Optimal Torus Exploration by Oblivious Robots

Franck Petit
University Pierre and Marie Curie, Sorbonne Univ.
LIP6 CNRS / INRIA

Joint work with Stéphane Devismes, Anissa Lamani, and Sébastien Tixeuil
Environment
Terminating Exploration

Starting from an arbitrary configuration where no pair of robots are located on the same node

✓ Exploration

Each node must be visited by at least one robot

✓ Termination

Eventually, every robot stays idle
Challenges

What are the minimal conditions to solve the exploration problem \textit{deterministically (probabilistically)}?

What is the minimal number of robots?
Related Work

\[\begin{align*}
\text{Ring} & \quad [\text{Flocchini et al., OPODIS 2007}] \quad [\text{Devismes et al., SIROCCO 2009}] \\
& \quad [\text{Lamani et al., SIROCCO 2010}] [\text{Datta et al., ICDCS 2013}] \\
& \quad [\text{Datta et al., APDCM 2015}] \\
\end{align*} \]

- Deterministic exploration impossible if \(k \) divides \(n \) (except if \(k = n \))
- Asynchronous deterministic algorithm with \(k > 16 \)
- Deterministic or probabilistic exploration impossible if \(k < 4 \)
- Probabilistic algorithm impossible in asynchronous settings
- Optimal Semi-synchronous Probabilistic Algorithm
- Deterministic exploration impossible if \(k < 5 \) and \(n \) even
- Optimal asynchronous deterministic algorithm, \(k = 5 \) and \(n \) even
- Optimal semi-synchronous deterministic algorithm, \(k = 4 \) and \(n \) odd
- Vision limited to distance 1: possible iff synchronous
- Optimal deterministic synchronous algorithm with \(k = 5 \)
- Vision limited to distance 2: semi-synchronous algorithms with \(k = 7 \)
- Vision limited to distance 3: semi-synchronous algorithms with \(k \in \{5, 7\} \)

\(n \): Number of nodes
\(k \): Number of robots
Related Work

n: Number of nodes
k: Number of robots

✓ **Ring** [Flocchini et al., OPODIS 2007] [Devismes et al., SIROCCO 2009] [Lamani et al., SIROCCO 2010][Datta et al., ICDCS 2013] [Datta et al., APDCM 2015]

✓ **Tree** [Flocchini et al., SIROCCO 2008]
 • Asynchronous deterministic algorithm for trees with maximum degree equal to 3: $k \in \Theta (\log n/\log \log n)$
 • Arbitrary tree: $k \in \Theta (\log n)$

✓ **Chain**[Flocchini et al., IPL 2011]
 • Characterization of k: $k = 3$, $k > 4$, or $k = 4$ and n odd

✓ **Grid** [Devismes et al., SSS 2012]
 • Deterministic or probabilistic exploration impossible if $k < 3$
 • Optimal Semi-synchronous Deterministic Algorithm, $k = 3$
Graph \((G)\) with \(n\) nodes

- Anonymous simple \((l,L)\)-torus \((l \leq L)\)
Torus

- Graph \((G)\) with \(n\) nodes
 - Anonymous simple \((l, L)\)-torus \((l \leq L)\)
Graph \((G)\) with \(n\) nodes

- Anonymous simple \((l,L)\)-torus \((l \leq L)\)

\[3 \leq l \leq L\]
Graph (G) with n nodes

- Anonymous simple (l,L)-torus ($l \leq L$)

Why addressing such an odd and abstract topology?

- Ring
 - Flocchini et al., OPODIS 2007
 - Lamani et al., SIROCCO 2010
 - Datta et al., ICDCS 2013
 - Datta et al., APDCM 2015

← Regular topology

Does the increase of the degree of symmetry make the problem harder to solve?
Model

Graph \((G)\) with \(n\) nodes

- Anonymous simple \((l,L)\)-torus \((l \leq L)\)

\(k\) robots

- Autonomous
- Uniform and anonymous
- Mobile
- Oblivious
- Cannot communicate directly
- Vision

Yesterday?
Model

- **Graph (G) with n nodes**
 - Anonymous simple \((l,L)\)-torus \((l \leq L)\)

- **k robots**
 - Look
 - Take a snapshot to see the position of the other robots on the torus
 - Compute
 - Compute a neighboring destination
 - Move
 - Move towards the computed neighboring destination
Model

- **Graph** \((G)\) with \(n\) nodes
 - Anonymous simple \((l, L)\)-torus \((l \leq L)\)

- **\(k\) robots**

- **Semi-Synchronous Model (SSM)**
 - In each configuration, \(k'\) robots are activated \((0 < k' \leq k)\)
 - The \(k'\) robots execute their cycle L-C-M synchronously
Contribution

✓ Negative Results (Also valid in the asynchronous model)

▶ No (probabilistic or deterministic) algorithm exists to explore (with termination) any torus with less than 4 semi-synchronous robots

▶ No deterministic algorithm exists to explore (with termination) any torus with less than 5 semi-synchronous robots

✓ Positive Results

▶ Probabilistic semi-synchronous algorithm with $k = 4$ robots
Negative Results
Definitions

- **Node Multiplicity**
 - *Node contains 0, 1, or more robots*
 - *Tower: More than one robots*

- **(Weak) Multiplicity Detection**
 - *Ability to detect node multiplicity {0, 1, T}*

- **View**
 - *A labelled graph isomorphic to G, where each node is labelled with its multiplicity*
Definitions

- (Un)distinguishable configuration

\[
\begin{array}{ccc}
1 & 0 & 0 \\
2 & 0 & 0 \\
0 & 0 & 0 \\
\end{array}
\quad
\begin{array}{ccc}
0 & 1 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{array}
\quad
\begin{array}{ccc}
0 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 0 \\
\end{array}
\]

\((3-3)\)-torus
Oblivious robots

Exploration

Termination

Implicit memory

At least one configuration that is not an initial configuration

If \(n > k \), any terminal configuration of any protocol contains at least one tower.
If $n > k$, then there exists a set S of at least $n - k + 1$ configurations such that:

• $\forall c_1, c_2 \in S$: c_1 and c_2 are distinguishable

• $\forall c \in S$: there is a tower of less than k robots

[Devismes et al., SIROCCO 2009] extended to arbitrary topologies

✅ Exploration requirement

- Distinction between visited and non visited nodes
- Memory of explored nodes encoded with configurations that contain at least one tower of less than k robots
- Fair sequential exploration implies at least $n - k + 1$ pairwise distinct configurations
\(k \geq 3 \)
If $n > k$, then there exists a set S of at least $n - k + 1$ configurations such that:

- $\forall \ c_1, c_2 \in S: c_1$ and c_2 are distinguishable
- $\forall \ c \in S: \text{there is a tower of less than } k \text{ robots}$

[Devismes et al., SIROCCO 2009] extended to arbitrary topologies
\[k = 3 \]

\[3 \leq \nu \leq L \Rightarrow n \geq 9. \]

So, there must exist a set \(S \) of at least \(n - 2 \) configurations such that:

- \(\forall c_1, c_2 \in S: c_1 \) and \(c_2 \) are distinguishable
- \(\forall c \in S: \) there is a tower of less than \(k \) robots

(5,5)-torus \((n=25) \)
3 ≤ \(n \) ≤ \(L \) \(\Rightarrow \) \(n \geq 9 \).

So, there must exist a set \(S \) of at least \(n - 2 \) configurations such that:

- \(\forall \ c_1, c_2 \in S: c_1 \text{ and } c_2 \text{ are distinguishable} \)
- \(\forall \ c \in S: \text{there is a tower of less than } k \text{ robots} \)

(5,6)-torus \((n=30) \)
No (probabilistic or deterministic) algorithm exists to explore with termination any torus with less than 4 semi-synchronous robots.

\[k \geq 4 \]

(2p, 2p)-torus \((p \geq 2) \)
No (probabilistic or deterministic) algorithm exists to explore with termination any torus with less than 4 semi-synchronous robots.

No deterministic algorithm exists to explore with termination any torus with less than 5 semi-synchronous robots.

Deterministic algorithm with specific initial configurations [D’Angelo et al., ICDCN 2014]

Probabilistic Algorithm with 4 semi-synchronous robots
Algorithm

$$(l,L)$$-torus ($$7 \leq l \leq L$$)

- Phase 1: Set-Up
- Phase 2: Tower
- Phase 3: Exploration
Algorithm

- Phase 2: Tower

-configuration
Algorithm

Phase 3: Exploration
Algorithm

- Phase 3: Exploration

l is even
Algorithm

- Phase 3: Exploration

l is odd
Algorithm

(l,L)-torus (7 ≤ l ≤ L)

- Phase 1: Set-Up
- Phase 2: Tower
- Phase 3: Exploration
Algorithm

- Phase 1: Set-Up → ◊-configuration
 - Double-Trap 2
Algorithm

Phase 1: Set-Up \rightarrow ♦-configuration

- Double-Trap I
Algorithm

Phase I: Set-Up \rightarrow \Diamond-configuration

- Triplet: 3 robots belong to the same ring (\neq D-T 1)
Algorithm

Phase I: Set-Up \rightarrow ◇-configuration

Double-Trap1 \rightarrow Double-Trap2 \rightarrow ◇-configuration

Triplet
Algorithm

Phase 1: Set-Up → ◊-configuration

- Regular: \(\{r_1, r_2\} \) and \(\{r_3, r_4\} \) s.t. \(r_1 \) (resp. \(r_3 \)) identical view as \(r_2 \) (resp. \(r_4 \)) (≠ ◊-configuration)

Particular case
Algorithm

Phase 1: Set-Up → ♦-configuration

- Regular: \{r_1, r_2\} and \{r_3, r_4\} s.t. \(r_1\) (resp. \(r_3\)) identical view as \(r_2\) (resp. \(r_4\)) (≠ ♦-configuration)

- Twin: 2 robots belong to the same ring (≠ D-T 1, D-T 2, Regular, ♦-configuration)
Algorithm

Phase I: Set-Up → ◆-configuration

- Regular: \(\{r_1, r_2\} \) and \(\{r_3, r_4\} \) s.t. \(r_1 \) \((r_3)\) identical view as \(r_2 \) (resp. \(r_4 \)) \((\neq \Box\)-configuration\)

- Twin: 2 robots belong to the same ring \((\neq \text{D-T 1, D-T 2, Regular, }\Box\text{-configuration})\)

- Quadruplet: 4 robots belong to the same ring \((\neq \text{Regular})\)

- Isolated: 4 robots belong to different rings \((\neq \text{Regular})\)
Algorithm

Phase I: Set-Up → ◇-configuration

Double-Trap1 → Double-Trap2 → ◇-configuration

Triplet ← Isolated ← Twin ← Quadruplet ← Regular
Summary

✓ 4 probabilistic robots are necessary and sufficient for any \((l,L)\)-torus \((7 \leq l \leq L)\)

✓ No (probabilistic or deterministic) algorithm exists to explore (with termination) any torus with less than 4 semi-synchronous robots

✓ No deterministic algorithm exists to explore (with termination) any torus with less than 4 semi-synchronous robots
Extensions

- (l,L)-Tori s.t. $3 \leq l \leq 7$?

- Deterministic solution ?

- Weaker Assumption (limited vision, l, L...) ?

- Other regular topologies ?

- Fault-tolerance ?