Optimal Torus Exploration by Oblivious Robots

Franck Petit University Pierre and Marie Curie, Sorbonne Univ. LIP6 CNRS / INRIA

Joint work with Stéphane Devismes, Anissa Lamani, and Sébastien Tixeuil

Environment

Terminating Exploration

Starting from an arbitrary configuration where no pair of robots are located on the same node

Exploration

Each node must be visited by at least one robot

✓ Termination

Eventually, every robot stays idle

Challenges

What are the minimal conditions to solve the exploration problem deterministically (probabilistically)?

What is the minimal number of robots?

Related Work

n: Number of nodes *k*: Number of robots

- Ring [Flocchini et al., OPODIS 2007] [Devismes et al., SIROCCO 2009] [Lamani et al., SIROCCO 2010] [Datta et al., ICDCS 2013]
 [Datta et al., APDCM 2015]
 - Deterministic exploration impossible if k divides n (except if k = n)
 - Asynchronous deterministic algorithm with $k \ge 16$
 - Deterministic or probabilistic exploration impossible if k < 4
 - Probabilistic algorithm impossible in asynchronous settings
 - Optimal Semi-synchronous Probabilistic Algorithm
 - Deterministic exploration impossible if k < 5 and n even
 - Optimal asynchronous deterministic algorithm, k = 5 and n even
 - Optimal semi-synchronous deterministic algorithm, k = 4 and n odd
 - Vision limited to distance 1: possible iff synchronous
 - Optimal deterministic synchronous algorithm with k = 5
 - Vision limited to distance 2: semi-synchronous algorithms with k = 7
 - Vision limited to distance 3: semi-synchronous algorithms with $k \in \{5,7\}$

Related Work

n: Number of nodes *k*: Number of robots

 Ring [Flocchini et al., OPODIS 2007] [Devismes et al., SIROCCO 2009] [Lamani et al., SIROCCO 2010] [Datta et al., ICDCS 2013]
[Datta et al., APDCM 2015]

✓ Tree [Flocchini et al., SIROCCO 2008]

- Asynchronous deterministic algorithm for trees with maximum degree equal to $3: k \in \Theta$ (log *n*/log log *n*)
- Arbitrary tree: $k \in \Theta(\log n)$

Chain [Flocchini et al., IPL 2011]

• Characterization of k: k = 3, k > 4, or k = 4 and n odd

✓ Grid [Devismes et al., SSS 2012]

- Deterministic or probabilistic exploration impossible if k < 3
- Optimal Semi-synchronous Deterministic Algorithm, k = 3

\Box Graph (G) with *n* nodes

✓ Anonymous simple (*l*,*L*)-torus ($l \le L$)

\Box Graph (G) with *n* nodes

✓ Anonymous simple (*l*,*L*)-torus ($l \le L$)

\Box Graph (G) with *n* nodes

✓ Anonymous simple (*l*,*L*)-torus ($l \le L$)

\Box Graph (G) with *n* nodes

✓ Anonymous simple (*l*,*L*)-torus ($l \le L$)

Why addressing such an odd and abstract topology ?

 ✓ Ring [Flocchini et al., OPODIS 2007] [Devismes et al., SIROCCO 2009] [Lamani et al., SIROCCO 2010][Datta et al., ICDCS 2013]
[Datta et al., APDCM 2015] ← Regular topology
Does the increase of the degree of symmetry make the problem harder to solve ?

Model

\Box Graph (G) with *n* nodes

✓ Anonymous simple (l,L)-torus $(l \le L)$

□ k robots

- ✓ Autonomous
- ✓ Uniform and anonymous
- ✓ Mobile
- ✓ Oblivious
- ✓ Cannot communicate directly
- ✓ Vision

Model

\Box Graph (G) with *n* nodes

✓ Anonymous simple (l,L)-torus $(l \le L)$

🛛 k robots

✓ Look

 \succ Take a snapshot to see the position of the other robots on the torus

Destination

✓ Compute

Compute a neighboring destination

✓ Move

> Move towards the computed neighboring destination

Model

\Box Graph (G) with *n* nodes

✓ Anonymous simple (l,L)-torus $(l \le L)$

□ k robots

□ Semi-Synchronous Model (SSM)

✓ In each configuration, k' robots are activated (0 < k' ≤ k)

 \checkmark The k' robots execute their cycle L-C-M synchronously

Contribution

✓ Negative Results (Also valid in the asynchronous model)

- No (probabilistic or deterministic) algorithm exists to explore (with termination) any torus with less than 4 semi-synchronous robots
- No deterministic algorithm exists to explore (with termination) any torus with less than 5 semi-synchronous robots

Positive Results

Probabilistic semi-synchronous algorithm with k = 4 robots

Negative Results

Definitions

Node Multiplicity

> Node contains 0, 1, or more robots

> Tower : More than one robots

□ (Weak) Multiplicity Detection

> Ability to detect node multiplicity {0, I,T}

View

 \succ A labelled graph isomorphic to G, where each node is labelled with its multiplicity

Definitions

□ (Un)distinguishable configuration

(3-3)-torus

$k \geq 3$

- If n > k, then there exists a set S of at least n k + l configurations such that:
- $\forall c_1, c_2 \in S: c_1 \text{ and } c_2 \text{ are distinguishable}$
- $\forall c \in S$: there is a tower of less than k robots

[Devismes et al., SIROCCO 2009] extended to arbitrary topologies

- Exploration requirement
 - Distinction between visited and non visited nodes
 - Memory of explored nodes encoded with configurations that contain at least one tower of less than k robots
 - Fair sequential exploration implies at least n k + l pairwise distinct configurations

k ≥ 3

- If n > k, then there exists a set S of at least n k + 1 configurations such that:
- $\forall c_1, c_2 \in S: c_1 \text{ and } c_2 \text{ are distinguishable}$
- $\forall c \in S$: there is a tower of less than k robots

[Devismes et al., SIROCCO 2009] extended to arbitrary topologies

If n > k, then $k \ge 3$

k = 3

$3 \leq hb \leq L \Rightarrow n \geq 9.$

So, there must exist a set S of at least n - 2 configurations such that:

- $\forall c_1, c_2 \in S: c_1 \text{ and } c_2 \text{ are distinguishable}$
- $\forall c \in S$: there is a tower of less than k robots

k = 3

$3 \leq \mathbf{h} \leq \mathbf{L} \Rightarrow \mathbf{n} \geq \mathbf{9}.$

So, there must exist a set S of at least n - 2 configurations such that:

- $\forall c_1, c_2 \in S: c_1 \text{ and } c_2 \text{ are distinguishable}$
- $\forall c \in S$: there is a tower of less than k robots

$k \geq 4$

No (probabilistic or deterministic) algorithm exists to explore with termination any torus with less than 4 semisynchronous robots.

k ≥ 4

No (probabilistic or deterministic) algorithm exists to explore with termination any torus with less than 4 semisynchronous robots.

No deterministic algorithm exists to explore with termination any torus with less than 5 semi-synchronous robots.

Deterministic algorithm with specific initial configurations [D'Angelo *et al.*, ICDCN 2014] Probabilistic Algorithm with 4 semi-synchronous robots

Algorithm

(l,L)-torus $(7 \le l \le L)$

Phase I: Set-Up

Phase 2:Tower

Phase 2:Tower

Algorithm

Algorithm

Algorithm

(l,L)-torus $(7 \le l \le L)$

Phase I: Set-Up

Phase 2:Tower

Algorithm

\Box Phase I: Set-Up \rightarrow \Diamond -configuration

Double-Trap 2

Algorithm

\Box Phase I: Set-Up \rightarrow \Diamond -configuration

Double-Trap I

\Box Phase I: Set-Up \rightarrow \Diamond -configuration

> Triplet: 3 robots belong to the same ring (\neq D-T I)

Algorithm

\Box Phase I: Set-Up \rightarrow \Diamond -configuration

$\Box Phase I: Set-Up \rightarrow \diamondsuit-configuration$

▶ Regular: $\{r_1, r_2\}$ and $\{r_3, r_4\}$ s.t. r_1 (r_3) identical view as r_2 (resp. r_4) (≠ \bigcirc -configuration)

 $\Box Phase I: Set-Up \rightarrow \diamondsuit-configuration$

- Regular: $\{r_1, r_2\}$ and $\{r_3, r_4\}$ s.t. r_1 (r_3) identical view as r_2 (resp. r_4) ($\neq \diamondsuit$ -configuration)
- Twin: 2 robots belong to the same ring (\neq D-T I, D-T 2, Regular, \Diamond -configuration)

 $\Box Phase I: Set-Up \rightarrow \diamondsuit-configuration$

- ▶ Regular: $\{r_1, r_2\}$ and $\{r_3, r_4\}$ s.t. r_1 (r_3) identical view as r_2 (resp. r_4) (≠ \bigcirc -configuration)
- Twin: 2 robots belong to the same ring (\neq D-T I, D-T 2, Regular, \Diamond -configuration)
- Quadruplet: 4 robots belong to the same ring (≠ Regular)
- Isolated: 4 robots belong to different rings (≠ Regular)

Algorithm

$\Box Phase I: Set-Up \rightarrow \Diamond-configuration$

Summary

- ✓ 4 probabilistic robots are necessary and sufficient for any (l,L)-torus $(7 \le l \le L)$
- No (probabilistic or deterministic) algorithm exists to explore (with termination) any torus with less than 4 semi-synchronous robots
- No deterministic algorithm exists to explore (with termination) any torus with less than 4 semi-synchronous robots

Extensions

▶ (l,L)-Tori s.t. 3 ≤ l ≤7 ?

Deterministic solution ?

Fault-tolerance ?