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1 Exploration with Stop in Ring with limited
visibility (Franck Petit)

Consider autonomous, identical, oblivious robots, in the Look-Compute-Move
model. They have only local visibility, that is the snapshot allows them to see
only at distance Φ. In particular, they don’t know the size of the ring nor the
number of robots if Φ < n/2.

The main question is: what is the minimum number of robots required to
explore the ring with termination (in a deterministic way)?
Known results:

• Φ = 1: impossible in semi-synchronous setting. Possible in a synchronous
setting with 5 robots.

• Φ = 2: algorithm for 7 asynchronous robots starting from a strongly
connected configuration (robots occupying consecutive nodes).

• Φ = 3: algorithm for 5 asynchronous robots from a strongly connected
configuration (it is optimal). algorithm for 7 asynchronous robots from a
weak connected configuration (the visibility graph must be connected).

Questions:

• What is the minimum number for Φ = 2 from a strongly connected con-
figuration?

• Algorithm starting from a weakly connected configuration?

• Is Φ = 3 as strong as Φ =∞?

• Algorithm for general number of robots?

• ...

2 Moderate exponential time algorithms (Pierre
Fraigniaud)

Most of the problems considered in the workshop (graph searching, cops-and-
robber, exploration, etc.) yield optimization problems that are at least NP-hard.
This prevents us from designing polynomial-time algorithms for solving these
problems (unless unexpected complexity results holds). However, this does not
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prevent us from designing algorithms that are still efficient for relatively small
instances (few number of agents, and/or small graphs).

The open problem is the design of moderately exponential algorithms for
some of the problems considered in the workshop (i.e., algorithms with complex-
ity of the form, e.g., (1 + ε)n or 2o(n)). Such algorithms could have an interest
beyond our community, as the problems considered in the workshop are of a
“dynamic” nature that is very different from the classical “static” combinato-
rial problems. Moreover, having algorithms at hand allowing us to solve small
instances could help providing intuition about how to solve larger instances,
and/or to elaborate conjectures about the solutions of large instances.

3 Synchronization (Christian Scheideler)

The question is about the formal analysis of the following gathering algorithms.

On a ring: Consider n robots on a cycle. At each step, each robot chooses two
robots uniformly at random (including itself) and then moves to the position of
the closer robot one. (positions of the robots correspond to their clock, and the
goal is to synchronize them, i.e., when a robot moves toward a robot, it adjusts
its clock offset to the offset of the other robot).

Simulations show that the process converge in time O(log n) but no formal
analysis.

On the plane: Consider n robots on the plane. At each step, each robot
chooses 2 robots uniformly at random (including itself) and goes to the closest
one. Simulations show that the process converge in time O(log n) but no formal
analysis.

There is exists a formal analysis of such a process on the line, if the robots
chooses 3 robots uniformly at random (including itself) and goes to the middle
one.

Reference: [Benjamin Doerr, Leslie Ann Goldberg, Lorenz Minder, Thomas
Sauerwald, Christian Scheideler: Stabilizing consensus with the power of two
choices. SPAA 2011: 149-158]

4 Flag game (Ben Seamone)

Let G = (V,E) be a graph, v0 ∈ V . F ⊂ V be the set of flags. Let us consider
the following two-player game. The rule are similar to the ones of Cops and
Robber game, but now the Robber starts from v0 and wins if it reaches a node
in F before being caught by the cops.

The questions are about combinatorial bounds and algorithmic complexity
on the minimum number number of cops needed to win.

5 About Permutations (Arnaud Labourel, from
Peter Widmayer)

What is the complexity of the following problem?
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Given a non-decreasing sequence {v1, · · · , vm} of m integers, is there a per-
mutation π of {1, · · · ,m+ 1} such that, for any 1 ≤ i ≤ m, π(i) +π(i+ 1) ≤ vi?

If the sequence is arbitrary, the problem is known to be NP-complete.

6 Rugby (Nicolas Nisse)

Consider an n×∞ grid. We consider the following turn-by-turn game with two
players: the attacker has speed two, i.e., it may move along two edges at each
turn, the defender controls k agents with speed one.

What is the minimum number k of defenders necessary to avoid that the
attacker starting on the “left” side of the infinite grid manage to reach the
“right side” of it without being caught (he is blocked if one defender occupies
the same vertex as it)?

Right now, it is known that log(n) ≤ k ≤ n/6 [M. Mamino].

7 Searching in Boxes (Thomas Lidbetter)

Consider a set N = {1, · · · , n} of n boxes. For any i ≤ n, let ci be the cost of
searching a box (opening it). The boxes may contain some balls and the goal is
to minimize the expected cost of finding all balls.

Case of one ball. Let pi be the probability that box i contains the ball.
Note that

∑
i≤n pi = 1 since there is a unique ball. In that case, the optimal

solution is obtained by the following greedy algorithm: search the boxes in the
non increasing ordering of ci/pi. (Smith’s rule, 1956).

Case of two balls. Let pi,j be the probability that the balls are in boxes i
and j. The following greedy algorithm provides a 2-approximation: start with
the set A ⊆ N which minimize c(A)/p(A) (such a set A can be computed in
polynomial-time by submodularity).

Can we do better?

8 Fast Capture (Gena Hahn)

Consider the original (Nowakowski-Winkler, Quilliot) cops and robber game.
For a graph G (assumed connected), write cn(G) for the cop number of G,
the minimum number of cops that always catch the robber. Let ct(G) be the
capture time of G, that is, the minimum number of rounds the cn(G) cops need
to capture the robber in the worst case.

Problem 1. Is there a better method to find, or even estimate, ct(G) for a given
graph G known than using the Hahn-MacGillivray algorithm to determine cn(G)
and reading the capture time off the labeling of the vertices of the auxilliary graph
(which can be be of order exponential in the number of vertices of G)?

Problem 2. To be more realistic, one could ask that the robber be caught within
a certain time t. Define ctt(G) to be the minimum number of cops needed to
capture the robber in at most t rounds in the worst case. What can we say about
it (beside the obvious ct0(G) = n and ct1(G) = dn(G), with dn(G) being the
size of a minimum dominating set of G)?
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9 Burning Number (N. Nisse)

Let G = (V,E) be a graph, we are interested in the minimum k such that there
exists a sequence (v1, · · · , vk) of vertices with V =

⋃
i≤kNk−i(vi), where Nr(v)

denotes the set of vertices at distance at most r from v. Such a minimum k is
called the burning number of G and denoted by bn(G).

It is known that computing bn(G) is strongly NP-complete and that there
exists a 3-approximation for it. Can we do better? (F)PTAS ?

It is known that bn(G) ≤ d
√

3
2ne for any connected graph G.

Conjecture: bn(G) ≤ d
√
n e for any connected graph G. (Note that it is

sufficient to prove it for trees)
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