
Graph Searching
Tutorial

Fedor V. Fomin

A search
game

is played on a
graph between
a group of
searchers

and
fugitive(s)

Exctenstions
(digraphs,

hypergraphs,
polyhedra, sets…)

Many models of
graph searching

Searchers usually have no
information on what fugitive plans
to do

The task is to identify the minimum
number of searchers (or other
resources) to guarantee successful
search

Overview of the talk

A bit of history

Open problems:

Speed of players

Constrains on movements

How important is information

Disclaimer

No way to mention everything

Distributed models

Self-stabilization

Cops & robbers, hunter and rabbits,

Directed graphs, submodular functions,

and much much more…

Prehistoric
times

Breisch, R. (1967). An
intuitive approach to

speleotopology.
Southwestern Cavers

Cave Mythology:
Rescue problem

A person is lost in a cave

Find a minimum team of searchers
sufficient for the rescue operation

Definitions and main variants Monotonicity Proofs and Obstructions

Node-search #1

Node Search Strategy #1

Fomin

Graph Searching

searchers: 1

x

searchers: 2
xx

searchers: 2

x

x

searchers: 2

x

x

searchers: 2

xx

searchers: 2

xx

First mathematical papers
on Graph Searching

Ancient
times

PURSUIT-EVASION IN A GRAPH

T.D. Parsons
The Pennsylvania State University

i. INTRODUCTION

Suppose a man is lost and wandering unpredictably in a dark cave. A party of

searchers who know the structure of the cave is to be sent to find him. ~nat is

the minimum number of searchers needed to find the lost man regardless of how he

behaves?

This question was raised by my spelunker friend Richard Breisch, who developed

informal arguments for many plausible conjectures about the problem. There are

many inequivalent mathematical formulations of this problem, depending on the nature

of the cave and the possible behavior allowed the searchers and the lost man.

Breisch did not make precise which formulation he intended, although he gave numer-

ous examples. One example was that of a circular cave, which requires two searchers:

the lost man could move so as to be always antipodal to a single searcher; however,

two searchers could start from the same point and travel at constant speed in dif-

ferent directions around the circle, and by the time they met again they would have

found the lost man with absolute certainty.

We shall assume that the cave can be regarded as a finite connected graph in

which the searchers and the lost man must move continuously. The searchers must

proceed according to a predetermined plan which will capture the lost man even if

he were an arbitrarily fast, invisible evader who, clairvoyant, knows the searcher's

every move.

2. THE SEARCH NUMBER OF A CONNECTED GRAPH

Let G be a finite connected graph without loops or multiple edges. We may

assume that G is embedded in R 3 so that its vertices Vl,V2,...,v n are

represented by distinct points, and its edges {vi,vj} are represented by closed

Torrence Douglas Parsons
(1976) Pursuit-evasion in

a graph
Theory and Applications

of Graphs

Quite different
motivation…

Previous Up Next

Citations

From References: 5

From Reviews: 3

MR661359 (84a:90099) 90D25 05C35 90B40

Petrov, N. N.

Some extremal search problems on graphs. (Russian)

Di↵erentsial

0
nye Uravneniya 18 (1982), no. 5, 821–827, 916.

Author’s summary: “We consider problems of pursuit on a graph in the absence of

information about the evader and prove a number of theorems on the minimal number

of pursuers necessary for successful completion of the pursuit.”

{
English translation: Di↵erential Equations 18 (1982), no. 5, 591–595.

}

c� Copyright American Mathematical Society 1984, 2015

Petrov, Nikolaĭ
Nikolaevich

(1982)

Petrov, Nikolaĭ
Nikolaevich

(1982)

Previous Up Next

Citations

From References: 8

From Reviews: 3

MR671157 (84b:90126) 90D26 05C35

Petrov, N. N.

A problem of pursuit in the absence of information on the pursued. (Russian)

Di↵erentsial

0
nye Uravneniya 18 (1982), no. 8, 1345–1352, 1468.

The author considers a pursuit (search) problem with k pursuers and one mobile hider.

The pursuers and the hider move in a finite connected graph �. It is assumed that

the pursuers do not know the location of the hider. The main concern of the paper

is to determine the least integer (�) such that for k � (�) the pursuit problem

under consideration is solvable. The integer (�) is a certain combinatorial-topological

characteristic of the graph �. The author also introduces and investigates another

combinatorial-topological characteristic of � which is called the degree of ramification.

It turns out, and this is the main result of the paper, that the degree of ramification

coincides with the integer (�) provided that � is a tree. Related papers are by the

author [same journal 18 (1982), no. 5, 821–827; MR0661359 (84a:90099)] and by T. D.

Parsons [Theory and applications of graphs (Kalamazoo, Mich., 1976), 426–441, Lecture

Notes in Math., 642, Springer, Berlin, 1978; MR0491364 (58 #10622)].

{
English translation: Di↵erential Equations 18 (1982), no. 8, 944–948 (1982).

}
A. I. Subbotin

c� Copyright American Mathematical Society 1984, 2015

Parsons and Petrov set a bit
different definitions (continuous vs
piece-wise linear vs discrete)

Equivalence proved by Golovach in
1990

Both started from trees and
obtained combinatorial
characterization of minimal search
trees

Algorithmic
questions

Is the problem of deciding whether
s(G)<k in NP?

Is the problem NP-hard?

NP-hard
The Complexity of Searching a Graph

N. MEGIDDO

Tel-Aviv University, Tel-Aviv, Israel

S. L. HAKIMI

Northwestern University, Evanston, Illinois

M. R. GAREY AND D. S. JOHNSON

AT&T Bell Laboratories, Murray HilI, New Jersey

AND

C. H. PAPADIMITRIOU

Massachusetts Institute of Technology, Cambridge, Massachusetts,
and National Technical University of Athens, Athens, Greece

Abstract. T. Parsons originally proposed and studied the following pursuitevasion problem on graphs:
Members of a team of searchers traverse the edges of a graph G in pursuit of a fugitive, who moves
along the edges of the graph with complete knowledge of the locations of the pursuers. What is the
smallest number s(G) of searchers that will suffice for guaranteeing capture of the fugitive? It is shown
that determining whether s(G) 5 K, for a given integer K, is NP-complete for general graphs but can
be solved in linear time for trees. We also provide a structural characterization of those graphs G with
s(G)zzKforK= 1,2,3.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems-computations on discrete structures; sorting and searching
General Terms: Algorithms, Theory, Verification
Additional Key Words and Phrases: NP-completeness, pursuit and evasion

1. Introduction
Let G = (V, E) be a connected undirected graph. Imagine that this graph represents
a system of tunnels in which a fugitive is hidden. Members of a team of s searchers
traverse the edges of the graph seeking to capture the fugitive, while the latter

This paper is based on “The Complexity of Searching a Graph” by N. Megiddo, S. L. Hakimi, M. R.
Gamy, D. S. Johnson, and C. H. Papadimitriou, appearing in Proceedings of the 22nd Annual
Symposium on Foundations of Computer Science. IEEE, New York, 1981, pp. 376-385.0 1981 IEEE.
Authors’ present addresses: N. Megiddo, Dept, K53, The IBM Almaden Research Center, 650 Harry
Road, San Jose, CA 95 120-6099; S. L. Hakimi, Department of Electrical and Computer Engineering,
University of California at Davis, Davis, CA 95616; M. R. Gamy, Room 2D-152, AT&T Bell
Laboratories, Murray Hill, NJ 07974; D. S. Johnson, Room 2P150, AT&T Bell Laboratories, Murray
Hill, NJ 07974; and C. H. Papadimitriou, Department of Computer Science, University of California,
San Diego, La Jolla, CA 92093.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
Q 1988 ACM 0004-541 l/88/0100-0018 $01.50

Journal ofthe Asmciation for Computing Machinery, Vol. 35, No. I, January 1988, pp. 1844.

J. ACM (1988)

Is the problem NP-
complete?

Yes, due to monotonicity:
recontamination does not help to
search a graph!

NP-
complete

J. ACM (1993)

Recontamination Does Not Help to Search a Graph

ANDREA S. LAPAUGH

Pnncetcw Unulem@, PnncetomNewJer.~ey

Abstract. This paper is concerned with a game on graphs called graph searc+ung, The object of this
game IS to clear all edges of a contaminated graph. Clearing N achieved bymovmg searchers, a
hind of token, along the edges of the graph accordmgto clemng rules Certain ~earch strategies
cause edges that have been cleared to become contaminated again. Megicfdoet al. [9] conjectured
that every graph can be searched using a minimum number of searchers without this recontami-
nation occurring, that is, wdhout clearing anyedgetwlce. In this paper, this conjecture Is proved.
This places the graph-searching problem in NP, completing the proof by Megiddoet al. that the
graph-searching problem is NP-complete. Furthermore, by eliminating the need to consider
recontamination, this result slmphfles the analysls of searcher requirements with respect to other
properties of graphs.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumencal Algorithms and Problems—computatmrzs orz ckcrete $tructures: G.2.2 [Discrete
Mathematics]: Graph TheoV—~aplz aIgor~th~tz~

General Terms: Algorithms, Theory
Additional Key Words and Phrases: Graph searching, NP-completeness, pursuit and evasion

1. Introduction

We are interested in a game on graphs that involves the clearing of contami-
nated edges. A graph is presented with all edges contaminated. Through a
sequence of moves using searchers, we would like to obtain a state of the graph
in which all edges are simultaneously clear. Searchers can be thought of as
tokens that move around the graph. The object of the game is to use as few
searchers as possible to reach the desired clear state. The allowable moves are
as follows:

(1) Place a searcher on a node;
(2) Remove a searcher from a node;
(3) Move a searcher along an edge.

There are two ways in which a contaminated edge can become clear:

(1) There is a searcher on one endpoint of the edge. A second searcher is
moved from that endpoint along the edge to the other endpoint;

This work was supported m part by AT& T Bell Laboratories, Murray HI1l, N.J , and by National
Science Foundation (NSF) grant MCS 82-02594.
Author’s address: Princeton Umversity, Computer Science Department, 35 Olden Street,
Princeton, NJ 08544-2087 slp@princeton.edu
Permnslon to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice E given that copying N by permission of the
Association for Computing Machinery. To copy otherwme, or to repubhsh, requires a fee and/or
speclflc permission.
01993 ACM 0004-5411/93/0400-0224 $01.50

Journal of the Abboc]dtlon for Computmg Machinery, VO1 40 No 2, April 1993, pp 224–2L5

JOURNAL OF ALGORITHMS 12, 239-245 (1991)

Monotonicity in Graph Searching
D. BIENSTOCK* ANDPAULSEYMOUR

Bellcore, 445 South Street, Morristown, New Jersey 07960

Received May 1988; accepted November 1990

We give a new proof of the result, due to A. LaPaugh, that a graph may be
optimally “searched” without clearing any edge twice. o 19~~ Academic PWS, IIIC.

1. INTRODUCITON

Let us regard a graph as a system of tunnels containing a (lucky,
invisible, fast) fugitive. We desire to capture this fugitive by “searching” all
edges of the graph, in a sequence of discrete steps, while using the fewest
possible “guards.” This problem was introduced by Breisch [2] and
Parsons [6]. In the version of graph searching considered in [51 (which we
call edge-searching, using terminology from [3]) a search step consists of
placing a guard at a vertex, or removing a guard from a vertex, or sliding a
guard along an edge. Further, an edge (u, v} is cleared by sliding a guard
from u to u, while shielding u from contaminated (that is, uncleared)
edges with appropriately placed guards (for example, by keeping another
guard at u). If, at any point in time, there is a path from a contaminated
edge e to a cleared edge e’ that is not blocked by guards, e’ becomes
instantaneously recontaminated and must be cleared again. Our objective
is to reach a state in which all edges are simultaneously cleared, so that
the maximum number of guards used at any step is minimized. Any
strategy that achieves this result is called optimal, and the optimal number
of guards is the edge-search number of the graph.

LaPaugh [5] proved that there always exists an optimal strategy that is
monotone (without recontamination). One implication of this important
result is that there is an optimal strategy that terminates after a linear
number of steps.

*Current address: Dept. of Industrial Engineering and Operations Research, Columbia
University, New York, NY 10027.

239
0196-6774/91 $3.00

(apyri&t 0 1991 by Academic Press, Inc.
All rights of reproduction in any form reserved.

Simpler
proof

Relation to width
parameters

Node search number (G)
= pathwidth(G)+1

Pathwidth(G)= min max
clique in interval
completion -1

Discrete Mathematics 55 (1985) 181-184
North-Holland

181

INTERVAL GRAPHS AND SEARCHING

Lefteris M. KIROUSIS
Department of Mathematics, University of Patras, Patras, Greece, and Department of Computer
Science, National Technical University, Athens, Greece

Christos H. PAPADIMITRIOU
Department of Mathematics, University of Patras, Patras, Greece, and Department of
Computer Science, National Technical Uniuersity, Athens, Greece

Received 3 November 1983
Revised 5 September 1984

The interval thickness of a graph G is the minimum clique number over any interval
supergraph of G. The node-search number is the least number of searchers required to clear the
‘contaminated’ edges of a graph. The clearing is accomplished by concurrently having searchers
on both of its endpoints.

We prove that for any graph, these two parameters coincide.

1. Introduction

The searching game was introduced by Parsons [5]. In the original version,
sometimes called edge searching, an undirected graph G is considered as a system
of tunnels in which a swift and cunning fugitive is hidden. The search number of G
is defined as the least number of searchers (or pebbles) which guarantees the
capture of the fugitive.

It was shown in [3] that there is always a strategy for searching G in which the
least possible number of searchers is used and moreover no tunnel is searched
twice. In other words recontamination does not help in searching a graph. This
implies that the problem of computing the search number of a graph is in NP. It
was shown in [4] that it is NP-complete, whereas it can be solved efficiently for
trees.

In [2] a slightly different version of searching was introduced. In this new
version, called node searching, the clearing of an edge takes place once both its
endpoints simultaneously carry a searcher.

Formally, node searching is a one-player game played on an undirected graph
G, using pebbles called searchers or guards. A searching strategy S is a sequence
of moves where the player either places a searcher on a node of the graph that
carries no searcher or deletes the searcher of a guarded node.

The edges of the graph are initially considered contaminated by a gas. The
object of a searching strategy is to clear all edges. The clearing of an edge is
accomplished once both its endpoints concurrently carry a searcher. A clear edge

0012-365x185/$3.30 0 1985, Elsevier Science Publishers B.V. (North-Holland)

Jitformation Processing Letters 42 (1992) 345-350
North-Holland

24 July 1992

The vertex separation number of a graph
equals its path-width
Nancy G. Kinnersley *
Department of Computer Science, University of Kansas, Lawrence, KS 46045, USA

Communicated by D. Dolev
Received 18 July 1990
Revised 2 January 1992

Abstract

Kinnersley, N.G., The vertex separation number of a graph equals its path-width, Information Processing Letters 42 (1992)
345-350.

We show that the problems of finding a graph’s vertex separation number and path-width are the same. The equivalence of
these problems with the gate matrix layout and the node search number problems then follows immediately from the results
of Fellows and Langston and Kirousis and Papadimitriou, respectively. The fired parameter variants of problems are known
to possess Gfn2) decision algorithms based on finite but unknown obstruction sets. We show how all tree obstructions in
these sets may be constructively obtained.

Keywords: Combinatorial problems, computational complexity, theory of computation

1. Introduction

GATE MATRIX LAYOUT [2], VERTEX
SEPARATION [ll], SEARCH NUMBER [12],
and its variant NODE SEARCH NUMBER [91
are NP-complete combinatorial problems that
arise in VLSI design. Path-width is an important
structural metric in the Robertson-Seymour the-
ory. Kirousis and Papadimitriou [9] proved that
the node search number of a graph is one more
than its vertex separation number, and Fellows

Correspondence to: N.G. Kinnersley, Department of Com-
puter Science, University of Kansas, Lawrence, KS 660452192,
USA.

* This author’s research has been supported in part by
the University of Kansas under general research allocation
3800-20-0038 and by the National Science Foundation under
grant CCR-9008725.

and Langston [6] showed that any graph with gate
matrix layout cost k has path-width k - 1. In this
paper we show that the vertex separation number
of a graph equals its path-width, thereby proving
the equivalence of the four problems. Moreover,
using a simple transformation [3] and an algo-
rithm for any of the four problems, the search
number of a graph can be found.

The Robertson-Seymour theorems (see, for
example, [13,14]) have been used by Fellows and
Langston to show that the fixed parameter vari-
ants of each of the above problems have low-de-
gree polynomial-time decision complexity [4-61.
Each decision algorithm depends on the exis-
tence of a finite collection of graphs known as an
obstruction set. While there is no general method
of identifying all graphs in an obstruction set, we
show how, for these problems, the trees in each
set can be obtained.

0020-0190/92/$05.00 0 1992 - Elsevier Science Publishers B.V. All rights reserved 345

Interval graph

How to node-search interval graph?

Relation to width
parameters

Helicopter search number (G)
= treewidth(G)+1

Treewidth(G)= min max clique
in chordal completion -1

Graph Theory of
graph searching

Strong relation to structural Graph
Theory

Treewidth, pathwidth, directed
treewidth…

Algorithmic

- While Graph Searching is NP-complete

- It is in P on trees

- Deciding if k searchers suffice for fixed k
is in P, moreover, it is FPT, i.e. f(k)poly(n)
algorithms are known

But what about
graph searching?

constrains on
dynamics of players

properties of
cleaned area

available
information

 bounds

algorithms

monotonicity/time
issues

So what if fugitive
is not that fast?

We speak about velocity - distances
become important

What is the dynamics of the players?

``Simple” case: fugitive and
searchers move at the same speed

Graph has edges of unit length

Discrete steps

Each searcher: either stay in a vertex or
move at full speed from vertex to
vertex

Fugitive can move along edges with
speed at most 1

``Simple” case: fugitive and
searchers move at the same speed

Example

x x
xx

x
x x

x

x x x
x

Theorem (FF, Petrov, 1998)

s1(Kn+1) = n+ 1n � 3For ,

Theorem (FF 1995)

s1(T) = s1(T)For every tree T,

Open questions

Monotonicity does not help but do we
need exponential number of steps?

What is the complexity? Should be at
least NP-hard

Is there a polynomial time algorithm
to decide if 2 players suffice?

Open questions

What are obstructions for small
search number?

Polynomial time algorithm on
simple graphs: outerplanar, block
graphs, serial-parallel, grids, etc.?

Related Game: 0-visibility cops
J Comb Optim (2015) 29:541–564
DOI 10.1007/s10878-014-9712-6

Zero-visibility cops and robber and the pathwidth
of a graph

Dariusz Dereniowski · Danny Dyer · Ryan M. Tifenbach ·
Boting Yang

Published online: 19 February 2014
© Springer Science+Business Media New York 2014

Abstract We examine the zero-visibility cops and robber graph searching model,
which differs from the classical cops and robber game in one way: the robber is
invisible. We show that this model is not monotonic. We show that the zero-visibility
copnumber of a graph is bounded above by its pathwidth and cannot be bounded below
by any nontrivial function of the pathwidth. As well, we define a monotonic version
of this game and show that the monotonic zero-visibility copnumber can be bounded
both above and below by positive multiples of the pathwidth.

Keywords Cops and robber · Graph searching · Pathwidth · Pursuit-evasion

Mathematics Subject Classification 05C57

1 Introduction

Using mobile agents to find and capture a mobile intruder is a well-studied graph
theory problem. Depending on the restrictions placed on the agents and the intruder,
the resulting pursuit can vary wildly. One common restriction placed on both the agents

D. Dereniowski
Department of Algorithms and System Modeling, Gdańsk University of Technology,
Gdańsk, Poland

D. Dyer · R. M. Tifenbach (B)
Department of Mathematics and Statistics, Memorial University of Newfoundland,
St. John’s, NL, Canada
e-mail: ryan.tifenbach@mun.ca

B. Yang
Department of Computer Science, University of Regina, Regina, SK, Canada

123

When
searchers are

faster

When searchers are
faster

For p, when searher
pass one edge,
fugitive pass 1/p
of an edge

2 searchers,
p=2

xx

x

x

1/2

1/2

Very specific
question

How to search
tetrahedron?

4 searchers win with
 any speed >0

Very specific
question

How to search
tetrahedron?

p = 1 + "

3 searchers
will do for

For p=1, one can
show that 3 searchers

are not enough

Very specific
question

How to search
tetrahedron?

2 searchers
win for p=3

Very specific
open question

For every p compute the minimum
number of searchers sufficient to

win on a tetrahedron T
Conjecture:

Sp(T)=
4, for p<=1
3, for 1<p<3
2, for 3<=p

Algorithmic
questions on trees
Given a tree T and integer p, how
many searchers required to succeed on
T? Open for p=2

 Given a tree T and integer k, what is
the minimum p such that k searchers
succeed on T? Open for k=2

Given a tree, decide if k+p<=4?

Grids
The search number of a nxn-grid
(when fugitive is arbitrarily fast) is
n+1

What about the speed restrictive
case?

Does p=1 give advantage to
fugitives?

Things even more complicated when we
think of graphs as of topological

structures (back to caves!!!)

Stay
connected!

or
Connected Graph

Searching

Clearing with constrains

Capture of an Intruder by Mobile Agents

Lali Barrière⇤ Paola Flocchini† Pierre Fraigniaud‡ Nicola Santoro§

ABSTRACT
Consider a team of mobile software agents deployed to cap-
ture a (possibly hostile) intruder in a network. All agents,
including the intruder move along the network links; the
intruder could be arbitrarily fast, and aware of the position-
s of all the agents. The problem is to design the agents’
strategy for capturing the intruder. The main e�ciency pa-
rameter is the size of the team. This is an instance of the
well known graph-searching problem whose many variants
have been extensively studied in the literature. In all ex-
isting solutions, and in all the variants of the problem, it is
assumed that agents can be removed from their current lo-
cation and placed in another network site arbitrarily and at
any time. As a consequence, the existing optimal strategies
cannot be employed in situations for which agents cannot ac-
cess the network at any point, or cannot “jump” across the
network, or cannot reach an arbitrary point of the network
via an internal travel through insecure zones. This moti-
vates the contiguous search problem in which agents cannot
be removed from the network, and clear links must form
a connected sub-network at any time, providing safety of
movements. This new problem is NP-complete in general.
We study it for tree networks, and we consider its more gen-
eral version, the weighted case, which arises naturally when
considering networks whose nodes and links are of di↵erent
nature and thus require a di↵erent number of agents to be
explored. We give a linear-time algorithm that computes,
for any tree T , the minimum number of agents to capture
the intruder, and the corresponding search strategy. Beside
its optimality in time, our algorithm is naturally distributed:

⇤Departament de Matemàtica Aplicada IV, Univ.
Politècnica de Catalunya, Spain. lali@mat.upc.es.

†School of Information Technology and Engineering, Uni-
versity of Ottawa, Canada. flocchin@site.uottawa.ca.

‡CNRS, Laboratoire de Recherche en Informatique, Univer-
sité Paris-Sud, France. pierre@lri.fr.

§School of Computer Science, Carleton University, Canada.
santoro@scs.carleton.ca.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’02, August 10-13, 2002, Winnipeg, Manitoba, Canada.
Copyright 2002 ACM 1-58113-529-7/02/0008 ...$5.00.

if T is a processor-network, then the minimal search strate-
gy for T can be computed by T in a decentralized manner,
using a linear number of messages.

Keywords: Graph-searching, mobile agent, network in-
truder.

Categories & Subject Descriptors: G.2.2 and F.2.2.

General Terms: Algorithms.

1. INTRODUCTION
Networked environments which support mobile agents can

be penetrated by possibly harmful agents, called intruders.
Concern for the severe damage intruders can cause has mo-
tivated a large amount of research, especially on detection,
whose focus is on solutions by teams of mobile agents (e.g.,
see [1, 13, 15, 16, 31, 37]). Once the presence of an intruder
is detected, a team of mobile system agents is deployed to
capture it. Both the intruder and the agents move along
the network links, but the intruder could be arbitrarily fast,
and aware of the positions of all the agents. The agents,
starting from their homebase, search the network looking
for the intruder, according to a given strategy (or protocol).
The intruder is captured as soon as it is surrounded by the
agents and has no escape link (i.e., no link free from any a-
gent, by which the intruder could move). The problem is to
design the agents’ strategy for capturing the intruder. The
e�ciency parameter is the size of the team.

From a theoretical point of view, this is an instance of a
well known and extensively studied problem known as graph-
searching.

1.1 Graph Search
In the graph-searching problem, first discussed by Breisch

[5] and by Parson [26, 27], we are given a “contaminated”
network, i.e., whose links are all contaminated. Via a se-
quence of operations using “searchers”, we would like to
obtain a state of the network in which all links are simulta-
neously clear. The goal is to use as few searchers as possible
to decontaminate the network. There are several variants of
the problem. For the edge-search problem, a search step is
one of the following operations: (1) place a searcher on a n-
ode, (2) remove a searcher from a node, (3) move a searcher
along a link. There are two ways in which a contaminated
link can become clear. In both cases, a searcher traverses
the link from one extremity u to the other extremity v. The
two cases are depending on the way the link is preserved
from recontamination: either another searcher remains in u,
or all other links incident to u are clear. A search strategy

200

SPAA 2002

Connected search is not monotone

Discrete Mathematics 309 (2009) 5770–5780

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Sweeping graphs with large clique number
Boting Yanga, Danny Dyer b,⇤, Brian Alspach c

a Department of Computer Science, University of Regina, Canada
b Department of Mathematics and Statistics, Memorial University of Newfoundland, Canada
c Department of Mathematics and Statistics, University of Regina, Canada

a r t i c l e i n f o

Article history:
Received 12 June 2006
Accepted 28 May 2008
Available online 2 July 2008

Dedicated to Pavol Hell on the occasion of
his sixtieth birthday

Keywords:
Edge searching
Sweeping
Clique number

a b s t r a c t

Searching a network for intruders is an interesting and often difficult problem. Sweeping
(or edge searching) is one such searchmodel, in which intrudersmay exist anywhere along
an edge. It was conjectured that graphs exist for which the connected sweep number is
strictly less than the monotonic connected sweep number. We prove that this is true, and
the difference can be arbitrarily large. We also show that the clique number is a lower
bound on the sweep number.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Sweeping (or edge searching) was originated by Parsons in [12], though the problemwas of interest to spelunkers earlier
than that, [5]. Parson’s original problem dealt with finding a lost spelunker in a system of caves, but the problem has much
wider application. We are interested in sweeping as a problem in network security, looking for methods to clean a network
of a computer virus, or methods to capture a mobile intruder using software agents. In the literature, sweeping has been
linked to pebbling (and hence to computer memory usage) [9], to assuring privacy when using bugged channels [8], and to
VLSI (very large-scale integrated) circuit design [6]. A brief survey of results is also available [1].

We will deal primarily with graphs in which no loops or multiple edges are allowed. The number of edges incident with
a vertex v of a graph G is the degree of v, denoted deg(v).

In this searchmodel, collision between a searcher and an intrudermay occur on an edge. This type of search is a sweep. The
specifics of sweeping a graph G are as follows. Initially, all edges of G are contaminated (or dirty). To sweep G it is necessary
to formulate and carry out a sweep strategy. A sweep strategy is a sequence of actions designed so that the final action leaves
all edges of G uncontaminated (or cleared). In such strategies, only the following three actions are allowed, though each may
occur many times.
• Place a searcher on a vertex.
• Move a single searcher along an edge uv starting at u and ending at v.
• Remove a searcher from a vertex.

A sweep strategy that restricts itself to the first two actions will be called an internal sweep strategy. That is, a strategy in
which once the searchers are placed, they can never be removed from a vertex, but can slide along edges to other vertices.

An edge uv in G can be cleared in one of two ways.

⇤ Corresponding author.
E-mail address: dyer@math.mun.ca (D. Dyer).

0012-365X/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2008.05.033

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c⃝ 2012 Society for Industrial and Applied Mathematics
Vol. 26, No. 4, pp. 1709–1732

FROM PATHWIDTH TO CONNECTED PATHWIDTH∗

DARIUSZ DERENIOWSKI†

Abstract. It is proven that the connected pathwidth of any graph G is at most 2 · pw(G) + 1,
where pw(G) is the pathwidth of G. The method is constructive, i.e., it yields an efficient algorithm
that for a given path decomposition of width k computes a connected path decomposition of width
at most 2k+1. The running time of the algorithm is O(dk2), where d is the number of “bags” in the
input path decomposition. The motivation for studying connected path decompositions comes from
the connection between the pathwidth and the search number of a graph. One of the advantages
of the above bound for connected pathwidth is an inequality cs(G) ≤ 2s(G) + 3, where cs(G) and
s(G) are the connected search number and the search number of G, respectively. Moreover, the
algorithm presented in this work can be used to convert a given search strategy using k searchers
into a (monotone) connected one using 2k + 3 searchers and starting at an arbitrary homebase.

Key words. connected pathwidth, connected searching, fugitive search games, graph searching,
pathwidth

AMS subject classifications. 05C83, 68R10, 05C85

DOI. 10.1137/110826424

1. Introduction. The notions of pathwidth and treewidth are receiving increas-
ing interest since the series of graph minor articles by Robertson and Seymour, start-
ing with [24]. The importance of those parameters is due to their numerous practical
applications, connections with several graph parameters, and usefulness in design-
ing graph algorithms. Informally speaking, the pathwidth of a graph G, denoted by
pw(G), says how closely G is related to a path. Moreover, a path decomposition
captures the linear path-like structure of G. (For a definition see section 2.)

Here we briefly describe a graph searching game that is one of the main moti-
vations for the results presented in this paper. A team of k searchers is given, and
the goal is to capture an invisible and fast fugitive located in a given graph G. The
fugitive also has the complete knowledge about the graph and about the strategy used
by the searchers, and therefore it will avoid being captured as long as possible. The
fugitive is captured when a searcher reaches its location. In this setting the game
is equivalent to the problem of clearing all edges of a graph that is initially entirely
contaminated. There are two main types of this graph searching problem. In the
node searching two moves are allowed: placing a searcher on a vertex and removing
a searcher from a vertex. An edge becomes clear whenever both of its endpoints are
simultaneously occupied by searchers. In the edge searching we have, besides the
two mentioned moves, a move of sliding a searcher along an edge. In this model an
edge {u, v} becomes clear if a searcher slides from u to v and either all other edges
incident to u have been previously cleared or another searcher occupies u. In both
models the goal is to find a search strategy (a sequence of moves of the searchers)
that clears all the edges of G. The node (edge) search number of G, denoted by
ns(G) (s(G), respectively), equals the minimum number of searchers sufficient to

∗Received by the editors March 3, 2011; accepted for publication (in revised form) September
7, 2012; published electronically December 4, 2012. An extended abstract of this work appeared
in Proceedings of the 28th Symposium on Theoretical Aspects of Computer Science (STACS), 2011.
This work was partially supported by MNiSW grant N N206 379337 (2009–2011).

http://www.siam.org/journals/sidma/26-4/82642.html
†Department of Algorithms and System Modeling, Gdańsk University of Technology, 80-233

Gdańsk, Poland (deren@eti.pg.gda.pl).

1709

D
ow

nl
oa

de
d

09
/2

8/
15

 to
 1

36
.1

52
.1

42
.3

2.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p
Connected search via normal search

Ratio 2 problem
connected Search (G)/search (G) <=2+o(1)

Algorithmic questions
about connected search

The problem can be shown to be NP-
hard. Is it in NP?

Do we ever need programs with
exponential number of steps?

Algorithmic questions
about connected search

For fixed number of searchers k, is
the problem in P?

Algorithmic questions
about connected search

Is connected search number FPT
parameterized by k?

On trees in P, weighted trees NP-
hard

Is it in P on outerplanar graphs?

Graphs of bounded treewidth?

Other constrains?

Connected search: the diameter of the
cleared subgraph is always finite. What
if we want to optimize the diameter?
Steiner tree between searchers?

How this is related to normal search?
Monotonicity? Complexity?
Approximation?

Information
counts

Information
We know where fugitive is at every
step (treewidth)

We do not know where fugitive is
(pathwidth)

What if we have option for q queries
to an oracle to ask about position of
the fugitive?

This variant of graph
searching is monotone!

Theoretical Computer Science 399 (2008) 169–178
www.elsevier.com/locate/tcs

Monotonicity of non-deterministic graph searching

Frédéric Mazoita, Nicolas Nisseb,⇤

a LABRI, University of Bordeaux, 33405 Talence, France
b LRI, University of Paris Sud, 91405 Orsay, France

Abstract

In graph searching, a team of searchers are aiming at capturing a fugitive moving in a graph. In the initial variant, called
invisible graph searching, the searchers do not know the position of the fugitive until they catch it. In another variant, the searchers
permanently know the position of the fugitive, i.e. the fugitive is visible. This latter variant is called visible graph searching. A
search strategy that catches any fugitive in such a way that the part of the graph reachable by the fugitive never grows is called
monotone. A priori, monotone strategies may require more searchers than general strategies to catch any fugitive. This is however
not the case for visible and invisible graph searching. Two important consequences of the monotonicity of visible and invisible
graph searching are: (1) the decision problem corresponding to the computation of the smallest number of searchers required to
clear a graph is in NP, and (2) computing optimal search strategies is simplified by taking into account that there exist some that
never backtrack.

Fomin et al. [F.V. Fomin, P. Fraigniaud, N. Nisse, Nondeterministic graph searching: From pathwidth to treewidth, in:
Proceedings of the 30th International Symposium on Mathematical Foundations of Computer Science, MFCS’05, 2005, pp.
364–375] introduced an important graph searching variant, called non-deterministic graph searching, that unifies visible and
invisible graph searching. In this variant, the fugitive is invisible, and the searchers can query an oracle that permanently knows the
current position of the fugitive. The question of the monotonicity of non-deterministic graph searching was however left open.

In this paper, we prove that non-deterministic graph searching is monotone. In particular, this result is a unified proof of
monotonicity for visible and invisible graph searching. As a consequence, the decision problem corresponding to non-deterministic
graph searching belongs to NP. Moreover, the exact algorithms designed by Fomin et al. do compute optimal non-deterministic
search strategies.
c� 2008 Elsevier B.V. All rights reserved.

Keywords: Graph searching; Treewidth; Monotonicity

1. Introduction

Introduced in [7,17], graph searching is a game in which a team of searchers aim at catching a fugitive moving in
a graph. At each step of the game, a searcher can either be placed at or removed from a vertex of the graph [13]. The
fugitive is invisible, arbitrarily fast and permanently aware of the positions of the searchers. It can move along paths

⇤ Corresponding author.
E-mail addresses: frederic.mazoit@labri.fr (F. Mazoit), nisse@lri.fr (N. Nisse).

0304-3975/$ - see front matter c� 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.02.036

Algorithms for non-
deterministic search

Complexity on
trees for fixed q

Theoretical Computer Science 580 (2015) 101–121

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Non-deterministic graph searching in trees ✩

Omid Amini a, David Coudert b,c,∗, Nicolas Nisse b,c

a CNRS – DMA, École Normale Supérieure, Paris, France
b Inria, France
c Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, 06900 Sophia Antipolis, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 October 2013
Received in revised form 12 August 2014
Accepted 24 February 2015
Available online 3 March 2015
Communicated by R. Klasing

Keywords:
Graph searching
Treewidth
Pathwidth
Trees

Non-deterministic graph searching was introduced by Fomin et al. to provide a unified
approach for pathwidth, treewidth, and their interpretations in terms of graph searching
games. Given q ≥ 0, the q-limited search number, sq(G), of a graph G is the smallest
number of searchers required to capture an invisible fugitive in G , when the searchers
are allowed to know the position of the fugitive at most q times. The search parameter
s0(G) corresponds to the pathwidth of a graph G , and s∞(G) to its treewidth. Determining
sq(G) is NP-complete for any fixed q ≥ 0 in general graphs and s0(T) can be computed in
linear time in trees, however the complexity of the problem on trees has been unknown
for any q > 0.
We introduce a new variant of graph searching called restricted non-deterministic. The
corresponding parameter is denoted by rsq and is shown to be equal to the non-
deterministic graph searching parameter sq for q = 0, 1, and at most twice sq for any q ≥ 2
(for any graph G).
Our main result is a polynomial time algorithm that computes rsq(T) for any tree T and
any q ≥ 0. This provides a 2-approximation of sq(T) for any tree T , and shows that the
decision problem associated to s1 is polynomial in the class of trees. Our proofs are based
on a new decomposition technique for trees which might be of independent interest.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Graph searching problems have been extensively studied for practical aspects such as pursuit-evasion problems [1], but
also for their close relationship with fundamental structural parameters of graphs, namely pathwidth and treewidth, that
serve as important tools in Robertson and Seymour’s Graph Minor Theory [2]. In particular, many intractable problems can
be solved in linear time when the input is restricted to graphs of bounded treewidth [3]. In this paper, tw(G) and pw(G)

denote the treewidth and the pathwidth of a graph G , respectively.
Graph searching is a game in which a team of searchers is aiming at capturing a fugitive hidden in a graph. The searchers

can be placed on or removed from the vertices of the graph. The fugitive stands at some vertex of the graph and can move

✩ Thanks to the anonymous referees for their constructive and helpful comments. This project has been partially supported by GDR ASR ResCom, by ANR
project Stint under reference ANR-13-BS02-0007 and by ANR program “Investments for the Future” under reference ANR-11-LABX-0031-01.

* Corresponding author.
E-mail addresses: omid.amini@ens.fr (O. Amini), david.coudert@inria.fr (D. Coudert), nicolas.nisse@inria.fr (N. Nisse).
URLs: http://www.math.ens.fr/~amini/ (O. Amini), http://www-sop.inria.fr/members/David.Coudert/ (D. Coudert),

http://www-sop.inria.fr/members/Nicolas.Nisse/ (N. Nisse).

http://dx.doi.org/10.1016/j.tcs.2015.02.038
0304-3975/© 2015 Elsevier B.V. All rights reserved.

Open questions
The problem is minor-closed, using
Robertson-Seymour machinery, there is
f(k,q)poly(n)-time algorithm solving it.
What is that algorithm?

For fixed k, what is the minimum number of
queries required to search the graph? For k=2?

Pathwidth and treewidth can be found in time
(2-eps)n. What about nondetermenistic search?

Open questions
For q>1, is there a polynomial time
algorithm computing the minimum
number of searchers with q queries
required to search a tree?

For fixed number of searchers, what is
the minimum number of queries to
search a tree? (For 2 searchers Amini et
al. gave linear time algorithm.)

What of
fugitive is not
that peaceful?

Information can be different …

Chess model:
Invisible king

Velocities of players
are equal

0-visibility searchers

fugitive should
move at every step

fugitive can eat
searchers

Checkers model:

Velocities of players
are equal

0-visibility searchers

fugitive should
move at every step

fugitive must eat
searchers

- Formula are known for paths and cycles
- No complexity is known
- Algorithm for trees?
- Poly-algorithm for a fixed number (=2)

of searchers?
- What if there are several fugitives?
- Dual problem: How many aggressive

fugitives do we need to win the game?

Questions:

Conclusion

In 2017: 50 years of Graph
Searching

We went very far but…

with very restricted model

Still long path to go?…

