#### Decidability Classes for Mobile Agents Computing

#### Pierre Fraigniaud CNRS and University Paris Diderot

GRASTA-MAC 2015

October 19-23, 2015 - Montréal

\*Joint work with Andrzej Pelc, Université du Québec en Outaouais, Canada

## Algorithmic achievements in mobile computing

Many algorithms for 'construction/coordination' tasks:

- rendezvous
- exploration
- intruder detection/search/capture
- fault-tolerance (byzantine agents)
- black-hole' search
- etc.









#### Verification

- 1. Designing a program together with its proof
- 2. Verifying a given program a posteriori
- 3. Verifying the execution at runtime:

#### **Runtime verification**

## Results I would love to see in the context of mobile computing

**Theorem** (Naor&Stockmeyer, 1995). If there exists a distributed *randomized* <u>construction</u> algorithm for  $\mathcal{L}$  running in O(1) rounds, then there exists a distributed *deterministic* <u>construction</u> algorithm for  $\mathcal{L}$  running in O(1) rounds.

\*\*\* Require  $\mathcal{L} \in LD$  to be locally decidable! \*\*\*

# Is the system satisfying predicate P?

### Construction vs. Decision

Language:  $\mathcal{L} = \{ w \in \{0,1\}^* \text{ satisfying predicate P} \}$ 

**Construction:** Given x, compute y s.t.  $(x,y) \in \mathcal{L}$ 

**Decision:** Given x, decide whether  $x \in \mathcal{L}$  (yes/no)

Applications:

- Self-reducibility for NPC languages in sequential computing
- Derandomization theorems in distributed computing
- Monitoring (distributed) systems

#### **Distributed Decision Rules**



![](_page_7_Picture_2.jpeg)

![](_page_7_Picture_3.jpeg)

#### Decision tasks

#### Is there an intruder in this building?

![](_page_8_Picture_2.jpeg)

#### Is there an exit in this labyrinth?

![](_page_8_Picture_4.jpeg)

Is this network planar?

![](_page_8_Picture_6.jpeg)

#### Network monitoring

![](_page_8_Figure_8.jpeg)

#### Decision classes (computability)

Configuration: C = (G,S,x) with  $S \subseteq V(G)$  and  $x: S \longrightarrow \{0,1\}^*$ 

Language:  $\mathcal{L} = \{ \text{ configurations } \}$ 

**MAD** = **M**obile **A**gent **D**ecision

•  $MAD = \{ \mathcal{L} \mid \exists \text{ mobile agent algorithm } A \text{ deciding } \mathcal{L} \}$ 

• A decide  $\mathcal{L}$  if and only if, for every configuration C:

 $C \in \mathcal{L} \Leftrightarrow$  every agent outputs yes

### Deciding vs. verifying

#### Fermat's conjecture

![](_page_10_Picture_2.jpeg)

#### Decide

#### Wiles' proof

![](_page_10_Figure_5.jpeg)

### Pvs. NP

NP = Non-deterministic Polynomial

 $\mathcal{L} \in \mathbb{NP}$  iff there is a poly-time algorithm A such that:

- $x \in \mathcal{L} \Rightarrow \exists c, A(x,c) \text{ accepts}$
- $x \notin \mathcal{L} \Rightarrow \forall c, A(x,c) rejects$

c is the certificate, or the proof.

### MAD vs. MAV

**MAV** = **M**obile **A**gent **V**erification

 $\mathcal{L} \in MAV$  iff there is a mobile agent algorithm A such that:

- $(G,x) \in \mathcal{L} \Rightarrow \exists c, A(G,S,x,c)$  leads all agents to accept
- $(G,x) \notin \mathcal{L} \Rightarrow \forall c, A(G,S,x,c)$  leads at least one agent to reject

c: S  $\rightarrow$  {0,1}\* is the certificate, or the proof

A is a verifier, while the certificates are given by a prover.

### Applications

• Composition of algorithms

![](_page_13_Figure_2.jpeg)

• Termination (e.g., in self-stabilization)

$$(y_u, C_u)$$
  $(y_i, C_i)$   $(y_v, C_v)$   
 $(y_w, C_w)$ 

#### Oracles

 $C^{\mathcal{L}} = \text{class } C$  with an oracle for language  $\mathcal{L}$ 

Example:

•  $P^{SAT}$  = poly-time with TM using an oracle for SAT.

• Extend to  $C^{X} = \bigcup_{\mathcal{L} \in X} C^{\mathcal{L}}$ 

Typical oracles for MAD and MAV:

#nodes #agents upper-bounds on n,k,...

### A Scenario of Application

#### Synchronous Mobile Agents in Anonymous Networks

![](_page_16_Figure_1.jpeg)

### MAD vs. MAV & co-MAV

- treesize ∈ MAD (perform DFS for 2(n-1) steps)
- tree ∉ MAD (even path ∉ MAD<sub>1</sub>)
- tree ∈ MAV (certificate = n)
- nontree ∈ CO-MAV

#### Views and Quotient

#### quotient(G) = G/view

![](_page_18_Figure_2.jpeg)

#### Two Central Languages (i.e., Tasks)

- quotient = { (G,S,H) | G/view = H }
- nonquotient = { (G,S,H) | G/view ≠ H }

nonquotient ∈ MAV (views at distance |G/view|)

• accompanied =  $\{(G,S,x), |S| > 1\}$ 

accompanied ∈ MAV (lead all nodes to same node)

#### Main Result

 $\mathcal{L}_1 \times \mathcal{L}_2 = \{ (G,S,(i,x)) \mid i \in \{1,2\} \text{ and } (G,S,x) \in \mathcal{L}_i \}$ 

**Theorem** (F, Pelc, 2012).

accompanied x nonquotient is MAV-complete (for 'natural' reduction).

**Corollary** nonquotient is MAV<sub>1</sub>-complete.

### Case of a Single Agent

![](_page_21_Figure_1.jpeg)

#### Equalities and Separations

 $MAV_1 \cap co-MAV_1 = MAD_1$  (test all certificates)

 $MAV_1 \cup co-MAV_1 \subset MAD_1^{NonQuotient}$ 

o cycle X nosun ∉ MAV<sub>1</sub> U co-MAV<sub>1</sub>

• cycle X nosun  $\in MAD_{1^{NonQuotient}}$ 

#### More separations

![](_page_23_Figure_1.jpeg)

### Concluding remarks

**Objective:** developing an embryo of computability theory for mobile agent computing.

Formalize the informal notion of 'initial knowledge'

#### **Open problems:**

- Construction vs. decision for mobile agent computing?
- Complexity theory? (What is the right measure?)
- Role of randomization?
- P. Fraigniaud and A. Pelc, *Decidability Classes for Mobile Agents Computing*, In LATIN 2012.
- E. Bampas and D. Ilcinkas, *Problèmes vérifiables par agents mobiles*, In AlgoTel 2015.