Theorem

A Cellular ANTomaton can park Ants in Mn in O(n2) steps.

1. The Cellular ANTomaton quadrisects Mn so each Ant knows its quadrant:

Time: O(n) steps

2. Ants move in a “wavefront” toward the correct corner:

Time: O(n) steps

3. Ants wander around their corner, to achieve a compact configuration

Time: our procedure takes Θ(n2) steps



A “Proof of Concept” Problem

THE FOOD-SEEKING PROBLEM

FOR ROBOTIC ANTS

CIRCLE = Ant

X = Food

Blackened cell = Obstacle



The Food-Seeking Problem for Robotic Ants

Mn contains r Ants and s food items.

Goal. Match Ants and food items so that:

• if r ≥ s, then some Ant will reach every food item;

• if s ≥ r, then every Ant will get food.



The Food-Seeking Problem for Robotic Ants

Mn contains r Ants and s food items.

Goal. Match Ants and food items.

We have developed two algorithms that achieve this goal:

1. The Food-Initiated algorithm.

Time: (r +O(1))n steps



The Food-Seeking Problem for Robotic Ants

Mn contains r Ants and s food items.

Goal. Match Ants and food items.

We have developed two algorithms that achieve this goal:

1. The Food-Initiated algorithm.

Time: (r +O(1))n steps

2. The Active-Ant algorithm.

Time: O(n
√
s) steps



The Food-Seeking Problem for Robotic Ants

Mn contains r Ants and s food items.

Goal. Match Ants and food items.

We have developed two algorithms that achieve this goal:

1. The Food-Initiated algorithm.

Time: (r +O(1))n steps

2. The Active-Ant algorithm.

Time: O(n
√
s) steps

For perspective:

Theorem

A single intelligent Ant on an unintelligent floor requires, in the worst case,

Ω(n2) steps to find a single food item.



The Food-Initiated Algorithm

Mn contains r Ants and s food items.

1. FSMs with food send food-announcing message to all neighbors.

"Food available"

"W"

"SW"

"NW"

"E"

"S"

"N"

"SE"

"NE"



The Food-Initiated Algorithm

Mn contains r Ants and s food items.

1. FSMs with food send food-announcing message to all neighbors.

2. FSMs with Ants send food-seeking message to all neighbors.

"Food needed"

"W"

"SW"

"NW"

"E"

"S"

"N"

"SE"

"NE"



The Food-Initiated Algorithm

Mn contains r Ants and s food items.

1. FSMs with food send food-announcing message to all neighbors.

2. FSMs with Ants send food-seeking message to all neighbors.

3. All FSMs relay all messages (combining similar ones).

"NW"

from the west

Message
relayed
eastward

"W"

"SW"

"W"

Food message received



The Food-Initiated Algorithm

Mn contains r ants and s food items.

1. FSMs with food send food-announcing message to all neighbors.

2. FSMs with Ants send food-seeking message to all neighbors.

3. All FSMs relay all messages (combining similar ones).

4. FSMs send Ants in the direction of a food-announcing message.



The Active-Ant Algorithm

Mn contains r Ants and s food items.

Goal. Match Ants and food items.

1. FSMs with food send food-announcing message on NEWS arcs.

"Food available"

"W""E"

"S"

"N"



The Active-Ant Algorithm

Mn contains r Ants and s food items.

Goal. Match Ants and food items.

1. FSMs with food send food-announcing message on NEWS arcs.

2. All FSMs relay food-announcing messages on NEWS arcs.



The Active-Ant Algorithm

Mn contains r Ants and s food items.

Goal. Match Ants and food items.

1. FSMs with food send food-announcing message on NEWS arcs.

2. All FSMs relay food-announcing messages on NEWS arcs.

3. FSMs send Ants clockwise around perimeter of Mn.



The Active-Ant Algorithm

Mn contains r Ants and s food items.

Goal. Match Ants and food items.

1. FSMs with food send food-announcing message on NEWS arcs.

2. All FSMs relay food-announcing messages on NEWS arcs.

3. FSMs send Ants clockwise around perimeter of Mn.

4. Ants (a) stay with food they encounter on way to perimeter

(b) follow messages to food from perimeter

—they rejoin the perimeter-walk if food has already been taken



A “Proof of Concept” Problem

THREE PATTERN-MATCHING PROBLEMS

INSPIRED BY BIOINFORMATICS



Bio-Inspired Pattern-Matching

Problem 1. A CA C has:

• length-n master pattern Π along row 0

• length-(m ≤ n) input pattern π left-justified along row n− 1

C identifies all positions in Π where a copy of π begins.



Bio-Inspired Pattern-Matching

Problem 1. A CA C has:

• length-n master pattern Π along row 0

• length-(m ≤ n) input pattern π left-justified along row n− 1

C identifies all positions in Π where a copy of π begins.

Time: n +m steps



Bio-Inspired Pattern-Matching

Problem 1. A CA C has:

• length-n master pattern Π along row 0

• length-(m ≤ n) input pattern π left-justified along row n− 1

C identifies all positions in Π where a copy of π begins.

Time: n +m steps

Problem 2. C solves a sequence of instances of Problem 1 for pattern Π

and a sequence of input patterns, π1, . . . , πr of lengths n ≥ m1 ≥ · · · ≥ mr.



Bio-Inspired Pattern-Matching

Problem 1. A CA C has:

• length-n master pattern Π along row 0

• length-(m ≤ n) input pattern π left-justified along row n− 1

C identifies all positions in Π where a copy of π begins.

Time: n +m steps

Problem 2. C solves a sequence of instances of Problem 1 for pattern Π

and a sequence of input patterns, π1, . . . , πr of lengths n ≥ m1 ≥ · · · ≥ mr.

Time: n +m1 + · · · +mr steps.



Bio-Inspired Pattern-Matching

Problem 1. A CA C has:

• length-n master pattern Π along row 0

• length-(m ≤ n) input pattern π left-justified along row n− 1

C identifies all positions in Π where a copy of π begins.

Time: n +m steps

Problem 2. C solves a sequence of instances of Problem 1 for pattern Π

and a sequence of input patterns, π1, . . . , πr of lengths n ≥ m1 ≥ · · · ≥ mr.

Time: n +m1 + · · · +mr steps.

Problem 3. Expand Problem 1: Allow occurrences of π to wrap around Π.



Bio-Inspired Pattern-Matching

Problem 1. A CA C has:

• length-n master pattern Π along row 0

• length-(m ≤ n) input pattern π left-justified along row n− 1

C identifies all positions in Π where a copy of π begins.

Time: n +m steps

Problem 2. C solves a sequence of instances of Problem 1 for pattern Π

and a sequence of input patterns, π1, . . . , πr of lengths n ≥ m1 ≥ · · · ≥ mr.

Time: n +m1 + · · · +mr steps.

Problem 3. Expand Problem 1: Allow occurrences of π to wrap around Π

(as if Π were a ring of symbols).



Bio-Inspired Pattern-Matching

Problem 1. A CA C has:

• length-n master pattern Π along row 0

• length-(m ≤ n) input pattern π left-justified along row n− 1

C identifies all positions in Π where a copy of π begins.

Time: n +m steps

Problem 2. C solves a sequence of instances of Problem 1 for pattern Π

and a sequence of input patterns, π1, . . . , πr of lengths n ≥ m1 ≥ · · · ≥ mr.

Time: n +m1 + · · · +mr steps.

Problem 3. Expand Problem 1: Allow occurrences of π to wrap around Π.

(as if Π were a ring of symbols).

Time: O(n) steps.



Bio-Inspired Pattern-Matching

Underlying Algorithmic Ideas

Idea 1. Zip-matching



Bio-Inspired Pattern-Matching

Underlying Algorithmic Ideas

Idea 1. Zip-matching

The motivating challenge:

As C searches for all positions in Π where π begins, partial data “piles up.”

σ0 σ1 σ2 σ3 · · ·
τ0 τ1 · · ·

τ0 τ1 · · ·
τ0 τ1 · · ·

Each column represents one parallel comparison-step.



Bio-Inspired Pattern-Matching

Underlying Algorithmic Ideas

Idea 1. Zip-matching

The motivating challenge:

As C searches for all positions in Π where π occurs, partial data “piles up.”

Zip-matching avoids this congestion

σ0 σ1 σ2 σ3 σ4 σ5

τ
(0)
0 τ

(0)
1 τ

(0)
2

=⇒ · · · =⇒

σ0 σ1 σ2 σ3 σ4 σ5

τ
(0)
2 τ

(1)
2 τ

(2)
2 τ

(3)
2

τ
(0)
1 τ

(1)
1 τ

(2)
1 τ

(3)
1

τ
(0)
0 τ

(1)
0 τ

(2)
0 τ

(3)
0



Bio-Inspired Pattern-Matching

Underlying Algorithmic Ideas

Idea 1. Zip-matching

The motivating challenge:

As C searches for all positions in Π where π occurs, partial data “piles up”

Zip-matching avoids this congestion

σ0 σ1 σ2 σ3 σ4 σ5

τ
(0)
2 τ

(1)
2 τ

(2)
2 τ

(3)
2

τ
(0)
1 τ

(1)
1 τ

(2)
1 τ

(3)
1

τ
(0)
0 τ

(1)
0 τ

(2)
0 τ

(3)
0

=⇒

() () () ()
σ0 σ1 σ2 σ3 σ4 σ5

τ
(0)
2 τ

(1)
2 τ

(2)
2 τ

(3)
2

τ
(0)
1 τ

(1)
1 τ

(2)
1 τ

(3)
1

τ
(0)
0 τ

(1)
0 τ

(2)
0 τ

(3)
0



Bio-Inspired Pattern-Matching

Underlying Algorithmic Ideas

Idea 1. Zip-matching

The motivating challenge:

As C searches for all positions in Π where π occurs, partial data “piles up”

Zip-matching avoids this congestion

() () () ()
σ0 σ1 σ2 σ3 σ4 σ5

τ
(0)
2 τ

(1)
2 τ

(2)
2 τ

(3)
2

τ
(0)
1 τ

(1)
1 τ

(2)
1 τ

(3)
1

τ
(0)
0 τ

(1)
0 τ

(2)
0 τ

(3)
0

=⇒

ε220 ε321 ε422 ε523
σ0 σ1 σ2 σ3 σ4 σ5

τ
(0)
1 τ

(1)
1 τ

(2)
1 τ

(3)
1

τ
(0)
0 τ

(1)
0 τ

(2)
0 τ

(3)
0



Bio-Inspired Pattern-Matching

Underlying Algorithmic Ideas

Idea 1. Zip-matching

The motivating challenge:

As C searches for all positions in Π where π occurs, partial data “piles up”

Zip-matching avoids this congestion

ε220 ε321 ε422 ε523
σ0 σ1 σ2 σ3 σ4 σ5

τ
(0)
1 τ

(1)
1 τ

(2)
1 τ

(3)
1

τ
(0)
0 τ

(1)
0 τ

(2)
0 τ

(3)
0 =⇒

ε220 ∧ ε110 ε321 ∧ ε211 ε422 ∧ ε312 ε523 ∧ ε413
σ0 σ1 σ2 σ3 σ4 σ5

τ
(0)
0 τ

(1)
0 τ

(2)
0 τ

(3)
0



Bio-Inspired Pattern-Matching

Underlying Algorithmic Ideas

Idea 1. Zip-matching

The motivating challenge:

As C searches for all positions in Π where π occurs, partial data “piles up”

Zip-matching avoids this congestion

ε220 ∧ ε110 ε321 ∧ ε211 ε422 ∧ ε312 ε523 ∧ ε413
σ0 σ1 σ2 σ3 σ4 σ5

τ
(0)
0 τ

(1)
0 τ

(2)
0 τ

(3)
0

=⇒

ε220 ∧ ε110 ∧ ε000 ε321 ∧ ε211 ∧ ε101 ε422 ∧ ε312 ∧ ε202 ε523 ∧ ε413 ∧ ε303
σ0 σ1 σ2 σ3 σ4 σ5



Bio-Inspired Pattern-Matching

Underlying Algorithmic Ideas

Idea 1. Zip-matching: Time: n +m steps

Zip-matching on length-n Π and length-(m ≤ n) π can be done in n+m steps.



Bio-Inspired Pattern-Matching

Underlying Algorithmic Ideas

Idea 1. Zip-matching: Time: n +m steps

Idea 2. Tracks and Layers



Bio-Inspired Pattern-Matching

Underlying Algorithmic Ideas

Idea 1. Zip-matching: Time: n +m steps

Idea 2. Tracks and Layers

The symbols within FSMs’ memories can have structure



Bio-Inspired Pattern-Matching

Underlying Algorithmic Ideas

Idea 1. Zip-matching: Time: n +m steps

Idea 2. Tracks and Layers

The symbols within FSMs’ memories can have structure

e.g., they can be tuples of atomic symbols: α = 〈β1, β2, β3〉



Bio-Inspired Pattern-Matching

Underlying Algorithmic Ideas

Idea 1. Zip-matching: Time: n +m steps

Idea 2. Tracks and Layers

The symbols within FSMs’ memories can have structure

e.g., they can be tuples of atomic symbols: α = 〈β1, β2, β3〉
Thereby, we can endow a mesh’s rows and columns with tracks



Bio-Inspired Pattern-Matching

Underlying Algorithmic Ideas

Idea 1. Zip-matching: Time: n +m steps

Idea 2. Tracks and Layers

The symbols within FSMs’ memories can have structure

e.g., they can be tuples of atomic symbols: α = 〈β1, β2, β3〉
Thereby, we can endow a mesh’s rows and columns with tracks

—even to the point of endowing Mn with complete layers:

〈α0, β0〉
〈α1, β1〉

=⇒
α0

α1

. . .

. . .
β0
β1



Bio-Inspired Pattern-Matching

Underlying Algorithmic Ideas

Idea 1. Zip-matching: Time: n +m steps

Idea 2. Tracks and Layers: Time: O(n) steps

C can implement Tracks and Layers on rows, columns, or all ofMn by performing

a barrier synchronization. The Firing Squad Protocol achieves this in time O(n).



Bio-Inspired Pattern-Matching

Underlying Algorithmic Ideas

Idea 1. Zip-matching: Time: n +m steps

Idea 2. Tracks and Layers: Time: O(n) steps

Idea 3. The L-C transformation: Fast Cyclic Rotations



Bio-Inspired Pattern-Matching

Underlying Algorithmic Ideas

Idea 1. Zip-matching: Time: n +m steps

Idea 2. Tracks and Layers: Time: O(n) steps

Idea 3. The L-C transformation: Fast Cyclic Rotations

When one cyclically rotates a pattern, intersymbol distances can change a lot:



Bio-Inspired Pattern-Matching

Underlying Algorithmic Ideas

Idea 1. Zip-matching: Time: n +m steps

Idea 2. Tracks and Layers: Time: O(n) steps

Idea 3. The L-C transformation: Fast Cyclic Rotations

When one cyclically rotates a pattern, intersymbol distances can change a lot:

cf., σn−1 and σn−2 within Π = σ0 · · ·σn−2σn−1 and ρ(Π) = σn−1σ0 · · · σn−2



Bio-Inspired Pattern-Matching

Underlying Algorithmic Ideas

Idea 1. Zip-matching: Time: n +m steps

Idea 2. Tracks and Layers: Time: O(n) steps

Idea 3. The L-C transformation: Fast Cyclic Rotations

When one cyclically rotates a pattern, inter-symbol distance can change a lot:

The Linear-Cyclic (L-C) transformation avoids this: distances stay small!



Bio-Inspired Pattern-Matching

Underlying Algorithmic Ideas

Idea 1. Zip-matching: Time: n +m steps

Idea 2. Tracks and Layers: Time: O(n) steps

Idea 3. The L-C transformation: Fast Cyclic Rotations

When one cyclically rotates a pattern, inter-symbol distance can change a lot:

The L-C transformation:

Write σ0 · · ·σn−1 by selecting symbols from alternating ends:

λ(σ0σ1 · · ·σn−2σn−1) = σ0σn−1σ1σn−2 · · ·



Bio-Inspired Pattern-Matching

Underlying Algorithmic Ideas

Idea 1. Zip-matching: Time: n +m steps

Idea 2. Tracks and Layers: Time: O(n) steps

Idea 3. The L-C transformation: Fast Cyclic Rotations

When one cyclically rotates a pattern, inter-symbol distance can change a lot:

The L-C transformation:

Write σ0 · · ·σn−1 by selecting symbols from alternating ends.

The interplay between the rotation operator ρ and the L-C operator λ

(for both odd- and even- n):

ξ = σ0σ1σ2σ3σ4σ5 η = τ0τ1τ2τ3τ4τ5τ6
λ(ξ) = σ0σ5σ1σ4σ2σ3 λ(η) = τ0τ6τ1τ5τ2τ4τ3
ρ(ξ) = σ5σ0σ1σ2σ3σ4 ρ(η) = τ6τ0τ1τ2τ3τ4τ5

λ(ρ(ξ)) = σ5σ4σ0σ3σ1σ2 λ(ρ(η)) = τ6τ5τ0τ4τ1τ3τ2



Bio-Inspired Pattern-Matching

Underlying Algorithmic Ideas

Idea 1. Zip-matching: Time: n +m steps

Idea 2. Tracks and Layers: Time: O(n) steps

Idea 3. The L-C transformation: Fast Cyclic Rotations: Time: O(n) steps

The L-C transformation can be done and undone to a pattern Π in linear time.



Bio-Inspired Pattern-Matching

Solving the Three Problems

Problem 1.

The enabling tool is Zip-Matching



Bio-Inspired Pattern-Matching

Solving the Three Problems

Problem 1.

The enabling tool is Zip-Matching

Turning π “on its head” and replicating it along row 0 is “tailor-made” for cellular

automata.



Bio-Inspired Pattern-Matching

Solving the Three Problems

Problem 1. Enabling tool: Zip-Matching; Time: n +m steps



Bio-Inspired Pattern-Matching

Solving the Three Problems

Problem 1. Enabling tool: Zip-Matching; Time: n +m steps

Problem 2.

The enabling tool is Pipelined Zip-Matching



Bio-Inspired Pattern-Matching

Solving the Three Problems

Problem 1. Enabling tool: Zip-Matching; Time: n +m steps

Problem 2.

The enabling tool is Pipelined Zip-Matching

Time the pipeline must be done carefully — a straightforward challenge for cellular

automata



Bio-Inspired Pattern-Matching

Solving the Three Problems

Problem 1. Enabling tool: Zip-Matching; Time: n +m steps

Problem 2. Enabling tool: Pipelined Zip-Matching; Time: n + m1 +

· · · +mr steps



Bio-Inspired Pattern-Matching

Solving the Three Problems

Problem 1. Enabling tool: Zip-Matching; Time: n +m steps

Problem 2. Enabling tool: Pipelined Zip-Matching; Time: n + Σimi

steps

Problem 3. (the most complex problem)

1. Establish 3 layers in Mn: π-layer, Π-layer, flow-layer



Bio-Inspired Pattern-Matching

Solving the Three Problems

Problem 1. Enabling tool: Zip-Matching; Time: n +m steps

Problem 2. Enabling tool: Pipelined Zip-Matching; Time: n + Σimi

steps

Problem 3. (the most complex problem)

1. Establish 3 layers in Mn: π-layer, Π-layer, flow-layer

2. Populate the Π-layer with all cyclic rotations of Π, one per row



Bio-Inspired Pattern-Matching

Solving the Three Problems

Problem 1. Enabling tool: Zip-Matching; Time: n +m steps

Problem 2. Enabling tool: Pipelined Zip-Matching; Time: n + Σimi

steps

Problem 3. (the most complex problem)

1. Establish 3 layers in Mn: π-layer, Π-layer, flow-layer

2. Populate the Π-layer with all cyclic rotations of Π, one per row

3. Prepare π for Zip-Matching at row 0 within the π-layer



Bio-Inspired Pattern-Matching

Solving the Three Problems

Problem 1. Enabling tool: Zip-Matching; Time: n +m steps

Problem 2. Enabling tool: Pipelined Zip-Matching; Time: n + Σimi

steps

Problem 3. (the most complex problem)

1. Establish 3 layers in Mn: π-layer, Π-layer, flow-layer

2. Populate the Π-layer with all cyclic rotations of Π, one per row

3. Prepare π for Zip-Matching at row 0 within the π-layer

4. Inductively:

(a) as n−m copies of π (in the π-layer) get Zip-Matched to a cyclic rotation

of Π (say at row k of the Π-layer),

(b) C sends a replica of the n−m copies of π (in the flow layer) southward

to the cyclic rotation of Π at row k + 1



Bio-Inspired Pattern-Matching

Solving the Three Problems

Problem 1. Enabling tool: Zip-Matching; Time: n +m steps

Problem 2. Enabling tool: Pipelined Zip-Matching; Time: n + Σimi

steps

Problem 3. (the most complex problem)

1. Establish 3 layers in Mn: π-layer, Π-layer, flow-layer

2. Populate the Π-layer with all cyclic rotations of Π, one per row

3. Prepare π for Zip-Matching at row 0 within the π-layer

4. Inductively:

(a) as n−m copies of π (in the π-layer) get Zip-Matched to a cyclic rotation

of Π (say at row k of the Π-layer),

(b) C sends a replica of the n−m copies of π (in the flow layer) southward

to the cyclic rotation of Π at row k + 1

C enhances parallelism by orchestrating step 4 in the manner of a Systolic Array.

Therefore, the entire solution of Problem 3 is accomplished within O(n) steps.



Bio-Inspired Pattern-Matching

Summing Up

Problem 1. Enabling tool: Zip-Matching;

Time: n +m steps

Problem 2. Enabling tool: Pipelined Zip-Matching;

Time: n + Σimi steps

Problem 3. Several tools; Time: O(n) steps


