Cops and robber games in graphs

Nicolas Nisse

Inria, France
Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, Sophia Antipolis, France
GRASTA-MAC 2015
October 19th, 2015

Pursuit-Evasion Games

2-Player games

A team of mobile entities (Cops) track down another mobile entity (Robber)
Always one winner

- Combinatorial Problem:

Minimizing some resource for some Player to win e.g., minimize number of Cops to capture the Robber.

- Algorithmic Problem:

Computing winning strategy (sequence of moves) for some Player
e.g., compute strategy for Cops to capture Robber/Robber to avoid the capture
natural applications: coordination of mobile autonomous agents
(Robotic, Network Security, Information Seeking...)
but also: Graph Theory, Models of Computation, Logic, Routing...

Pursuit-Evasion: Over-simplified Classification

Pursuit-Evasion: Over-simplified Classification

[Chung,Hollinger,Isler'11]

Pursuit-Evasion: Over-simplified Classification

Today: focus on Cops and Robber games

Goal of this talk: illustrate that studying Pursuit-Evasion games helps

- Offer new approaches for several structural graph properties
- Models for studying several practical problems
- Fun and intriguing questions

Cops \& Robber Games [Nowakowski and Winkler; Quilliot, 1983]

Rules of the $\mathcal{C} \& \mathcal{R}$ game

Cops \& Robber Games [Nowakowski and Winkler; Quilliot, 1983]

Rules of the $\mathcal{C} \& \mathcal{R}$ game
(1) Place $k \geq 1$ Cops \mathcal{C} on nodes

Cops \& Robber Games [Nowakowski and Winkler; Quilliot, 1983]

Rules of the $\mathcal{C} \& \mathcal{R}$ game
(1) Place $k \geq 1$ Cops \mathcal{C} on nodes
(2) Visible Robber \mathcal{R} at one node

Cops \& Robber Games [Nowakowski and Winkler; Quilliot, 1983]

Rules of the $\mathcal{C} \& \mathcal{R}$ game
(1) Place $k \geq 1$ Cops \mathcal{C} on nodes
(2) Visible Robber \mathcal{R} at one node
(3) Turn by turn
(1) each \mathcal{C} slides along ≤ 1 edge

Cops \& Robber Games [Nowakowski and Winkler; Quilliot, 1983]

Rules of the $\mathcal{C} \& \mathcal{R}$ game
(1) Place $k \geq 1$ Cops \mathcal{C} on nodes
(2) Visible Robber \mathcal{R} at one node
(3) Turn by turn
(1) each \mathcal{C} slides along ≤ 1 edge
(2) \mathcal{R} slides along ≤ 1 edge

Cops \& Robber Games [Nowakowski and Winkler; Quilliot, 1983]

Rules of the $\mathcal{C} \& \mathcal{R}$ game
(1) Place $k \geq 1$ Cops \mathcal{C} on nodes
(2) Visible Robber \mathcal{R} at one node
(3) Turn by turn
(1) each \mathcal{C} slides along ≤ 1 edge
(2) \mathcal{R} slides along ≤ 1 edge

Cops \& Robber Games [Nowakowski and Winkler; Quilliot, 1983]

Rules of the $\mathcal{C} \& \mathcal{R}$ game
(1) Place $k \geq 1$ Cops \mathcal{C} on nodes
(2) Visible Robber \mathcal{R} at one node
(3) Turn by turn
(1) each \mathcal{C} slides along ≤ 1 edge
(2) \mathcal{R} slides along ≤ 1 edge

Goal of the $\mathcal{C} \& \mathcal{R}$ game

- Robber must avoid the Cops

Cops \& Robber Games [Nowakowski and Winkler; Quilliot, 1983]

Rules of the $\mathcal{C} \& \mathcal{R}$ game
(1) Place $k \geq 1$ Cops \mathcal{C} on nodes
(2) Visible Robber \mathcal{R} at one node
(3) Turn by turn
(1) each \mathcal{C} slides along ≤ 1 edge
(2) \mathcal{R} slides along ≤ 1 edge

Goal of the $\mathcal{C} \& \mathcal{R}$ game

- Robber must avoid the Cops
- Cops must capture Robber (i.e., occupy the same node)

Cops \& Robber Games [Nowakowski and Winkler; Quilliot, 1983]

Rules of the $\mathcal{C} \& \mathcal{R}$ game
(1) Place $k \geq 1$ Cops \mathcal{C} on nodes
(2) Visible Robber \mathcal{R} at one node
(3) Turn by turn
(1) each \mathcal{C} slides along ≤ 1 edge
(2) \mathcal{R} slides along ≤ 1 edge

Goal of the $\mathcal{C} \& \mathcal{R}$ game

- Robber must avoid the Cops
- Cops must capture Robber (i.e., occupy the same node)

Cop Number of a graph G $c n(G):$ min \# Cops to win in G

Let's play a bit

Easy remark: For any graph $G, c n(G) \leq \gamma(G)$ the size of a min dominating set of G.

Complexity: a graph $G, c n(G) \leq k$?

Seminal paper: $k=1$ (dismantable graphs) can be checked in time $O\left(n^{3}\right)$

Complexity: a graph $G, c n(G) \leq k$?

Seminal paper: $k=1$

$$
\begin{aligned}
& c n(G)=1 \text { iff } V=\left\{v_{1}, \cdots, v_{n}\right\} \text { and, } \forall i<n, \exists j>i \text { s.t., } N\left(v_{i}\right) \cap\left\{v_{i}, \cdots, v_{n}\right\} \subseteq N\left[v_{j}\right] . \\
& \text { (dismantable graphs) } \quad \text { can be checked in time } O\left(n^{3}\right)
\end{aligned}
$$

Generalization to any k [Berarducci, Intrigila'93] [Hahn, MacGillivray'06] [Clarke, MacGillivray'12] $c n(G) \leq k$? can be checked in time $n^{O(k)}$
\in EXPTIME

Complexity: a graph $G, \operatorname{cn}(G) \leq k$?

Seminal paper: $k=1$

$$
\begin{aligned}
& c n(G)=1 \text { iff } V=\left\{v_{1}, \cdots, v_{n}\right\} \text { and, } \forall i<n, \exists j>i \text { s.t., } N\left(v_{i}\right) \cap\left\{v_{i}, \cdots, v_{n}\right\} \subseteq N\left[v_{j}\right] . \\
& \text { (dismantable graphs) } \quad \text { can be checked in time } O\left(n^{3}\right)
\end{aligned}
$$

Generalization to any k

Complexity: a graph $G, c n(G) \leq k$?

Seminal paper: $k=1$
[Nowakowski and Winkler; Quilliot, 1983] $c n(G)=1$ iff $V=\left\{v_{1}, \cdots, v_{n}\right\}$ and, $\forall i<n, \exists j>i$ s.t., $N\left(v_{i}\right) \cap\left\{v_{i}, \cdots, v_{n}\right\} \subseteq N\left[v_{j}\right]$. (dismantable graphs) can be checked in time $O\left(n^{3}\right)$

Generalization to any k

NP-hard and W[2]-hard

[Fomin,Golovach,Kratochvil,N.,Suchan, 2010] (i.e., no algorithm in time $f(k) n^{O(1)}$ expected)

Complexity: a graph $G, \operatorname{cn}(G) \leq k$?

Seminal paper: $k=1$
[Nowakowski and Winkler; Quilliot, 1983] $c n(G)=1$ iff $V=\left\{v_{1}, \cdots, v_{n}\right\}$ and, $\forall i<n, \exists j>i$ s.t., $N\left(v_{i}\right) \cap\left\{v_{i}, \cdots, v_{n}\right\} \subseteq N\left[v_{j}\right]$. (dismantable graphs) can be checked in time $O\left(n^{3}\right)$

Generalization to any k

NP-hard and W[2]-hard

 (i.e., no algorithm in time $f(k) n^{O(1)}$ expected)
Complexity: a graph $G, \operatorname{cn}(G) \leq k$?

Seminal paper: $k=1$

Generalization to any k

NP-hard and W[2]-hard (i.e., no algorithm in time $f(k) n^{O(1)}$ expected)

Graphs with high cop-number

Large girth (smallest cycle) AND large min degree \Rightarrow large cop-number
G with min-degree d and girth $>4 \Rightarrow c n(G) \geq d$.
[Aigner and Fromme 84]

Graphs with high cop-number

Large girth (smallest cycle) AND large min degree \Rightarrow large cop-number
G with min-degree d and girth $>4 \Rightarrow c n(G) \geq d$.

- for any k, d, there are d-regular graphs G with $c n(G) \geq k \quad$ [Aigner and Fromme 84]
- $c n(G) \geq d^{t}$ in any graph with min-degree d and girth $>8 t-3 \quad$ [Frankl 87]
- for any k, there is G with diameter 2 and $c n(G) \geq k \quad$ (e.g., Kneser graph $K G_{3 k, k}$)

Meyniel Conjecture

$\exists n$-node graphs with degree $\Theta(\sqrt{n})$ and girth >4
$\Rightarrow \exists n$-node graphs G with $c n(G)=\Omega(\sqrt{n})$
(e.g., projective plan, random \sqrt{n}-regular graphs)

Meyniel Conjecture
Conjecture: For any n-node connected graph $G, c n(G)=O(\sqrt{n})$

Link with Graph Structural Properties

Reminder: For any graph $G, c n(G) \leq \gamma(G)$ the dominating number of G.

Link with Graph Structural Properties

Reminder: For any graph $G, c n(G) \leq \gamma(G)$ the dominating number of G.

Link with Graph Structural Properties

Reminder: For any graph $G, c n(G) \leq \gamma(G)$ the dominating number of G.

Link with Graph Structural Properties

Reminder: For any graph $G, c n(G) \leq \gamma(G)$ the dominating number of G.

Link with Graph Structural Properties

Reminder: For any graph $G, c n(G) \leq \gamma(G)$ the dominating number of G.

Link with Graph Structural Properties

Reminder: For any graph $G, c n(G) \leq \gamma(G)$ the dominating number of G.

Link with Graph Structural Properties

Reminder: For any graph $G, c n(G) \leq \gamma(G)$ the dominating number of G.

Link with Graph Structural Properties

Reminder: For any graph $G, c n(G) \leq \gamma(G)$ the dominating number of G.

Link with Graph Structural Properties

Reminder: For any graph $G, c n(G) \leq \gamma(G)$ the dominating number of G.

Link with Graph Structural Properties

Reminder: For any graph $G, c n(G) \leq \gamma(G)$ the dominating number of G.

Link with Graph Structural Properties

Reminder: For any graph $G, c n(G) \leq \gamma(G)$ the dominating number of G.

Link with Graph Structural Properties

Reminder: For any graph $G, c n(G) \leq \gamma(G)$ the dominating number of G.

Link with Graph Structural Properties

Reminder: For any graph $G, c n(G) \leq \gamma(G)$ the dominating number of G.

Link with Graph Structural Properties

Reminder: For any graph $G, c n(G) \leq \gamma(G)$ the dominating number of G.

Link with Graph Structural Properties

Reminder: For any graph $G, c n(G) \leq \gamma(G)$ the dominating number of G.

Link with Graph Structural Properties

Reminder: For any graph $G, c n(G) \leq \gamma(G)$ the dominating number of G.

Link with Graph Structural Properties

Reminder: For any graph $G, c n(G) \leq \gamma(G)$ the dominating number of G.

Link with Graph Structural Properties

Reminder: For any graph $G, c n(G) \leq \gamma(G)$ the dominating number of G.

Link with Graph Structural Properties

Reminder: For any graph $G, c n(G) \leq \gamma(G)$ the dominating number of G.

Link with Graph Structural Properties

Reminder: For any graph $G, c n(G) \leq \gamma(G)$ the dominating number of G.

Link with Graph Structural Properties

Reminder: For any graph $G, c n(G) \leq \gamma(G)$ the dominating number of G.

Link with Graph Structural Properties

Reminder: For any graph $G, c n(G) \leq \gamma(G)$ the dominating number of G.

Link with Graph Structural Properties

Reminder: For any graph $G, c n(G) \leq \gamma(G)$ the dominating number of G.

Link with Graph Structural Properties

Reminder: For any graph $G, c n(G) \leq \gamma(G)$ the dominating number of G.

Link with Graph Structural Properties

Reminder: For any graph $G, c n(G) \leq \gamma(G)$ the dominating number of G.

Lemma
1 Cop is sufficient to "protect" a shortest path P in any graph.
(after a finite number of step, Robber cannot reach P)

$$
\Rightarrow c n(\text { grid })=2(\text { while } \gamma(\text { grid }) \approx n / 2)
$$

Link with Graph Structural Properties

Reminder: For any graph $G, c n(G) \leq \gamma(G)$ the dominating number of G.

Lemma
1 Cop is sufficient to "protect" a shortest path P in any graph.
(after a finite number of step, Robber cannot reach P)

$$
\Rightarrow c n(\text { grid })=2(\text { while } \gamma(\text { grid }) \approx n / 2)
$$

\Rightarrow Cop-number related to both structural and metric properties

1 Cop can protect 1 shortest path: applications (1)

Cop-number vs. graph structure
a surprising (?) example

1 Cop can protect 1 shortest path: applications (1)

For any planar graph G (there is a drawing of G on the plane without crossing edges), there exists separators consisting of ≤ 3 shortest paths

Cop-number vs. graph structure a surprising (?) example

1 Cop can protect 1 shortest path: applications (1)

For any planar graph G (there is a drawing of G on the plane without crossing edges), there exists separators consisting of ≤ 3 shortest paths

Cop-number vs. graph structure

1 Cop can protect 1 shortest path: applications (2)

G with genus $\leq g$: can be drawn on a surface with $\leq g$ "handles".

1 Cop can protect 1 shortest path: applications (2)

G with genus $\leq g$: can be drawn on a surface with $\leq g$ "handles".

Cop-number vs. graph structure
let's go further
$c n(G) \leq\left\lfloor\frac{3 g}{2}\right\rfloor+3$ for any graph G with genus $\leq g$
[Schröder, 01]
Conjectures: $c n(G) \leq g+3$? $c n(G) \leq 3$ if G has genus 1 ?
G is H-minor-free if no graph H as minor
"generalize" bounded genus [Robertson,Seymour 83-04]
$c n(G)<|E(H)|$
[Andreae, 86]

1 Cop can protect 1 shortest path: applications (2)

G with genus $\leq g$: can be drawn on a surface with $\leq g$ "handles".

Cop-number vs. graph structure
$c n(G) \leq\left\lfloor\frac{3 g}{2}\right\rfloor+3$ for any graph G with genus $\leq g$
[Schröder, 01]
Conjectures: $c n(G) \leq g+3$? $c n(G) \leq 3$ if G has genus 1 ?
G is H-minor-free if no graph H as minor "generalize" bounded genus [Robertson,Seymour 83-04] $c n(G)<|E(H)|$
[Andreae, 86]

Application

"Any graph excluding K_{r} as a minor can be partitioned into clusters of diameter at most Δ while removing at most $O(r / \Delta)$ fraction of the edges."

1 Cop can protect 1 shortest path: applications (3)

Lemma shortest-path-caterpillar $=$ closed neighborhood of a shortest path [Chiniforooshan 2008]

5 Cop are sufficient to "protect" 1 shortest-path-caterpillar in any graph.

1 Cop can protect 1 shortest path: applications (3)

Lemma shortest-path-caterpillar $=$ closed neighborhood of a shortest path [Chiniforooshan 2008]

5 Cop are sufficient to "protect" 1 shortest-path-caterpillar in any graph. Any graph can be partitioned in $n / \log n$ shortest-path-caterpillar (consider a BFS)

1 Cop can protect 1 shortest path: applications (3)

Lemma shortest-path-caterpillar $=$ closed neighborhood of a shortest path [Chiniforooshan 2008]

5 Cop are sufficient to "protect" 1 shortest-path-caterpillar in any graph. Any graph can be partitioned in $n / \log n$ shortest-path-caterpillar (consider a BFS)

For any graph $G, c n(G)=O(n / \log n)$

Progress on Meyniel Conjecture

Meyniel Conjecture［85］：For any n－node connected graph $G, c n(G)=O(\sqrt{n})$

	$c n$	
dominating set $\leq k$	$\leq k$	［folklore］
treewidth $\leq t$	$\leq t / 2+1$	［Joret，Kaminski，Theis 09］
chordality $\leq k$	$<k$	［Kosowski，Li，N．，Suchan 12］
genus $\leq g$	$\leq\left\lfloor\frac{3 g}{2}\right\rfloor+3$	（conjecture $\leq g+3$［Schröder，01］
H－minor free	$\leq\|E(H)\|$	
［Andreae，86］		
degeneracy $\leq d$	$\leq d$	［Lu，Peng 12］
diameter 2	$O(\sqrt{n})$	-
bipartite diameter 3	$O(\sqrt{n})$	-
Erdös－Réyni graphs	$O(\sqrt{n})$	
Power law	$O(\sqrt{n})$	（big component？）．［Bonato，Pralat，Wang 07］

A long story not finished yet．．．
－$c n(G)=O\left(\frac{n}{\log \log n}\right)$
［Frankl 1987］
－$c n(G)=O\left(\frac{n}{\log n}\right)$
［Chiniforooshan 2008］
－$c n(G)=O\left(\frac{n}{2^{(1-o(1)) \sqrt{\log n}}}\right)$
［Scott，Sudakov 11，Lu，Peng 12］

When Cops and Robber can run

New variant with speed: Players may move along several edges per turn $c n_{s^{\prime}, s}(G): \min \#$ of Cops with speed s^{\prime} to capture Robber with speed $s, s \geq s^{\prime}$.

When Cops and Robber can run

New variant with speed: Players may move along several edges per turn $c n_{s^{\prime}, s}(G): \min \#$ of Cops with speed s^{\prime} to capture Robber with speed $s, s \geq s^{\prime}$.

When Cops and Robber can run

New variant with speed: Players may move along several edges per turn $c n_{s^{\prime}, s}(G): \min \#$ of Cops with speed s^{\prime} to capture Robber with speed $s, s \geq s^{\prime}$.

When Cops and Robber can run

New variant with speed: Players may move along several edges per turn $c n_{s^{\prime}, s}(G): \min \#$ of Cops with speed s^{\prime} to capture Robber with speed $s, s \geq s^{\prime}$.

Meyniel Conjecture [Alon, Mehrabian'11] and general upper bound [Frieze,Krivelevich,Loh'12] extend to this variant

When Cops and Robber can run

New variant with speed: Players may move along several edges per turn $c n_{s^{\prime}, s}(G): \min \#$ of Cops with speed s^{\prime} to capture Robber with speed $s, s \geq s^{\prime}$.

Meyniel Conjecture [Alon, Mehrabian'11] and general upper bound [Frieze,Krivelevich,Loh'12] extend to this variant
... but fundamental differences
(recall: planar graphs have $c n_{1,1} \leq 3$)
$c n_{1,2}(G)$ unbounded in grids
[Fomin,Golovach,Kratochvil,N.,Suchan TCS'10]

Open question: $\Omega(\sqrt{\log n}) \leq c n_{1,2}(G) \leq O(n)$ in $n \times n$ grid G

When Cops and Robber can run

G is Cop-win $\Leftrightarrow 1$ Cop sufficient to capture Robber in G

Structural characterization of Cop-win graphs for any speed s and s^{\prime}
[Chalopin, Chepoi,N.,Vaxès SIDMA'11] generalize seminal work of [Nowakowski,Winkler'83]
hyperbolicity δ of G : measures the "proximity" of the metric of G with a tree metric

New characterization and algorithm for hyperbolicity

- bounded hyperbolicity \Rightarrow one Cop can catch Robber almost twice faster
[Chalopin, Chepoi,N.,Vaxès SIDMA'11]
- one Cop can capture a faster Robber \Rightarrow bounded hyperbolicity
[Chalopin, Chepoi,Papasoglu,Pecatte SIDMA'14]
- $O(1)$-approx. sub-cubic-time for hyperbolicity [Chalopin,Chepoi,Papasoglu,Pecatte SIDMA' 14]
- tree-length $(G) \leq\left\lfloor\frac{\ell}{2}\right\rfloor \operatorname{tw}(G)$ for any graph G with max-isometric cycle ℓ $\Rightarrow O(\ell)$-approx. for $t w$ in bounded genus graphs [Coudert,Ducoffe,N. 14]

Spy Game

new rule: The robber may occupy the same vertex as Cops
new goal: Cops must ensure that, after a finite number of steps, the Robber is always at distance at most $d \geq 0$ from a cop
d is a fixed parameter.
$g_{s}^{d}(G): \min$. \# of Cops (speed one) controlling a robber with speed s at distance $\leq d$.
Rmk 1: if $s=1$, it is equivalent to capture a robber at distance d.
Rmk 2: Close (?) to the patrolling game
[Czyzowicz et al. SIROCCO'14, ESA'11]
Preliminary results
[Cohen,Hilaire,Martins,N.,Pérennes]

- Computing g_{3}^{1} is NP-hard in graph with maximum degree 5
- Computing g is PSPACE-hard in DAGs
- $g_{s}^{d}(P)=\Theta\left(\frac{n}{2 d \frac{s}{s-1}}\right)$ for any d, s in any n-node path P
- $g_{s}^{d}(C)=\Theta\left(\frac{n}{2 d \frac{s+1}{s-1}}\right)$ for any d, s in any n-node cycle C
- there exists $\epsilon>0$ such that $g_{s}^{d}(G)=\Omega\left(n^{1+\epsilon}\right)$ in any $n \times n$ grid

Conclusion / Open problems

Meyniel Conjecture [1985]: For any n-node connected graph $G, c n(G)=O(\sqrt{n})$

Conjecture [?]: For any n-node connected graph G with genus $g, c n(G) \leq g+3$

simpler(?) questions

- $c n(G) \leq 3$ if G has genus ≤ 1 ?
- how many cops with speed 1 to capture a robber with speed 2 in a grid?
- when Cops can capture at distance?
[Bonato, Chiniforooshan,Pralat'10] [Chalopin,Chepoi,N.,Vaxès'11]
- Many other variants and questions...
(e.g. [Clarke'09] [Bonato, et a.'13]...)
- Directed graphs ??
B. Alspach. Searching and sweeping graphs: a brief survey. In Le Matematiche, pages 5-37, 2004.
W. Baird and A. Bonato. Meyniel's conjecture on the cop number: a survey. http://arxiv.org/abs/1308.3385. 2013
A. Bonato and R. J. Nowakowski. The game of Cops and Robber on Graphs. American Math. Soc., 2011.

