Cops and robber games in graphs

Nicolas Nisse

Inria, France

Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, Sophia Antipolis, France

GRASTA-MAC 2015

October 19th, 2015

Pursuit-Evasion Games

2-Player games

A team of mobile entities (Cops) track down another mobile entity (Robber)

Always one winner

 Combinatorial Problem: Minimizing some resource for some Player to win e.g., minimize number of Cops to capture the Robber.
Algorithmic Problem:

Computing winning strategy (sequence of moves) for some Player e.g., compute strategy for Cops to capture Robber/Robber to avoid the capture

natural applications: coordination of mobile autonomous agents (Robotic, Network Security, Information Seeking...) but also: Graph Theory, Models of Computation, Logic, Routing...

イロン イヨン イヨン イヨン

Pursuit-Evasion: Over-simplified Classification

(日) (四) (E) (E) (E)

Pursuit-Evasion: Over-simplified Classification

[Chung,Hollinger,Isler'11]

(ロ) (同) (E) (E) (E)

Pursuit-Evasion: Over-simplified Classification

Today: focus on Cops and Robber games

Goal of this talk: illustrate that studying Pursuit-Evasion games helps

- Offer new approaches for several structural graph properties
- Models for studying several practical problems
- Fun and intriguing questions

(D) (B) (E) (E)

Rules of the $\mathcal{C}\&\mathcal{R}$ game

・ロン ・日ン ・ヨン ・ヨン

Rules of the $C\&\mathcal{R}$ game

・ロト ・日ト ・ヨト ・ヨト

Rules of the C&R game

- **1** Place $k \ge 1$ Cops $\mathcal C$ on nodes
- **(2)** Visible Robber \mathcal{R} at one node

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Rules of the $C\&\mathcal{R}$ game

- m 1 Place $k\geq 1$ Cops ${\mathcal C}$ on nodes
-) Visible Robber ${\mathcal R}$ at one node
- 3 Turn by turn
 - (1) each ${\mathcal C}$ slides along ≤ 1 edge

・ロト ・同ト ・ヨト ・ヨト

Rules of the $C\&\mathcal{R}$ game

- m 1 Place $k\geq 1$ Cops ${\mathcal C}$ on nodes
- Visible Robber $\mathcal R$ at one node
- 3 Turn by turn
 - (1) each ${\mathcal C}$ slides along ≤ 1 edge
 - (2) ${\cal R}$ slides along ≤ 1 edge

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・

Rules of the $C\&\mathcal{R}$ game

- m 1 Place $k\geq 1$ Cops ${\mathcal C}$ on nodes
- Visible Robber $\mathcal R$ at one node
- 3 Turn by turn
 - (1) each ${\mathcal C}$ slides along ≤ 1 edge
 - (2) ${\cal R}$ slides along ≤ 1 edge

・ロト ・回ト ・ヨト ・ヨト

Rules of the C&R game

- - Place $k \ge 1$ Cops C on nodes
 - Visible Robber \mathcal{R} at one node
- Turn by turn
 - (1) each C slides along < 1 edge
 - (2) \mathcal{R} slides along ≤ 1 edge

Goal of the $C\&\mathcal{R}$ game

Robber must avoid the Cops

・ロト ・回ト ・ヨト ・ヨト

Rules of the $C\&\mathcal{R}$ game

- m 1 Place $k\geq 1$ Cops ${\mathcal C}$ on nodes
-) Visible Robber ${\mathcal R}$ at one node
- 3 Turn by turn
 - (1) each ${\mathcal C}$ slides along ≤ 1 edge
 - (2) ${\mathcal R}$ slides along ≤ 1 edge

Goal of the $\mathcal{C}\&\mathcal{R}$ game

- Robber must avoid the Cops
- Cops must capture Robber (i.e., occupy the same node)

・ロト ・回ト ・ヨト ・ヨト

Rules of the $\mathcal{C}\&\mathcal{R}$ game

- m 1 Place $k\geq 1$ Cops ${\mathcal C}$ on nodes
-) Visible Robber ${\mathcal R}$ at one node
- 3 Turn by turn
 - (1) each ${\mathcal C}$ slides along ≤ 1 edge
 - (2) ${\mathcal R}$ slides along ≤ 1 edge

Goal of the $\mathcal{C}\&\mathcal{R}$ game

- Robber must avoid the Cops
- Cops must capture Robber (i.e., occupy the same node)

Cop Number of a graph G

cn(G): min # Cops to win in G

() < </p>

< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

N. Nisse Cops and robber games in graphs

< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

N. Nisse Cops and robber games in graphs

< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

<□> <@> < E> < E> < E</p>

< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

N. Nisse Cops and robber games in graphs

<□> <@> < E> < E> < E</p>

<□> <@> < E> < E> < E</p>

< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Let's play a bit

< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Let's play a bit

Easy remark: For any graph G, $cn(G) \leq \gamma(G)$ the size of a min dominating set of G.

	$cn(G) = 1 \text{ iff } V = \{v_1, \cdots, v_n\} \text{ and, } \forall i < n, \exists j > i \text{ s.t., } N(v_i)$		
can be checked in time $O(n^3)$	dismantable graphs)		
The surviver server e			

eneralization to any k $n(G) \leq k$? can be checked		Hahn, MacGillivray'06] [Clarke, MacGillivray'12]
$m(G) \leq k?$ can be checked		
	in time $n^{O(k)}$	\in EXPTIME

Seminal paper: $k = 1$	[Nowakowski and Winkler; Quilliot, 1983]
	$\exists n, \exists j > i \text{ s.t.}, N(v_i) \cap \{v_i, \cdots, v_n\} \subseteq N[v_j].$
(dismantable graphs)	can be checked in time $O(n^3)$
Generalization to any <i>k</i> [Berarducci, Ir	ntrigila'93] [Hahn, MacGillivray'06] [Clarke, MacGillivray'12]
$cn(G) \leq k$? can be checked in time $n^{O(k)}$	\in EXPTIME
EXPTIME-complete in directed graphs	[Goldstein and Reingold, 1995]
	[Boldstein and Heingold, 1990]
NP-hard and W[2]-hard (i.e., no algorithm in time $f(k)n^{O(1)}$ experi	[Fomin,Golovach,Kratochvil,N.,Suchan, 2010]
NP-hard and W[2]-hard (i.e., no algorithm in time $f(k)n^{O(1)}$ expedi	[Fomin,Golovach,Kratochvil,N.,Suchan, 2010]
	[Fomin, Golovach, Kratochvil, N., Suchan, 2010]
	[Fomin,Golovach,Kratochvil,N.,Suchan, 2010 cted)
	[Fomin,Golovach,Kratochvil,N.,Suchan, 2010 cted)

Seminal paper: $k = 1$	[Nowakowski and Winkler; Quilliot, 1983]
$cn(G) = 1$ iff $V = \{v_1, \cdots, v_n\}$ and, $\forall i < n, \exists j > 0$	$i \text{ s.t.}, N(v_i) \cap \{v_i, \cdots, v_n\} \subseteq N[v_j].$
(dismantable graphs)	can be checked in time $O(n^3)$
Generalization to any k [Berarducci, Intrigila'93]	[Hahn, MacGillivray'06] [Clarke, MacGillivray'12]
$cn(G) \leq k$? can be checked in time $n^{O(k)}$	\in EXPTIME
EXPTIME-complete in directed graphs	[Goldstein and Reingold, 1995]
NP-hard and W[2]-hard	[Fomin,Golovach,Kratochvil,N.,Suchan, 2010]
(i.e., no algorithm in time $f(k)n^{O(1)}$ expected)	

Seminal paper: $k = 1$	[Nowakowski and Winkler; Quilliot, 1983]
	$[n, \exists j > i \text{ s.t.}, N(v_i) \cap \{v_i, \dots, v_n\} \subseteq N[v_i].$
(dismantable graphs)	can be checked in time $O(n^3)$
Generalization to any <i>k</i> [Berarducci, Ir	ntrigila'93] [Hahn, MacGillivray'06] [Clarke, MacGillivray'12]
$cn(G) \leq k$? can be checked in time $n^{O(k)}$	\in EXPTIME
EXPTIME-complete in directed graphs	[Goldstein and Reingold, 1995]
NP-hard and W[2]-hard (i.e., no algorithm in time $f(k)n^{O(1)}$ exped	[Fomin,Golovach,Kratochvil,N.,Suchan, 2010]
(i.e., no algorithm in time $r(k)n \leftrightarrow \exp(k)$	cteu)
PSPACE-hard	[Mamino 2013]

Seminal paper: $k = 1$	[Nowakowski and Winkler; Quilliot, 1983]
$cn(G) = 1$ iff $V = \{v_1, \dots, v_n\}$ and, $\forall i < n$,	
(dismantable graphs)	can be checked in time $O(n^3)$
Generalization to any <i>k</i> [Berarducci, Intrigi	la'93] [Hahn, MacGillivray'06] [Clarke, MacGillivray'12]
$cn(G) \leq k$? can be checked in time $n^{O(k)}$	\in EXPTIME
EXPTIME-complete in directed graphs	[Goldstein and Reingold, 1995]
NP-hard and W[2]-hard	[Fomin,Golovach,Kratochvil,N.,Suchan, 2010]
(i.e., no algorithm in time $f(k)n^{O(1)}$ expected	1)
PSPACE-hard	[Mamino 2013]
EXPTIME-complete	[Kinnersley 2014]
	NHANDA NEANER E

Graphs with high cop-number

Large girth (smallest cycle) AND large min degree \Rightarrow large cop-number

G with min-degree *d* and girth $> 4 \Rightarrow cn(G) \ge d$.

[Aigner and Fromme 84]

• for any k, d, there are d-regular graphs G with $cn(G) \ge k$ [Aigner and Fromme 84

• $cn(G) \ge d^{t}$ in any graph with min-degree d and girth > 8t - 3 [Fra

Graphs with high cop-number

Large girth (smallest cycle) AND large min degree \Rightarrow large cop-number

G with min-degree d and girth $> 4 \Rightarrow cn(G) \ge d$.

[Aigner and Fromme 84]

- for any k, d, there are d-regular graphs G with $cn(G) \ge k$ [Aigner and Fromme 84]
- $cn(G) \ge d^t$ in any graph with min-degree d and girth > 8t 3 [Frankl 87]
- for any k, there is G with diameter 2 and $cn(G) \ge k$ (e.g., Kneser graph $KG_{3k,k}$)

 \exists *n*-node graphs with degree $\Theta(\sqrt{n})$ and girth > 4

 $\Rightarrow \exists n \text{-node graphs } G \text{ with } cn(G) = \Omega(\sqrt{n})$ (e.g., projective plan, random \sqrt{n} -regular graphs)

Meyniel Conjecture

Conjecture: For any *n*-node connected graph *G*, $cn(G) = O(\sqrt{n})$ [Meyniel 85]

(日) (종) (종) (종) (종)

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.

- 4 回 2 - 4 □ 2 - 4 □

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.

- 4 回 2 - 4 □ 2 - 4 □

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.

- 4 回 2 - 4 □ 2 - 4 □

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.

イロン イヨン イヨン イヨン

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.

・ロン ・回 と ・ ヨ と ・ ヨ と

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.

・ロン ・回 と ・ ヨ と ・ ヨ と

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.

・ロン ・回 と ・ ヨ と ・ ヨ と

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.

・ロン ・回 と ・ ヨ と ・ ヨ と

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.

イロン イヨン イヨン イヨン

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.

・ロン ・回 と ・ ヨ と ・ ヨ と

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.

N. Nisse Cops and robber games in graphs

イロン イヨン イヨン イヨン

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.

イロン イヨン イヨン イヨン

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.

N. Nisse Cops and robber games in graphs

イロン イヨン イヨン イヨン

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.

イロン イヨン イヨン イヨン

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.

9/17

▲□→ ▲ □→ ▲ □→

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.

・ロン ・回 と ・ ヨ と ・ ヨ と

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.

・ロン ・回 と ・ ヨ と ・ ヨ と

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.

・ロン ・回 と ・ ヨ と ・ ヨ と

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.

・ロン ・回 と ・ ヨ と ・ ヨ と

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.

N. Nisse Cops and robber games in graphs

・ロン ・回 と ・ ヨ と ・ ヨ と

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.

N. Nisse Cops and robber games in graphs

・ロン ・回 と ・ ヨ と ・ ヨ と

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.

・ロン ・回 と ・ ヨ と ・ ヨ と

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.

イロン イヨン イヨン イヨン

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.

(日) (同) (三) (三)

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.

Lemma

[Aigner, Fromme 1984]

1 Cop is sufficient to "protect" a shortest path P in any graph. (after a finite number of step, Robber cannot reach P) $\Rightarrow cn(grid) = 2$ (while $\gamma(grid) \approx n/2$)

Link with Graph Structural Properties

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.

Lemma

[Aigner, Fromme 1984]

イロト イヨト イヨト イヨト

1 Cop is sufficient to "protect" a shortest path P in any graph. (after a finite number of step, Robber cannot reach P) $\Rightarrow cn(grid) = 2$ (while $\gamma(grid) \approx n/2$)

 \Rightarrow Cop-number related to both structural and metric properties

1 Cop can protect 1 shortest path: applications (1)

1 Cop can protect 1 shortest path: applications (1)

For any planar graph G (there is a drawing of G on the plane without crossing edges), there exists separators consisting of ≤ 3 shortest paths

1 Cop can protect 1 shortest path: applications (1)

For any planar graph G (there is a drawing of G on the plane without crossing edges), there exists separators consisting of ≤ 3 shortest paths

1 Cop can protect 1 shortest path: applications (2)

G with genus $\leq g$: can be drawn on a surface with $\leq g$ "handles".

1 Cop can protect 1 shortest path: applications (2)

G with genus $\leq g$: can be drawn on a surface with $\leq g$ "handles".

Cop-number vs. graph structure

let's go further

11/17

 $cn(G) \leq \lfloor \frac{3g}{2} \rfloor + 3 \text{ for any graph } G \text{ with genus } \leq g \qquad [Schröder, 01] \\ Conjectures: cn(G) \leq g + 3? cn(G) \leq 3 \text{ if } G \text{ has genus } 1?$

G is H-minor-free if no graph H as minor	"generalize" bounded genus [Robertson,Seymour 83-04]
cn(G) < E(H)	[Andreae, 86]

Application

[Abraham,Gavoille,Gupta,Neiman,Tawar, STOC 14]

"Any graph excluding K_r as a minor can be partitioned into clusters of diameter at most Δ while removing at most $O(r/\Delta)$ fraction of the edges."

1 Cop can protect 1 shortest path: applications (2)

G with genus $\leq g$: can be drawn on a surface with $\leq g$ "handles".

Cop-number vs. graph structure

let's go further

11/17

 $cn(G) \leq \lfloor \frac{3g}{2} \rfloor + 3$ for any graph G with genus $\leq g$ [Schröder, 01] Conjectures: $cn(G) \leq g + 3$? $cn(G) \leq 3$ if G has genus 1?

G is H-minor-free if no graph H as minor	"generalize" bounded genus [Robertson,Seymour 83-04]
cn(G) < E(H)	[Andreae, 86]

Application

[Abraham,Gavoille,Gupta,Neiman,Tawar, STOC 14]

"Any graph excluding K_r as a minor can be partitioned into clusters of diameter at most Δ while removing at most $O(r/\Delta)$ fraction of the edges."

1 Cop can protect 1 shortest path: applications (3)

Lemma

shortest-path-caterpillar = closed neighborhood of a shortest path [Chiniforooshan 2008]

5 Cop are sufficient to "protect" 1 shortest-path-caterpillar in any graph.

・ロン ・回 と ・ ヨン ・ ヨン

1 Cop can protect 1 shortest path: applications (3)

Lemma

shortest-path-caterpillar = closed neighborhood of a shortest path [Chiniforooshan 2008]

5 Cop are sufficient to "protect" 1 shortest-path-caterpillar in any graph. Any graph can be partitioned in $n/\log n$ shortest-path-caterpillar (consider a BFS)

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

1 Cop can protect 1 shortest path: applications (3)

Lemma

shortest-path-caterpillar = closed neighborhood of a shortest path [Chiniforooshan 2008]

5 Cop are sufficient to "protect" 1 shortest-path-caterpillar in any graph. Any graph can be partitioned in $n/\log n$ shortest-path-caterpillar (consider a BFS)

For any graph G, $cn(G) = O(n/\log n)$

[Chiniforooshan 2008]

Progress on Meyniel Conjecture

Meyniel Conjecture [85]: For any *n*-node connected graph G, $cn(G) = O(\sqrt{n})$

	cn	
dominating set $\leq k$	$\leq k$	[folklore]
treewidth $\leq t$	$\leq t/2 + 1$	[Joret, Kaminski,Theis 09]
chordality $\leq k$	< k	[Kosowski,Li,N.,Suchan 12]
genus $\leq g$	$\leq \lfloor \frac{3g}{2} \rfloor + 3$	$(conjecture \leq g+3)$ [Schröder, 01]
H-minor free	$\leq \tilde{E}(H) $	[Andreae, 86]
degeneracy $\leq d$	$\leq d$	[Lu,Peng 12]
diameter 2	$O(\sqrt{n})$	_
bipartite diameter 3	$O(\sqrt{n})$	_
Erdös-Réyni graphs	$O(\sqrt{n})$	[Bollobas <i>et al.</i> 08] [Luczak, Pralat 10]
Power law	$O(\sqrt{n})$	(big component?) [Bonato,Pralat,Wang 07]

A long story not finished yet ...

• $cn(G) = O(\frac{n}{\log \log n})$

•
$$cn(G) = O(\frac{n}{\log n})$$

•
$$cn(G) = O(\frac{n}{2^{(1-o(1))\sqrt{\log n}}})$$

[Frankl 1987]

[Chiniforooshan 2008]

[Scott, Sudakov 11, Lu,Peng 12]

note that
$$rac{n}{2^{(1-o(1))\sqrt{\log n}}} \geq n^{1-\epsilon}$$
 for any $\epsilon > 0$ 13/17

New variant with speed: Players may move along several edges per turn $cn_{s',s}(G)$: min # of Cops with speed s' to capture Robber with speed s, $s \ge s'$.

・ロト ・回ト ・ヨト ・ヨト

New variant with speed: Players may move along several edges per turn $cn_{s',s}(G)$: min # of Cops with speed s' to capture Robber with speed s, $s \ge s'$.

・ロン ・回 と ・ ヨ と ・ ヨ と

New variant with speed: Players may move along several edges per turn $cn_{s',s}(G)$: min # of Cops with speed s' to capture Robber with speed s, $s \ge s'$.

New variant with speed: Players may move along several edges per turn $cn_{s',s}(G)$: min # of Cops with speed s' to capture Robber with speed s, $s \ge s'$.

Meyniel Conjecture [Alon, Mehrabian'11] and general upper bound [Frieze, Krivelevich, Loh'12] extend to this variant

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

New variant with speed: Players may move along several edges per turn $cn_{s',s}(G)$: min # of Cops with speed s' to capture Robber with speed s, $s \ge s'$.

Meyniel Conjecture [Alon, Mehrabian'11] and general upper bound [Frieze, Krivelevich, Loh'12] extend to this variant

but fundamental differences	(recall: planar graphs have $\mathit{cn}_{1,1} \leq$ 3)		
$cn_{1,2}(G)$ unbounded in grids	[Fomin,Golovach,Kratochvil,N.,Suchan TCS'10]		
Open question: $\Omega(\sqrt{\log n}) \le cn_{1,2}(G) \le O(n)$ in $n \times n$ grid G exact value? Exact value?			
N. Nisse	Cops and robber games in graphs		

G is **Cop-win** \Leftrightarrow 1 Cop sufficient to capture Robber in G

Structural characterization of Cop-win graphs for any speed s and s' [Chalopin,Chepoi,N.,Vaxès SIDMA'11]

generalize seminal work of [Nowakowski,Winkler'83]

hyperbolicity δ of G: measures the "proximity" of the metric of G with a tree metric

New characterization and algorithm for hyperbolicity

● bounded hyperbolicity ⇒ one Cop can catch Robber almost twice faster

[Chalopin, Chepoi, N., Vaxès SIDMA'11]

15/17

• one Cop can capture a faster Robber \Rightarrow bounded hyperbolicity

[Chalopin, Chepoi, Papasoglu, Pecatte SIDMA'14]

・ロン ・回 と ・ ヨ と ・ ヨ と

- O(1)-approx. sub-cubic-time for hyperbolicity [Chalopin,Chepoi,Papasoglu,Pecatte SIDMA'14]
- tree-length(G) $\leq \lfloor \frac{\ell}{2} \rfloor tw(G)$ for any graph G with max-isometric cycle ℓ $\Rightarrow O(\ell)$ -approx. for tw in bounded genus graphs [Coudert,Ducoffe,N. 14]

new rule: The robber may occupy the same vertex as Cops **new goal:** Cops must ensure that, after a finite number of steps, the Robber is always at distance at most $d \ge 0$ from a cop d is a fixed parameter.

 $g_s^d(G)$: min. # of Cops (speed one) controlling a robber with speed s at distance $\leq d$.

Rmk 1: if s = 1, it is equivalent to capture a robber at distance *d*. **Rmk 2:** Close (?) to the patrolling game [Czyzowicz et al. SIROCCO'14, ESA'11]

Preliminary results

[Cohen, Hilaire, Martins, N., Pérennes]

・ロト ・日ト ・ヨト ・ヨト

- Computing g_3^1 is NP-hard in graph with maximum degree 5
- Computing g is PSPACE-hard in DAGs
- $g_s^d(P) = \Theta(\frac{n}{2d\frac{s}{s-1}})$ for any d, s in any *n*-node path P
- $g_s^d(C) = \Theta(\frac{n}{2d\frac{s+1}{s-1}})$ for any d, s in any *n*-node cycle C
- there exists $\epsilon > 0$ such that $g_s^d(G) = \Omega(n^{1+\epsilon})$ in any $n \times n$ grid

Conclusion / Open problems

Meyniel Conjecture [1985]: For any *n*-node connected graph G, $cn(G) = O(\sqrt{n})$

Conjecture [?]: For any *n*-node connected graph G with genus g, $cn(G) \le g + 3$

simpler(?) questions

- $cn(G) \leq 3$ if G has genus ≤ 1 ?
- how many cops with speed 1 to capture a robber with speed 2 in a grid?
- when Cops can capture at distance?

[Bonato, Chiniforooshan, Pralat'10] [Chalopin, Chepoi, N., Vaxès'11]

Many other variants and questions...

(e.g. [Clarke'09] [Bonato, et a.'13]...)

(日) (종) (종) (종) (종)

17/17

Directed graphs ??

B. Alspach. Searching and sweeping graphs: a brief survey. In Le Matematiche, pages 5-37, 2004.

W. Baird and A. Bonato. Meyniel's conjecture on the cop number: a survey. http://arxiv.org/abs/1308.3385. 2013

A. Bonato and R. J. Nowakowski. The game of Cops and Robber on Graphs. American Math. Soc., 2011.