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PROBLEM DEFINITION

The searchlight problem in a road network

What is the worst-case number s(n, g) of searchlights, each placed at one of the g guard
positions, required to successfully search a given road network of n lines/line segments?

— A mobile intruder capable of moving continuously and arbitrarily fast is hiding.
— The objective of the guards is to detect the intruder using the rays.

— The intruder is considered detected at the moment he is illuminated by one of the rays
or he reaches a position where a guard is located.
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» Sugihara, Suzuki and Yamashita. (1990): The searchlight scheduling problem
» Yen and Tang (1995): The searchlight guarding problem on weighted trees
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A sample search strategy for an (n,2)-arrangement, n > 4.
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LINES

Arrangements of lines:

V0 U1 Vo V1 V2 <. Vg—1

(4, 2)-arrangement Ay = (Lo, {vg, v1}) (2¢g, g)-arrangement A, = (L4, {vo,...,Vg-1}), g > 2
that requires at least three searchlights

s(n,g) >2g—1
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LINES

Arrangements of lines: a lower bound of 2¢g — 1

For1<g<n-1s(ng=2qn-2 if2<g<n-—2
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Arrangements of lines:
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Arrangements of lines:
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Arrangements of lines:
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Arrangements of lines:
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Arrangements of lines:

Vo

there is a ‘free’ cycle around v3

V2
Ve .
® vs
(%
@ o
V1
o v

vp 1s not incident to vs

LINES

3/13



Arrangements of lines:
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Vg
any arborescence:

3 searchlights at the root vg
2 searchlights at any other vertex

ordering: vg, v, V2, V3, U4, U5, Ug
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Arrangements of lines:
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wrong order:

vs is handled before handling vs
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V6
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/ y
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< Yo

Vg

any arborescence:
3 searchlights at the root vg
2 searchlights at any other vertex

ordering: vg, v, V2, U3, U4, U5, Ug

s(A) <29+ (h—1).
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LINES
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LINES

Arrangements of lines: an upper bound of % — 1
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Arrangements of lines:
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LINE SEGMENTS

Arrangements of line segments:

s(n,2) = Qlogn)
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Arrangements of line segments:

LINE SEGMENTS
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Arrangements of line segments:
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Arrangements of line segments: o lower bound of Q(glog %)

LINE SEGMENTS
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LINE SEGMENTS

Arrangements of line segments:

» partitioning into nice arrangements: O(g) searchlights (remain fixed)
» recursive searching of nice arrangements (divide-and-conquer)

— depth of the recursion with respect to a guard v: O(logn)

— divide-and-conquer: O(1) searchlights per each guard

— the total number of O(g?logn) searchlights
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LINE SEGMENTS

Arrangements of line segments: an upper bound of O(g” logn)

» partitioning into nice arrangements: O(g) searchlights (remain fixed)
» recursive searching of nice arrangements (divide-and-conquer)

— depth of the recursion with respect to a guard v: O(logn)

— divide-and-conquer: O(1) searchlights per each guard

— the total number of O(g?logn) searchlights
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curve C and its (.5, x)-separator
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LINE SEGMENTS

Arrangements of line segments: an upper bound of O(g” logn)

» partitioning into nice arrangements: O(g) searchlights (remain fixed)
» recursive searching of nice arrangements (divide-and-conquer)
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“illuminating” Cy

recursive clearing balanced arrangements along the splitter
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OPEN PROBLEMS

Problem 1. Provide better estimates on s(n, g) in the case of (n, g)-arrangements of lines.
In particular, prove or disprove that s(n, g) < 2g.

7
29 =1 < s(n,g) <5 -
Problem 2. Provide better estimates on s(n, g) in the general case of (n, g)-arrangements
of line segments.

Without any strong evidence, we conjecture that the upper bound on s(n, g) can be
improved up to O(glog A), where A is the maximum number of maximal line segments
of an arrangement having a point in common.

s(n,g) = QglogA) and  s(n,g) = O(g° logn)

Problem 3. The time and space complexity of deciding whether the given arrangement
(of lines/line segments) can be searched using k > 1 searchlights.
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