
The Searchlight Problem

for Road Networks

a Dariusz Dereniowski
a Hirotaka Ono
a Ichiro Suzuki
a Łukasz Wrona
a Masafumi Yamashita
a Paweł Żyliński

GRASTA-MAC 2015, Montreal

Problem definition

The searchlight problem in a road network

What is the worst-case number s(n, g) of searchlights, each placed at one of the g guard
positions, required to successfully search a given road network of n lines/line segments?

→ A mobile intruder capable of moving continuously and arbitrarily fast is hiding.
→ The objective of the guards is to detect the intruder using the rays.
→ The intruder is considered detected at the moment he is illuminated by one of the rays
→ or he reaches a position where a guard is located.

a

b

a

b

undetected

◮ Sugihara, Suzuki and Yamashita. (1990): The searchlight scheduling problem
◮ Yen and Tang (1995): The searchlight guarding problem on weighted trees

1/13

Problem definition

The searchlight problem in a road network

What is the worst-case number s(n, g) of searchlights, each placed at one of the g guard
positions, required to successfully search a given road network of n lines/line segments?

→ A mobile intruder capable of moving continuously and arbitrarily fast is hiding.
→ The objective of the guards is to detect the intruder using the rays.
→ The intruder is considered detected at the moment he is illuminated by one of the rays
→ or he reaches a position where a guard is located.

(a)

v0 v1

F ′′

F ′

F (b)

v0 v1

F ′′

F ′

F

· · ·

(c)

v0 v1

F ′′

F ′

F

A sample search strategy for an (n, 2)-arrangement, n ≥ 4.

1/13

Lines

Arrangements of lines: a lower bound of 2g − 1

A2

v0 v1

(4, 2)-arrangement A2 = (L2, {v0, v1})

that requires at least three searchlights

Ag

v0 v1 v2 · · · vg−1

(2g, g)-arrangement Ag = (Lg, {v0, . . . , vg−1}), g ≥ 2

s(n, g) ≥ 2g − 1

2/13

Lines

Arrangements of lines: a lower bound of 2g − 1

A′

g

v0 v1 v2 · · · vk−1

vk

· · ·

vg−1

For 1 ≤ g ≤ n− 1, s(n, g) ≥























2g − 1 if 1 ≤ g ≤ n
2 ;

n− 2 if n
2 < g ≤ n− 2;

n− 1 if g = n− 1.

2/13

Lines

Arrangements of lines: an upper bound of 7g
3 − 1

s(n, g) ≤ 3g

3/13

Lines

Arrangements of lines: an upper bound of 7g
3 − 1

this searchlight is fixed

recursion

s(n, g) ≤ 3g

3/13

Lines

Arrangements of lines: an upper bound of 7g
3 − 1

this searchlight is fixed

recursion

remains clean

s(n, g) ≤ 3g

3/13

Lines

Arrangements of lines: an upper bound of 7g
3 − 1

this searchlight is fixed

remains clean

remains clean

recursion

s(n, g) ≤ 3g

3/13

Lines

Arrangements of lines: an upper bound of 7g
3 − 1

s(n, g) ≤
7g

3
− 1

3/13

Lines

Arrangements of lines: an upper bound of 7g
3 − 1

v0

v1

x

no intersection points between v1 and x

v0

v4

v5

v1

v3

v2
v6

v0 is incident to v1

s(n, g) ≤
7g

3
− 1

3/13

Lines

Arrangements of lines: an upper bound of 7g
3 − 1

v3

v2

x

no intersection points between v3 and x

v0

v4

v5

v1

v3

v2
v6

v2 is incident to v3

s(n, g) ≤
7g

3
− 1

3/13

Lines

Arrangements of lines: an upper bound of 7g
3 − 1

v3

v0

there is a ‘free’ cycle around v3

v0

v4

v5

v1

v3

v2
v6

v0 is not incident to v3

s(n, g) ≤
7g

3
− 1

3/13

Lines

Arrangements of lines: an upper bound of 7g
3 − 1

v3

v0

v4

v5

v1

v3

v2
v6

any arborescence:

3 searchlights at the root v0

2 searchlights at any other vertex

ordering: v0, v1, v2, v3, v4, v5, v6

s(n, g) ≤
7g

3
− 1

3/13

Lines

Arrangements of lines: an upper bound of 7g
3 − 1

v0

v1
v3

wrong order:

v3 is handled before handling v2

v0

v4

v5

v1

v3

v2
v6

any arborescence:

3 searchlights at the root v0

2 searchlights at any other vertex

ordering: v0, v1, v2, v3, v4, v5, v6

v0

v1
v3

v2

correct order:

v3 is handled after handling v2

s(n, g) ≤
7g

3
− 1

3/13

Lines

Arrangements of lines: an upper bound of 7g
3 − 1

v0

v1
v3

wrong order:

v3 is handled before handling v2

v0

v4

v5

v1

v3

v2
v6

any arborescence:

3 searchlights at the root v0

2 searchlights at any other vertex

ordering: v0, v1, v2, v3, v4, v5, v6

v0

v1
v3

v2

correct order:

v3 is handled after handling v2

s(A) ≤ 2g + (h− 1).

3/13

Lines

Arrangements of lines: an upper bound of 7g
3 − 1

s(n, g) ≤
7g

3
− 1

4/13

Lines

Arrangements of lines: an upper bound of 7g
3 − 1

s(n, g) ≤
7g

3
− 1

4/13

Lines

Arrangements of lines: an upper bound of 7g
3 − 1

s(n, g) ≤
7g

3
− 1

4/13

Line segments

Arrangements of line segments: a lower bound of Ω(g log n
g
)

A2

A2

2

A3

A2

3

Â2

2

Ā2

2

Ǎ2

2

s(n, 2) = Ω(log n)

5/13

Line segments

Arrangements of line segments: a lower bound of Ω(g log n
g
)

A2

A2

2

A2

A2

2
Â2

2

Ā2

2

Ǎ2

2

s(n, 2) = Ω(log n)

5/13

Line segments

Arrangements of line segments: a lower bound of Ω(g log n
g
)

A2

A2

2

A3

A2

3

Â2

2

Ā2

2

Ǎ2

2

s(n, 2) = Ω(log n)

5/13

Line segments

Arrangements of line segments: a lower bound of Ω(g log n
g
)

Ak−1

A2

k−1

Ak

A2

k

Â2

k−1

Ā2

k−1

Ǎ2

k−1

s(n, 2) = Ω(log n)

5/13

Line segments

Arrangements of line segments: a lower bound of Ω(g log n
g
)

Ak Ak Ak Ak

s(n, g) = Ω(g log
n

g
)

5/13

Line segments

Arrangements of line segments: an upper bound of O(g2 log n)

◮ partitioning into nice arrangements: O(g) searchlights (remain fixed)
◮ recursive searching of nice arrangements (divide-and-conquer)

→ depth of the recursion with respect to a guard v: O(logn)

→ divide-and-conquer: O(1) searchlights per each guard

→ the total number of O(g2 log n) searchlights

6/13

Line segments

Arrangements of line segments: an upper bound of O(g2 log n)

◮ partitioning into nice arrangements: O(g) searchlights (remain fixed)
◮ recursive searching of nice arrangements (divide-and-conquer)

→ depth of the recursion with respect to a guard v: O(logn)

→ divide-and-conquer: O(1) searchlights per each guard

→ the total number of O(g2 log n) searchlights

6/13

Line segments

Arrangements of line segments: an upper bound of O(g2 log n)

◮ partitioning into nice arrangements: O(g) searchlights (remain fixed)
◮ recursive searching of nice arrangements (divide-and-conquer)

→ depth of the recursion with respect to a guard v: O(logn)

→ divide-and-conquer: O(1) searchlights per each guard

→ the total number of O(g2 log n) searchlights

nice arrangement

all guards are “outside”

6/13

Line segments

Arrangements of line segments: an upper bound of O(g2 log n)

◮ partitioning into nice arrangements: O(g) searchlights (remain fixed)
◮ recursive searching of nice arrangements (divide-and-conquer)

→ depth of the recursion with respect to a guard v: O(logn)

→ divide-and-conquer: O(1) searchlights per each guard

→ the total number of O(g2 log n) searchlights

not nice arrangement

some guards are “inside”

6/13

Line segments

Arrangements of line segments: an upper bound of O(g2 log n)

◮ partitioning into nice arrangements: O(g) searchlights (remain fixed)
◮ recursive searching of nice arrangements (divide-and-conquer)

→ depth of the recursion with respect to a guard v: O(logn)

→ divide-and-conquer: O(1) searchlights per each guard

→ the total number of O(g2 log n) searchlights

not nice arrangement

some guards are “inside”

6/13

Line segments

Arrangements of line segments: an upper bound of O(g2 log n)

◮ partitioning into nice arrangements: O(g) searchlights (remain fixed)
◮ recursive searching of nice arrangements (divide-and-conquer)

→ depth of the recursion with respect to a guard v: O(logn)

→ divide-and-conquer: O(1) searchlights per each guard

→ the total number of O(g2 log n) searchlights

not nice arrangement

some guards are “inside”

6/13

Line segments

Arrangements of line segments: an upper bound of O(g2 log n)

◮ partitioning into nice arrangements: O(g) searchlights (remain fixed)
◮ recursive searching of nice arrangements (divide-and-conquer)

→ depth of the recursion with respect to a guard v: O(logn)

→ divide-and-conquer: O(1) searchlights per each guard

→ the total number of O(g2 log n) searchlights

7/13

Line segments

Arrangements of line segments: an upper bound of O(g2 log n)

◮ partitioning into nice arrangements: O(g) searchlights (remain fixed)
◮ recursive searching of nice arrangements (divide-and-conquer)

→ depth of the recursion with respect to a guard v: O(logn)

→ divide-and-conquer: O(1) searchlights per each guard

→ the total number of O(g2 log n) searchlights

splitter S

balanced partition

7/13

Line segments

Arrangements of line segments: an upper bound of O(g2 log n)

◮ partitioning into nice arrangements: O(g) searchlights (remain fixed)
◮ recursive searching of nice arrangements (divide-and-conquer)

→ depth of the recursion with respect to a guard v: O(logn)

→ divide-and-conquer: O(1) searchlights per each guard

→ the total number of O(g2 log n) searchlights

splitter S

balanced partition

7/13

Line segments

Arrangements of line segments: an upper bound of O(g2 log n)

◮ partitioning into nice arrangements: O(g) searchlights (remain fixed)
◮ recursive searching of nice arrangements (divide-and-conquer)

→ depth of the recursion with respect to a guard v: O(logn)

→ divide-and-conquer: O(1) searchlights per each guard

→ the total number of O(g2 log n) searchlights

finding a balanced splitter with respect to v

L(v) L∗(v)

|L∗(v)| = 22

8/13

Line segments

Arrangements of line segments: an upper bound of O(g2 log n)

◮ partitioning into nice arrangements: O(g) searchlights (remain fixed)
◮ recursive searching of nice arrangements (divide-and-conquer)

→ depth of the recursion with respect to a guard v: O(logn)

→ divide-and-conquer: O(1) searchlights per each guard

→ the total number of O(g2 log n) searchlights

finding a balanced splitter with respect to v

L∗(v)

|L∗(v)| = 22

8/13

Line segments

Arrangements of line segments: an upper bound of O(g2 log n)

◮ partitioning into nice arrangements: O(g) searchlights (remain fixed)
◮ recursive searching of nice arrangements (divide-and-conquer)

→ depth of the recursion with respect to a guard v: O(logn)

→ divide-and-conquer: O(1) searchlights per each guard

→ the total number of O(g2 log n) searchlights

finding a balanced splitter with respect to v

L∗(v)

|L∗(v)| = 22

8/13

Line segments

Arrangements of line segments: an upper bound of O(g2 log n)

◮ partitioning into nice arrangements: O(g) searchlights (remain fixed)
◮ recursive searching of nice arrangements (divide-and-conquer)

→ depth of the recursion with respect to a guard v: O(logn)

→ divide-and-conquer: O(1) searchlights per each guard

→ the total number of O(g2 log n) searchlights

1

2

2

2
1

2

4

2

2

2

2

finding a balanced splitter with respect to v

L∗(v)

|L∗(v)| = 22

8/13

Line segments

Arrangements of line segments: an upper bound of O(g2 log n)

◮ partitioning into nice arrangements: O(g) searchlights (remain fixed)
◮ recursive searching of nice arrangements (divide-and-conquer)

→ depth of the recursion with respect to a guard v: O(logn)

→ divide-and-conquer: O(1) searchlights per each guard

→ the total number of O(g2 log n) searchlights

e

1

2

2

2
1

2

4

2

2

2

2

finding a balanced splitter with respect to v

L∗(v)

|L∗(v)| = 22

8/13

Line segments

Arrangements of line segments: an upper bound of O(g2 log n)

◮ partitioning into nice arrangements: O(g) searchlights (remain fixed)
◮ recursive searching of nice arrangements (divide-and-conquer)

→ depth of the recursion with respect to a guard v: O(logn)

→ divide-and-conquer: O(1) searchlights per each guard

→ the total number of O(g2 log n) searchlights

splitter S

balanced partition with respect to v

9/13

Line segments

Arrangements of line segments: an upper bound of O(g2 log n)

◮ partitioning into nice arrangements: O(g) searchlights (remain fixed)
◮ recursive searching of nice arrangements (divide-and-conquer)

→ depth of the recursion with respect to a guard v: O(logn)

→ divide-and-conquer: O(1) searchlights per each guard

→ the total number of O(g2 log n) searchlights

splitter S

balanced partition with respect to v

9/13

Line segments

Arrangements of line segments: an upper bound of O(g2 log n)

◮ partitioning into nice arrangements: O(g) searchlights (remain fixed)
◮ recursive searching of nice arrangements (divide-and-conquer)

→ depth of the recursion with respect to a guard v: O(logn)

→ divide-and-conquer: O(1) searchlights per each guard

→ the total number of O(g2 log n) searchlights

splitter S

curve C and its (S, x)-separator

9/13

Line segments

Arrangements of line segments: an upper bound of O(g2 log n)

◮ partitioning into nice arrangements: O(g) searchlights (remain fixed)
◮ recursive searching of nice arrangements (divide-and-conquer)

→ depth of the recursion with respect to a guard v: O(logn)

→ divide-and-conquer: O(1) searchlights per each guard

→ the total number of O(g2 log n) searchlights

splitter S

curve C and its (S, x)-separator

9/13

Line segments

Arrangements of line segments: an upper bound of O(g2 log n)

◮ partitioning into nice arrangements: O(g) searchlights (remain fixed)
◮ recursive searching of nice arrangements (divide-and-conquer)

→ depth of the recursion with respect to a guard v: O(logn)

→ divide-and-conquer: O(1) searchlights per each guard

→ the total number of O(g2 log n) searchlights

O(1) searchlights for

“illuminating” C1

recursion

splitter S

recursive clearing balanced arrangements along the splitter

C1

9/13

Line segments

Arrangements of line segments: an upper bound of O(g2 log n)

◮ partitioning into nice arrangements: O(g) searchlights (remain fixed)
◮ recursive searching of nice arrangements (divide-and-conquer)

→ depth of the recursion with respect to a guard v: O(logn)

→ divide-and-conquer: O(1) searchlights per each guard

→ the total number of O(g2 log n) searchlights

O(1) searchlights for

“illuminating” C2

recursion

O(1) searchlights for

“illuminating” C1

searched

searched

splitter S

recursive clearing balanced arrangements along the splitter

C2

C1

9/13

Line segments

Arrangements of line segments: an upper bound of O(g2 log n)

◮ partitioning into nice arrangements: O(g) searchlights (remain fixed)
◮ recursive searching of nice arrangements (divide-and-conquer)

→ depth of the recursion with respect to a guard v: O(logn)

→ divide-and-conquer: O(1) searchlights per each guard

→ the total number of O(g2 log n) searchlights

O(1) searchlights for

“illuminating” C2

searched

splitter S

recursive clearing balanced arrangements along the splitter

C2

C3

9/13

Open problems

Problem 1. Provide better estimates on s(n, g) in the case of (n, g)-arrangements of lines.
In particular, prove or disprove that s(n, g) ≤ 2g.

2g − 1 ≤ s(n, g) ≤ 7g
3 − 1

Problem 2. Provide better estimates on s(n, g) in the general case of (n, g)-arrangements
of line segments.

Without any strong evidence, we conjecture that the upper bound on s(n, g) can be
improved up to O(g log ∆), where ∆ is the maximum number of maximal line segments
of an arrangement having a point in common.

s(n, g) = Ω(g log ∆) and s(n, g) = O(g2 log n)

Problem 3. The time and space complexity of deciding whether the given arrangement
(of lines/line segments) can be searched using k ≥ 1 searchlights.

10/13

