
Pierre Fraigniaud
CNRS and University Paris Diderot

Decidability Classes for
Mobile Agents Computing

GRASTA-MAC 2015

October 19-23, 2015 - Montréal

1

*Joint work with Andrzej Pelc, Université du Québec en Outaouais, Canada

Algorithmic achievements in
mobile computing

Many algorithms for
‘construction/coordination’ tasks:

rendezvous

exploration

intruder detection/search/capture

fault-tolerance (byzantine agents)

‘black-hole’ search

etc.

2

but…

3

Verification

1. Designing a program together with its proof

2. Verifying a given program a posteriori

3. Verifying the execution at runtime:

Runtime verification

4

Results I would love to see in
the context of mobile computing
Theorem (Naor&Stockmeyer, 1995).
If there exists a distributed randomized construction
algorithm for L running in O(1) rounds, then there
exists a distributed deterministic construction
algorithm for L running in O(1) rounds.

*** Require L ∈ LD to be locally decidable! ***

5

6

A Scenario of
Application

Is the system satisfying
predicate P?

Construction vs. Decision
Language: L = {w ∈ {0,1}* satisfying predicate P}

Construction: Given x, compute y s.t. (x,y) ∈ L

Decision: Given x, decide whether x ∈ L (yes/no)

Applications:
• Self-reducibility for NPC languages in sequential

computing
• Derandomization theorems in distributed

computing
• Monitoring (distributed) systems

7

Distributed Decision Rules

8

✔

✖

Yes!Yes!Yes!Yes!Yes!

Yes!Yes! No! Yes! Yes!

Decision tasks

9

Is there an intruder
in this building?

Is there an exit
in this labyrinth?

Is this network
planar?

Network monitoring

Decision classes
(computability)

Configuration: C = (G,S,x) with S ⊆ V(G) and x: S ⟶ {0,1}*

Language: L = { configurations }

MAD = Mobile Agent Decision

MAD = { L | ∃ mobile agent algorithm A deciding L }

A decide L if and only if, for every configuration C:

C ∈ L ⇔ every agent outputs yes

10

Deciding vs. verifying

11

Fermat's conjecture
Wiles' proof

Decide Verify

Oracle Certificate
or Proof

P vs. NP
NP = Non-deterministic Polynomial

L ∈ NP iff there is a poly-time algorithm A such that:

• x ∈ L ⇒ ∃c, A(x,c) accepts

• x ∉ L ⇒ ∀c, A(x,c) rejects

c is the certificate, or the proof.

12

MAD vs. MAV
MAV = Mobile Agent Verification

L ∈ MAV iff there is a mobile agent algorithm A such that:

• (G,x) ∈ L ⇒ ∃c, A(G,S,x,c) leads all agents to accept

• (G,x) ∉ L ⇒ ∀c, A(G,S,x,c) leads at least one agent to reject

c: S ⟶ {0,1}* is the certificate, or the proof

A is a verifier, while the certificates are given by a prover.

13

Applications

14

Black boxInput
Output
Certification

• Composition of algorithms

• Termination (e.g., in self-stabilization)

(yi,ci) (yv,cv)(yu,cu)

(yw,cw)

Oracles
CL = class C with an oracle for language L

Example:

PSAT = poly-time with TM using an oracle for SAT.

Extend to CX = UL∈X CL

Typical oracles for MAD and MAV:

 #nodes #agents upper-bounds on n,k,…
15

A Scenario of
Application

16

Synchronous Mobile Agents
in Anonymous Networks

17

1
1

11 1

2

2

2

2

2
3

3
Network:

Agents: +
Communication whenever

at the same nodeMobile TM

• treesize ∈ MAD (perform DFS for 2(n-1) steps)

• tree ∉ MAD (even path ∉ MAD1)

• tree ∈ MAV (certificate = n)

• nontree ∈ co-MAV

18

MAD vs. MAV & co-MAV

Views and Quotient

19

1
1

1

1
1

1
2

2

2
2

2

2

3 3

2

2

2

2

22
3

11

1

1

1

1

3

(b)(a) (d)

(c)<<<

2

1
2

1
2

1

3

3
Non Isomorphic Graphs

Same Quotient

quotient(G) = G/view

Two Central Languages
(i.e., Tasks)

20

• quotient = { (G,S,H) | G/view = H }

• nonquotient = { (G,S,H) | G/view ≠ H }

nonquotient ∈ MAV (views at distance |G/view|)

• accompanied = {(G,S,x), |S|>1}

accompanied ∈ MAV (lead all nodes to same node)

Main Result

L1 x L2 = { (G,S,(i,x)) | i ∈{1,2} and (G,S,x) ∈ Li }

Theorem (F, Pelc, 2012).
accompanied x nonquotient is MAV-complete (for
‘natural’ reduction).

Corollary nonquotient is MAV1-complete.

21

Case of a Single Agent

22

MAD1
MAV1 co-MAV1

1MADnonquotient

1MAD#nodes

1MADmap

Δ1

Equalities and Separations

MAV1 ∩ co-MAV1 = MAD1 (test all certificates)

MAV1 U co-MAV1 ⊂ MAD1NonQuotient

cycle x nosun ∉ MAV1 U co-MAV1

cycle x nosun ∈ MAD1NonQuotient

23

More separations

24

MAD1nonquotient ⊂ MAD1#nodes ⊂ MAD1map ⊂ All1

u

v

{

Concluding remarks
Objective: developing an embryo of computability theory for
mobile agent computing.
Formalize the informal notion of ‘initial knowledge’

Open problems:

• Construction vs. decision for mobile agent computing?
• Complexity theory? (What is the right measure?)
• Role of randomization?

P. Fraigniaud and A. Pelc, Decidability Classes for Mobile
Agents Computing, In LATIN 2012.
E. Bampas and D. Ilcinkas, Problèmes vérifiables par agents
mobiles, In AlgoTel 2015.

25

