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Classic gathering problem An overview

Gathering problem

A configuration of anonymous & autonomous robots on the plane ...

... have to agree to meet at some location and remain in there
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Gathering problem

sensing the positions of other robots in its surrounding, ...
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Classic gathering problem An overview

Gathering problem

computing a new position, ...
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Classic gathering problem An overview

Gathering problem

moving toward it accordingly, ...

...thus creating a new configuration of robots
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Classic gathering problem An overview

Gathering problem

AIM: all robots reach the same place, eventually, and do not move
anymore

Cicerone, Di Stefano, Navarra Gathering Robots on Meeting-Points MAC’15 2 / 24



Classic gathering problem An overview

What is a robot?

Each robot is a computational unit that repeatedly cycles through 4
states:

Wait: the robot is idle – a robot cannot stay indefinitely idle –
initially, all robots are waiting

Look: the robot observes the world using its sensors which return a
configuration (set of points) of the relative positions of all other
robots (configuration view)

Compute: the robot performs a local computation according to a
deterministic algorithm, which is the same for all robots – the result
of this phase is a destination point

Move: Non-rigid movement, i.e. there exists δ such that the robot is
guaranteed to move of at least of δ unless it wants to move less

Cicerone, Di Stefano, Navarra Gathering Robots on Meeting-Points MAC’15 3 / 24



Classic gathering problem An overview

What is a robot?

Each robot is a computational unit that repeatedly cycles through 4
states:

Wait: the robot is idle – a robot cannot stay indefinitely idle –
initially, all robots are waiting

Look: the robot observes the world using its sensors which return a
configuration (set of points) of the relative positions of all other
robots (configuration view)

Compute: the robot performs a local computation according to a
deterministic algorithm, which is the same for all robots – the result
of this phase is a destination point

Move: Non-rigid movement, i.e. there exists δ such that the robot is
guaranteed to move of at least of δ unless it wants to move less

Cicerone, Di Stefano, Navarra Gathering Robots on Meeting-Points MAC’15 3 / 24



Classic gathering problem An overview

What is a robot?

Each robot is a computational unit that repeatedly cycles through 4
states:

Wait: the robot is idle – a robot cannot stay indefinitely idle –
initially, all robots are waiting

Look: the robot observes the world using its sensors which return a
configuration (set of points) of the relative positions of all other
robots (configuration view)

Compute: the robot performs a local computation according to a
deterministic algorithm, which is the same for all robots – the result
of this phase is a destination point

Move: Non-rigid movement, i.e. there exists δ such that the robot is
guaranteed to move of at least of δ unless it wants to move less

Cicerone, Di Stefano, Navarra Gathering Robots on Meeting-Points MAC’15 3 / 24



Classic gathering problem An overview

What is a robot?

Each robot is a computational unit that repeatedly cycles through 4
states:

Wait: the robot is idle – a robot cannot stay indefinitely idle –
initially, all robots are waiting

Look: the robot observes the world using its sensors which return a
configuration (set of points) of the relative positions of all other
robots (configuration view)

Compute: the robot performs a local computation according to a
deterministic algorithm, which is the same for all robots – the result
of this phase is a destination point

Move: Non-rigid movement, i.e. there exists δ such that the robot is
guaranteed to move of at least of δ unless it wants to move less

Cicerone, Di Stefano, Navarra Gathering Robots on Meeting-Points MAC’15 3 / 24



Classic gathering problem An overview

What is a robot?

Each robot is a computational unit that repeatedly cycles through 4
states:

Wait: the robot is idle – a robot cannot stay indefinitely idle –
initially, all robots are waiting

Look: the robot observes the world using its sensors which return a
configuration (set of points) of the relative positions of all other
robots (configuration view)

Compute: the robot performs a local computation according to a
deterministic algorithm, which is the same for all robots – the result
of this phase is a destination point

Move: Non-rigid movement, i.e. there exists δ such that the robot is
guaranteed to move of at least of δ unless it wants to move less

Cicerone, Di Stefano, Navarra Gathering Robots on Meeting-Points MAC’15 3 / 24



Classic gathering problem An overview

Robots are

Dimensionless – robots are modeled as geometric points in the plane

Anonymous – no unique identifiers

Homogeneous – all the robots execute the same algorithm

Autonomous – no centralized control

Oblivious – no memory of past events

Silent – no explicit way of communicating – the only mean is to move and

let others observe

Asynchronous – there is no global clock ...

each phase may have any finite duration, and different robots
executions are completely independent
fair scheduling: every robot wakes up within finite time, infinitely often

Unoriented – robots do not share a common coordinate system

no common compass
no common knowledge
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Classic gathering problem Literature

Gathering problem: known results

Impossibility of gathering [P’07]

In the asynchronous setting, there exists no deterministic algorithm that
solves the gathering problem in finite time, for a set of n ≥ 2 oblivious
robots.

To solve it, we need to add some additional capabilities to robots...

Recent positive result [CFPS’12]

In the asynchronous setting, there exists a deterministic algorithm that
solves the gathering problem in finite time, for a set of n > 2 oblivious
robots with multiplicity detection.
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Classic gathering problem New direction

Optimal Gathering problem

We want to add optimality constraints

E.g.: minimize the total distance covered by all robots to finalize
gathering

In 2D Euclidean space, it equals to compute the so called
Weber-point, and move the robots toward it

Good news: there exists one unique Weber-point
(unless robots are all collinear)

Bad news: the Weber-point is computationally intractable
(already for 5 robots!)
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A new gathering problem Introduction

A new challenge...

A configuration C consisting of ...

a set R of anonymous robots on the plane
a set M of fixed meeting points

As for the classical gathering, initial configurations are assumed to not
contain multiplicities
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A new gathering problem Introduction

A new challenge...

Problem: gathering over meeting points (gmp)

design an algorithm able to gather all robots on a meeting point in M
(Algosensors’15)
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A new gathering problem Basics

Dealing with Meeting points

Meeting points can sometimes help in designing a gathering
algorithm...

...while sometimes they can play for the adversary.
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A new gathering problem Basics

Ungatherable configurations

1 C admits a rotation with center c , and there are neither robots nor
meeting-points on c ;

2 C admits one axis of symmetry `, and there are neither robots nor
meeting-points on `.
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A new gathering problem Feasibility

Gathering on meeting-points: stigmergy
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Optimal Gathering problems

Optimization versions

Problem gmp is addressed with an additional optimality constraint:

1 the robots must cover the minimum total travel distance to finalize
the gathering (Algosensors’14)

2 the maximum distance traveled by a single robot must be minimized
(CIAC’15)
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Optimal Gathering problems Case 1

Optimal gathering for case 1

Let C = (R,M) be a configuration,

m ∈ M is a Weber-point of C if m minimizes
∑

r∈R d(r ,m)

Let ∆ be the above quantity, ∆ is a lower bound for each gathering
algorithm

Definition

A gathering algorithm is optimal if it achieves the gathering with a
total distance equal to ∆.
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What we achieved:

1 characterize all the configurations for which an optimal
algorithm exists, and ...

2 ... define the optimal algorithm



Optimal Gathering problems Moving toward a Weber-point

Robots are the foci of a k-ellipse

3-ellipses with different radii

k-ellipses are strictly convex curves
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Lemma:
Let C = (R,M) be a configuration, robots in R are not
collinear, r ∈ R moves toward a Weber-point m and this
move creates C′ = (R ′,M). Then:

C′ contains one or two Weber-points only:
m and m′ (if any) lies on hline(r ,m)



Optimal Gathering problems Case 1

The strategy of the algorithm

Select and move robots straightly toward a Weber-point m, so that

... after a certain number of moves,

... m remains the only Weber-point.

Once only the Weber-point m exists, all robots move toward it!

This approach provides an optimal algorithm for some special cases:

S1: conf’s s.t. there is exactly one multiplicity on a meeting-point

S2: conf’s s.t. there is exactly one Weber-point

S3: conf’s s.t. a Weber-point m lies on cg(M), the center of gravity
of M
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Optimal Gathering problems Case 1

Partitioning all the configurations

1 multiplicity

reflection with
Weber points
on axis

5

robots and
Weber points
on a line

reflection
with robots

on axis

reflection
with robots and

Weber points

1 Weber point rotational

on axis

Weber point

asymmetric

66

S5

S6

S7

S4

S2S1

S3

S0

cg(M)

S9

S8

Schematization of the optimal gathering algorithm along with
priorities
The general algorithm is divided into sub-procedures:

each sub-procedure is specific for configurations of a given class Si
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Several classes concern isometries:

asymmetric configurations

configurations with reflection

configurations with rotation



Optimal Gathering problems Case 2

Optimal gathering for problem 2

Let C = (R,M) be a configuration,

m ∈ M is a minmax-point of C if m minimizes maxr∈R d(r ,m)

Let ∆ be the above quantity, ∆ is a lower bound for each gathering
algorithm

Definition

A gathering algorithm is optimal if it achieves the gathering by
letting move each robot of at most ∆(C).

Cicerone, Di Stefano, Navarra Gathering Robots on Meeting-Points MAC’15 16 / 24
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What we achieved:

1 characterize the configurations for which an optimal
algorithm exists, and ...

2 ... define the optimal algorithm for almost all
configurations where it is possible to obtain it



Optimal Gathering problems Case 2

Some Notation

r1

m1

bC (m1)

m2

gC (m2)

r2

m4

gC (m4)

r4

r5

m3

gC (m3)

r3

Black-Circle (bC ): circle of radius ∆(C) centered on a meeting-point m
containing all robots, hence m is a minmax-point
Border-robots: wrt bC (m1): r1, r5
Internal-robots wrt bC (m1): r2, r3, r4

Grey-circle (gC ): circle of radius ∆(C) centered on a meeting-point, not
containing all robots
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Optimal Gathering problems Case 2

The strategy of the algorithm

Select and move robots straightly toward a Minmax-point m, so
that

...after a certain number of moves,

...m remains the only Minmax-point.

Once only the Minmax-point m exists, still robots require special
strategies to “safely” move toward it!
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Optimal Gathering problems Case 2

Characterizing configurations

mmB(C) ⊆ mm(C) is the set of minmax-points with minimum
number of border-robots;

mmW (C) ⊆ mmB(C) is the set of minmax-points in mmB(C) with
minimal Weber distance;

mmV (C) ∈ mmW (C) is the minmax-point in mmW (C) with minimal
view.

S1: any configuration C such that |mm(C)| = 1;

S2: any configuration C 6∈ S1 such that |mmV (C)| = 1;

S3: initial configurations C 6∈
⋃

1≤i≤2 Si such that C admits a
reflection with robots on the axis;

S4: initial configurations C 6∈
⋃

1≤i≤3 Si such that C admits a
rotation with a robot as center;

S5: initial configurations C 6∈
⋃

1≤i≤4 Si such that C admits a
reflection with minmax-points on the axis;
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Optimal Gathering problems Case 2

Strategy for class S1

1 If C ∈ S1 then mm(C) = {m};
2 All robots can move toward m without entering grey-circles →

without creating new minmax-points

3 A robot evaluates the closest grey-circle on the direction toward m
and moves by halving such a distance

4 Once all robots have moved (a round has completed), ∆(C) decreases

5 Eventually, all robots reach m as for each round we guarantee a
minimum constant movement
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Optimal Gathering problems Case 2

Strategy for class S2

1 If C ∈ S2 then mmV (C) = {m};
2 All border robots move toward m without entering grey-circles

3 Once all such robots have moved mm(C) = {m} → the configuration
becomes of class S1
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Optimal Gathering problems Case 2

About the other classes

1 If C ∈ S3 a robot on the axis is selected and moved in such a way the
configuration becomes of class S1 or S2

2 If C ∈ S4 the robot placed in the center of the rotation is moved in
such a way the configuration becomes of class S1 or S2

3 For C ∈ S5 some cases remain open. We prove that in general
optimal gathering is impossible but perhaps there is a subclass where
an optimal algorithm can be designed

Remark

No multiplicity detection is required by the current strategy.
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Conclusion

Conclusion

Extended the classical gathering problem on the plane ...

Asynchronous Look-Compute-Move model
global weak multiplicity detection capability

... by introducing restrictions on the places where to gather

Introduced also optimality requirements for the algorithm

1 minimize the total distance covered by all robots
2 minimize the maximum distance covered by a robot

Provided non-gatherability characterizations

Defined a fully characterizing algorithm for gmp

Defined an optimal gathering algorithm for case 1 (case 2, resp.)
dealing with all (almost all, resp.) possible configurations
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Conclusion

Future Work

Study gmp without multiplicity detection

Extend the analysis and the algorithms for the optimization problems
to configurations where optimal gathering cannot be assured

Use different objective functions

Study gmp (with/without optimization) on graphs

Study different tasks that may include meeting-points, e.g., pattern
formation on specified points as in [FYOKY’15]
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[FYOKY’15 ] Fujinaga, Yamauchi, Ono, Kijima, Yamashita: Pattern Formation by
Oblivious Asynchronous Mobile Robots. SIAM J. on Comp., 44(3) (2015)



Conclusion

Future Work

Study gmp without multiplicity detection

Extend the analysis and the algorithms for the optimization problems
to configurations where optimal gathering cannot be assured

Use different objective functions

Study gmp (with/without optimization) on graphs

Study different tasks that may include meeting-points, e.g., pattern
formation on specified points as in [FYOKY’15]

THANK YOU
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