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Algorithmic achievements in 
mobile computing

Many algorithms for  
‘construction/coordination’ tasks:  

rendezvous 

exploration 

intruder detection/search/capture 

fault-tolerance (byzantine agents) 

‘black-hole’ search 

etc.
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but…
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Verification

1. Designing a program together with its proof 

2. Verifying a given program a posteriori 

3. Verifying the execution at runtime: 

Runtime verification
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Results I would love to see in 
the context of mobile computing
Theorem (Naor&Stockmeyer, 1995).                           
If there exists a distributed randomized construction 
algorithm for L running in O(1) rounds, then there 
exists a distributed deterministic construction 
algorithm for L running in O(1) rounds. 

*** Require L ∈ LD to be locally decidable! *** 
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A Scenario  of 
Application

Is the system satisfying 
predicate P?



Construction vs. Decision
Language: L = {w ∈ {0,1}* satisfying predicate P}  

Construction:  Given x, compute y s.t. (x,y) ∈ L  

Decision:  Given x, decide whether x ∈ L (yes/no) 

Applications:  
• Self-reducibility for NPC languages in sequential 

computing 
• Derandomization theorems in distributed 

computing 
• Monitoring (distributed) systems
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Distributed Decision Rules 
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✔

✖

Yes!Yes!Yes!Yes!Yes!

Yes!Yes! No! Yes! Yes!



Decision tasks
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Is there an intruder  
in this building? 

Is there an exit  
in this labyrinth?

Is this network 
planar?

Network monitoring



Decision classes 
(computability) 

Configuration: C = (G,S,x) with S ⊆ V(G) and x: S ⟶ {0,1}* 

Language: L = { configurations } 

MAD = Mobile Agent Decision 

MAD = { L | ∃ mobile agent algorithm A deciding L } 

A decide L if and only if, for every configuration C:  

C ∈ L ⇔ every agent outputs yes 
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Deciding vs. verifying
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Fermat's conjecture
Wiles' proof

Decide Verify

Oracle Certificate 
or Proof



P vs. NP
NP = Non-deterministic Polynomial 

L ∈ NP iff there is a poly-time algorithm A such that: 

• x ∈ L ⇒ ∃c, A(x,c) accepts 

• x ∉ L ⇒ ∀c, A(x,c) rejects 

c is the certificate, or the proof. 
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MAD vs. MAV
MAV = Mobile Agent Verification 

L ∈ MAV iff there is a mobile agent algorithm A such that: 

• (G,x) ∈ L ⇒ ∃c, A(G,S,x,c) leads all agents to accept 

• (G,x) ∉ L ⇒ ∀c, A(G,S,x,c) leads at least one agent to reject 

c: S ⟶ {0,1}* is the certificate, or the proof 

A is a verifier, while the certificates are given by a prover. 
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Applications
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Black boxInput
Output
Certification

• Composition of algorithms

• Termination (e.g., in self-stabilization)

(yi,ci) (yv,cv)(yu,cu)

(yw,cw)



Oracles
CL = class C with an oracle for language L  

Example:  

PSAT = poly-time with TM using an oracle for SAT. 

Extend to CX  = UL∈X CL 

Typical oracles for MAD and MAV:  

      #nodes        #agents        upper-bounds on n,k,…
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A Scenario  of 
Application
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Synchronous Mobile Agents 
in Anonymous Networks
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Network:

Agents: +
Communication whenever  

at the same nodeMobile TM



• treesize ∈ MAD (perform DFS for 2(n-1) steps) 

• tree ∉ MAD (even path ∉ MAD1) 

• tree ∈ MAV (certificate = n)  

• nontree ∈ co-MAV 
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MAD vs. MAV & co-MAV



Views and Quotient
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Non Isomorphic Graphs

Same Quotient

quotient(G) = G/view



Two Central Languages 
(i.e., Tasks)
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• quotient = { (G,S,H) | G/view = H } 

• nonquotient = { (G,S,H) | G/view ≠ H } 

nonquotient ∈ MAV (views at distance |G/view|) 

• accompanied = {(G,S,x), |S|>1} 

accompanied ∈ MAV (lead all nodes to same node)



Main Result

L1 x L2 = { (G,S,(i,x)) | i ∈{1,2} and  (G,S,x) ∈ Li } 

Theorem (F, Pelc, 2012).                              
accompanied x nonquotient is MAV-complete (for 
‘natural’ reduction). 

Corollary nonquotient is MAV1-complete. 
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Case of a Single Agent
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MAD1
MAV1 co-MAV1

1MADnonquotient

1MAD#nodes

1MADmap

Δ1



Equalities and Separations

MAV1 ∩ co-MAV1 = MAD1 (test all certificates)  

MAV1 U co-MAV1 ⊂ MAD1NonQuotient 

cycle x nosun ∉ MAV1 U co-MAV1 

cycle x nosun ∈ MAD1NonQuotient

23



More separations
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MAD1nonquotient ⊂ MAD1#nodes ⊂ MAD1map ⊂ All1 

u

v

{



Concluding remarks
Objective: developing an embryo of computability theory for 
mobile agent computing.  
Formalize the informal notion of ‘initial knowledge’ 

Open problems:  

• Construction vs. decision for mobile agent computing? 
• Complexity theory? (What is the right measure?) 
• Role of randomization?  

P. Fraigniaud and A. Pelc, Decidability Classes for Mobile 
Agents Computing, In LATIN 2012.  
E. Bampas and D. Ilcinkas, Problèmes vérifiables par agents 
mobiles, In AlgoTel 2015.
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