THE SEARCHLIGHT PROBLEM FOR ROAD NETWORKS

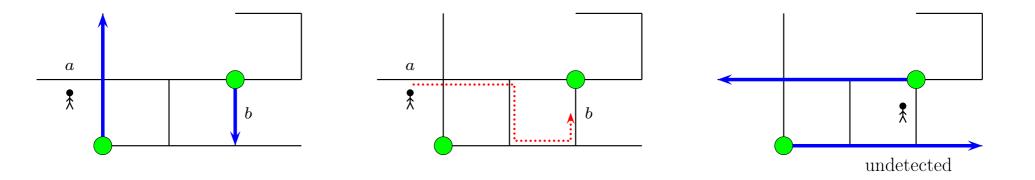
Dariusz Dereniowski Hirotaka Ono Ichiro Suzuki Łukasz Wrona Masafumi Yamashita Paweł Żyliński

GRASTA-MAC 2015, Montreal

The searchlight problem in a road network

What is the worst-case number s(n, g) of searchlights, each placed at one of the g guard positions, required to successfully search a given road network of n lines/line segments?

- \rightarrow A mobile intruder capable of moving continuously and arbitrarily fast is hiding.
- \rightarrow The objective of the guards is to detect the intruder using the rays.
- \rightarrow The intruder is considered detected at the moment he is illuminated by one of the rays or he reaches a position where a guard is located.

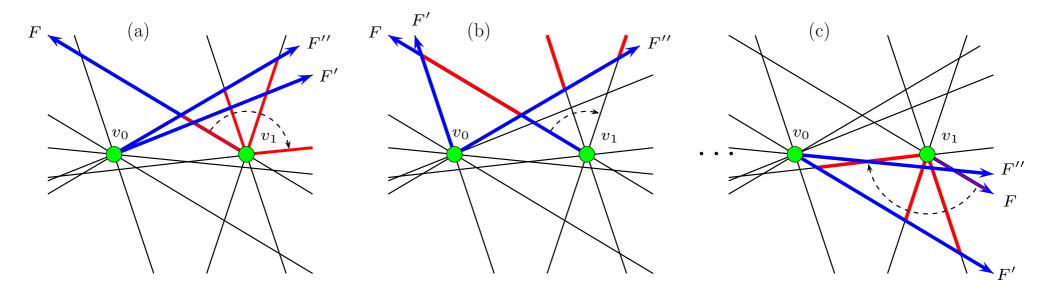


Sugihara, Suzuki and Yamashita. (1990): The searchlight scheduling problem
Yen and Tang (1995): The searchlight guarding problem on weighted trees

The searchlight problem in a road network

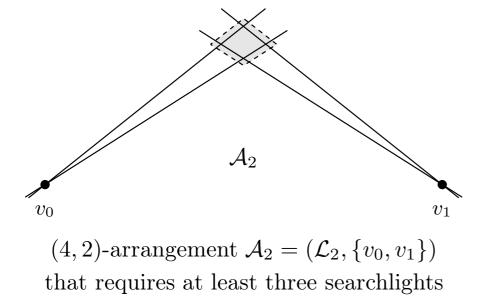
What is the worst-case number s(n, g) of searchlights, each placed at one of the g guard positions, required to successfully search a given road network of n lines/line segments?

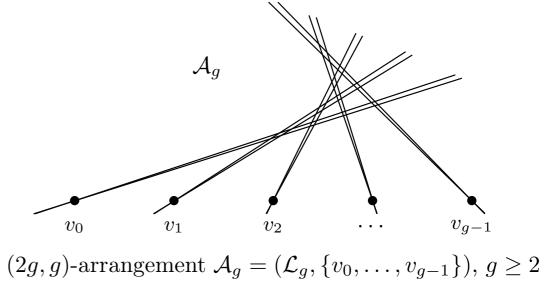
- \rightarrow A mobile intruder capable of moving continuously and arbitrarily fast is hiding.
- \rightarrow The objective of the guards is to detect the intruder using the rays.
- \rightarrow The intruder is considered detected at the moment he is illuminated by one of the rays or he reaches a position where a guard is located.



A sample search strategy for an (n, 2)-arrangement, $n \ge 4$.

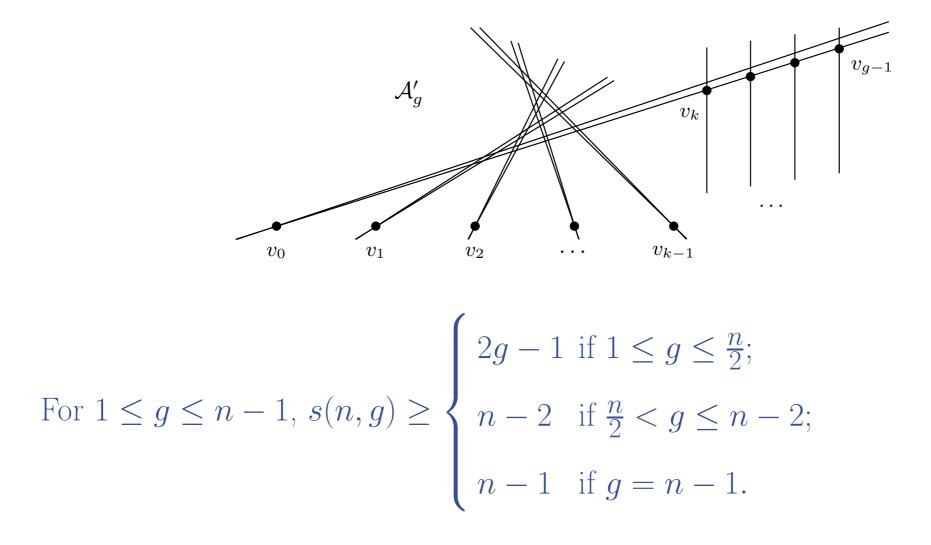
Arrangements of lines: a lower bound of 2g - 1

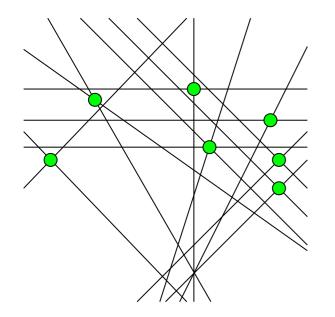




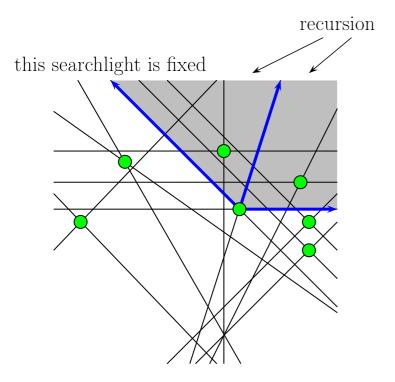
$$s(n,g) \ge 2g - 1$$

Arrangements of lines: a lower bound of 2g - 1



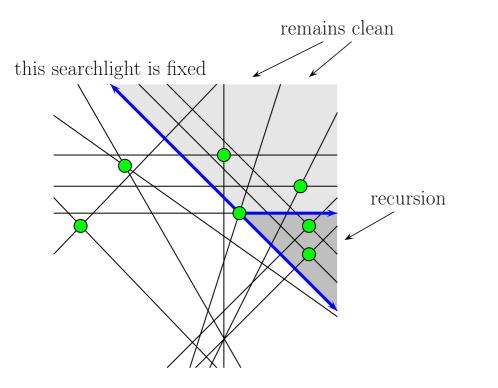


Arrangements of lines: an upper bound of $\frac{7g}{3} - 1$



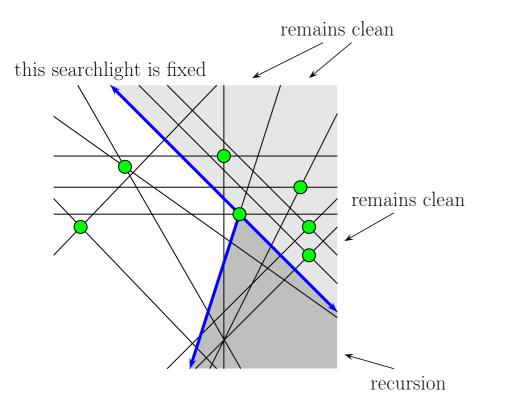
 $s(n,g) \le 3g$

Arrangements of lines: an upper bound of $\frac{7g}{3} - 1$

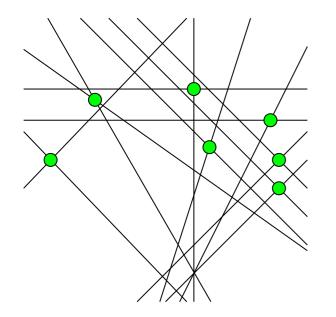


 $s(n,g) \leq 3g$

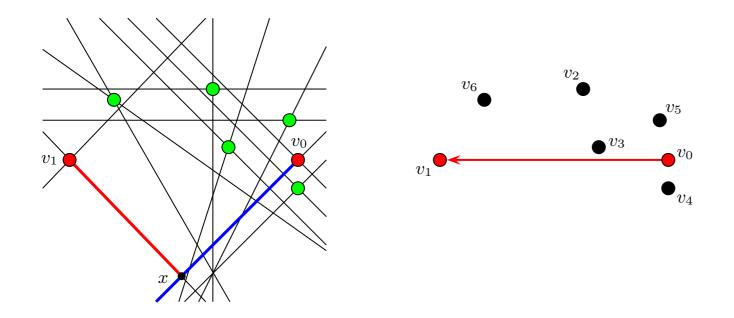
Arrangements of lines: an upper bound of $\frac{7g}{3} - 1$



 $s(n,g) \leq 3g$



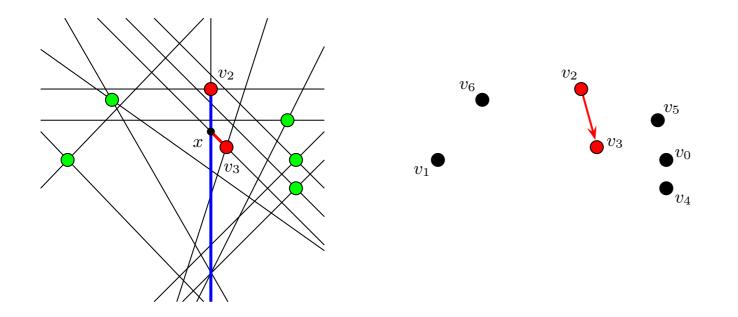
Arrangements of lines: an upper bound of $\frac{7g}{3} - 1$



no intersection points between v_1 and x

 v_0 is incident to v_1

Arrangements of lines: an upper bound of $\frac{7g}{3} - 1$



no intersection points between v_3 and x

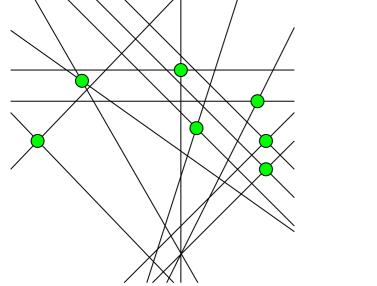
 v_2 is incident to v_3

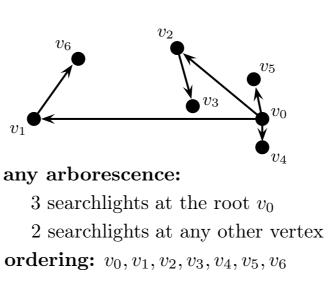
Arrangements of lines: an upper bound of $\frac{7g}{3} - 1$



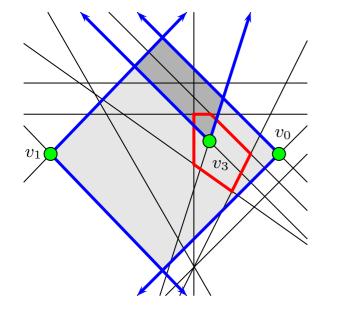
there is a 'free' cycle around v_3

 v_0 is not incident to v_3



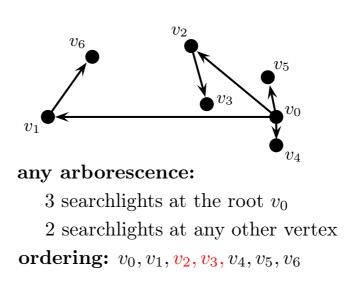


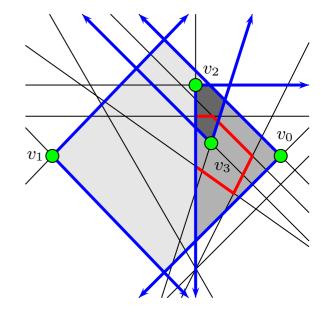
Arrangements of lines: an upper bound of $\frac{7g}{3} - 1$

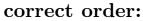


wrong order:

 v_3 is handled before handling v_2

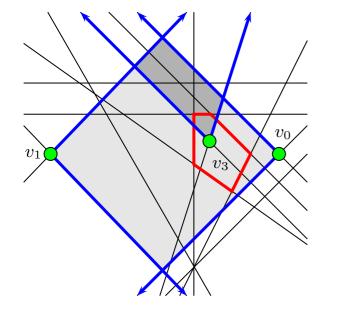


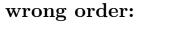




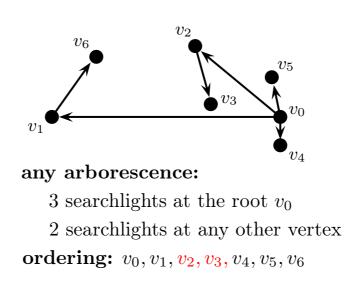
 v_3 is handled after handling v_2

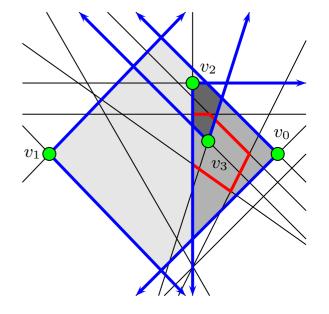
Arrangements of lines: an upper bound of $\frac{7g}{3} - 1$

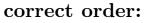




 v_3 is handled before handling v_2

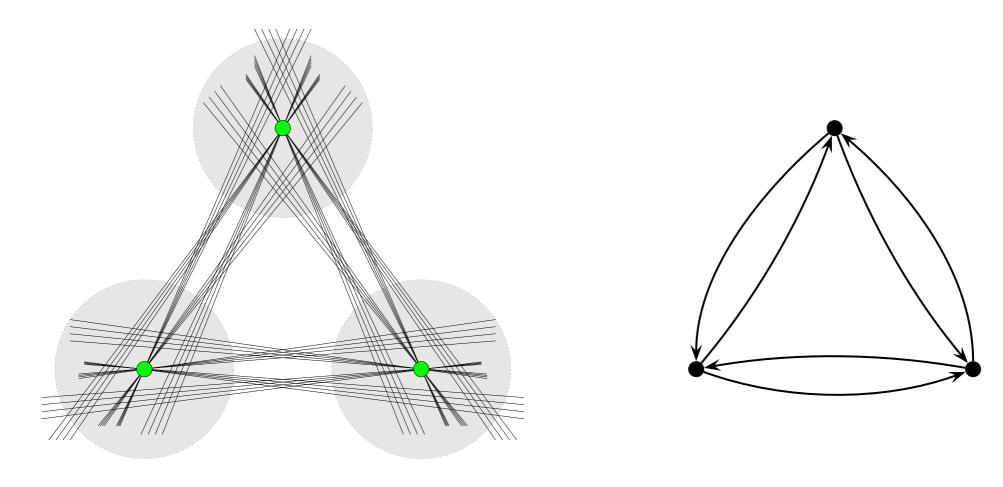




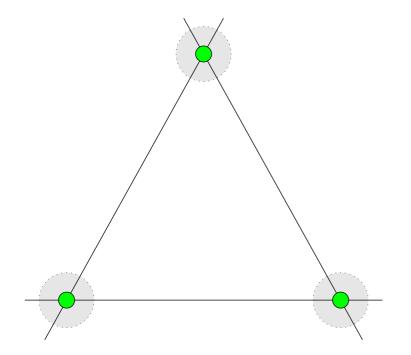


 v_3 is handled after handling v_2

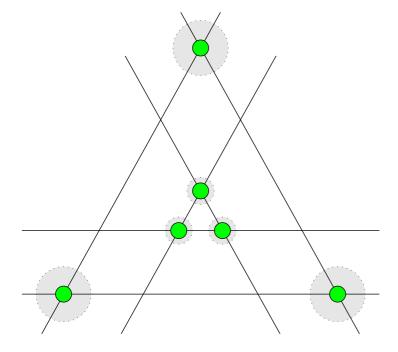
$$s(\mathcal{A}) \le 2g + (h-1).$$

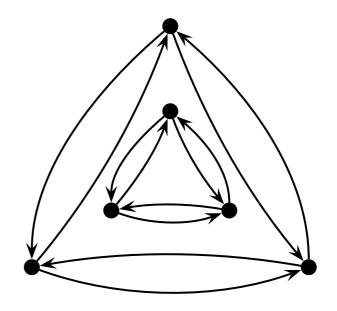


 $s(n,g) \le \frac{7g}{3} - 1$



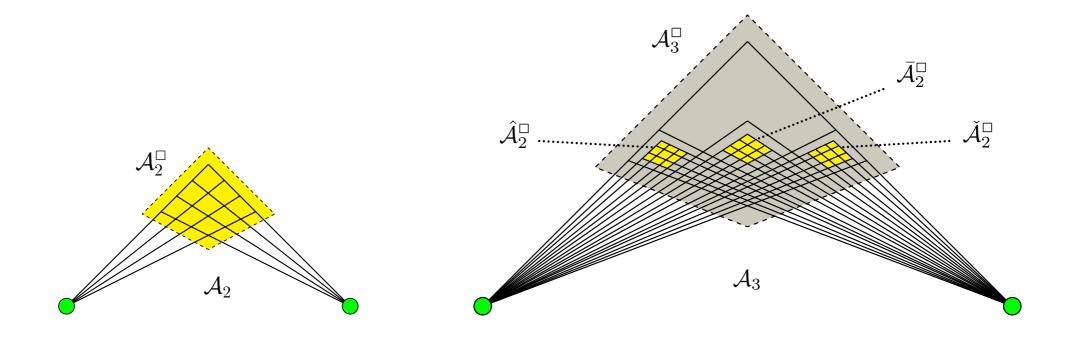
$$s(n,g) \le \frac{7g}{3} - 1$$



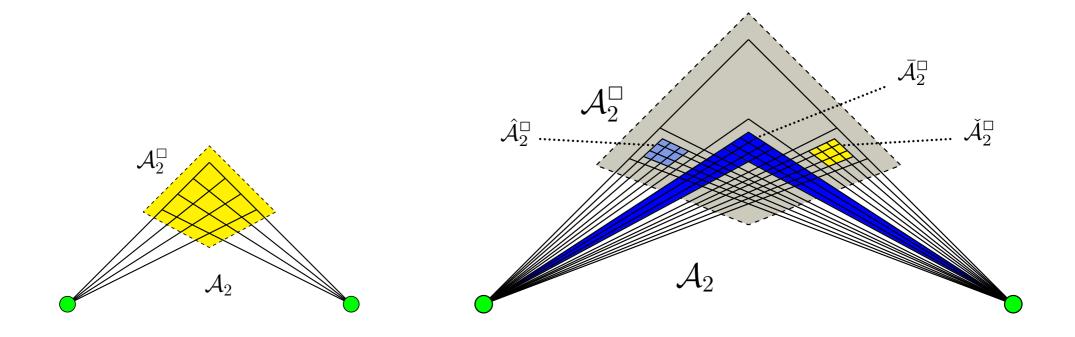


$$s(n,g) \le \frac{7g}{3} - 1$$

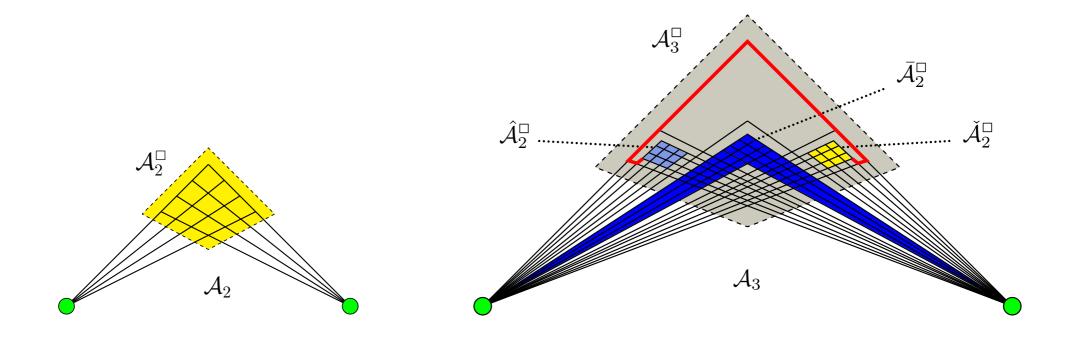
Arrangements of line segments: a lower bound of $\Omega(g \log \frac{n}{q})$



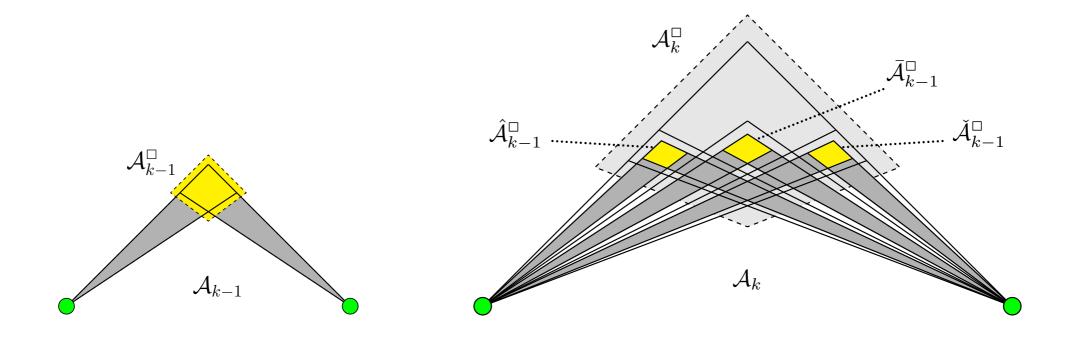
Arrangements of line segments: a lower bound of $\Omega(g \log \frac{n}{q})$



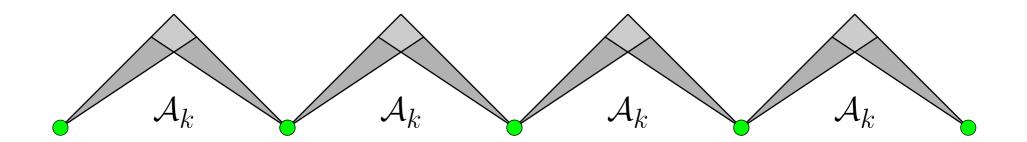
Arrangements of line segments: a lower bound of $\Omega(g \log \frac{n}{q})$



Arrangements of line segments: a lower bound of $\Omega(g \log \frac{n}{q})$

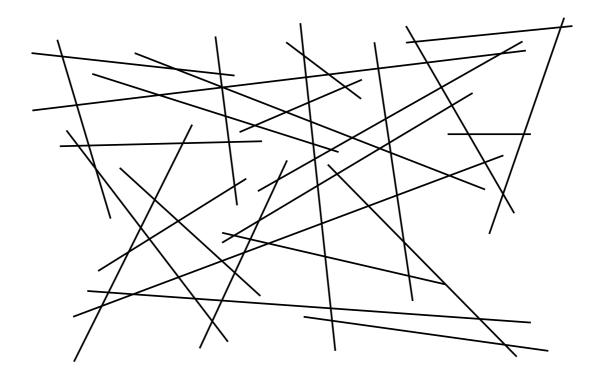


Arrangements of line segments: a lower bound of $\Omega(g \log \frac{n}{g})$

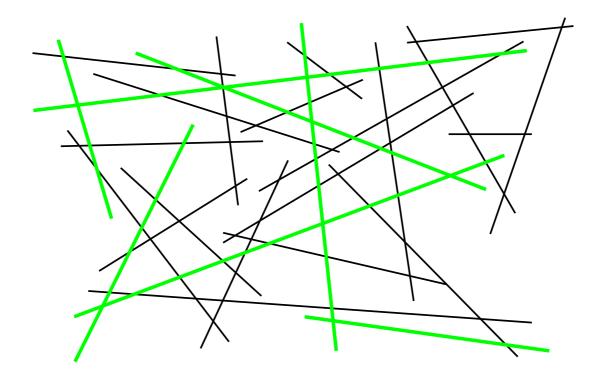


$$s(n,g) = \Omega(g\log\frac{n}{g})$$

- ▶ partitioning into nice arrangements: O(g) searchlights (remain fixed)
- ► recursive searching of nice arrangements (divide-and-conquer)
 - \rightarrow depth of the recursion with respect to a guard $v:\,O(\log n)$
 - \rightarrow divide-and-conquer: O(1) search lights per each guard
 - \rightarrow the total number of $O(g^2 \log n)$ searchlights



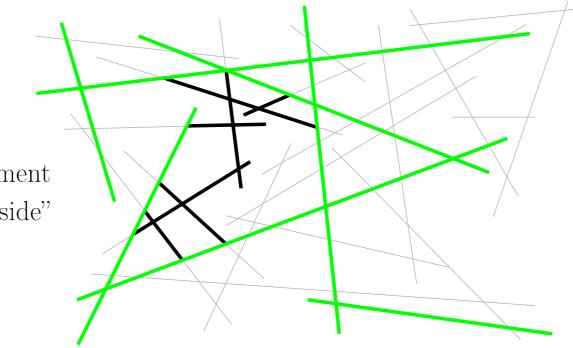
- ▶ partitioning into nice arrangements: O(g) searchlights (remain fixed)
- ► recursive searching of nice arrangements (divide-and-conquer)
 - \rightarrow depth of the recursion with respect to a guard $v:\,O(\log n)$
 - \rightarrow divide-and-conquer: O(1) search lights per each guard
 - \rightarrow the total number of $O(g^2 \log n)$ searchlights



Arrangements of line segments: an upper bound of $O(g^2 \log n)$

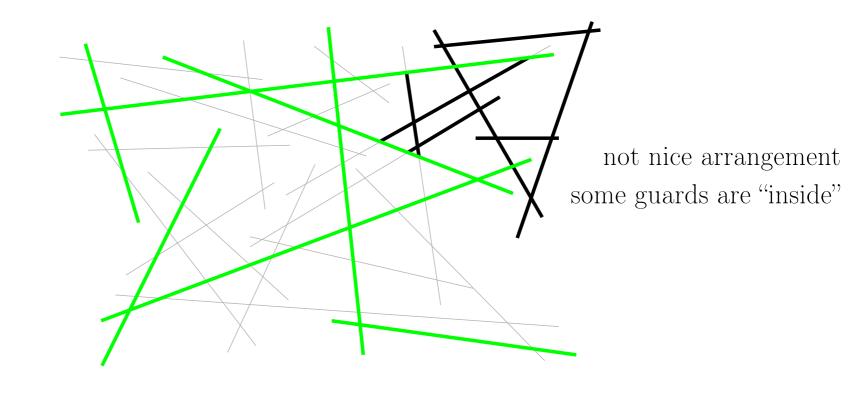
▶ partitioning into nice arrangements: O(g) searchlights (remain fixed)

- ► recursive searching of nice arrangements (divide-and-conquer)
 - \rightarrow depth of the recursion with respect to a guard $v:\,O(\log n)$
 - \rightarrow divide-and-conquer: O(1) search lights per each guard
 - \rightarrow the total number of $O(g^2 \log n)$ search lights

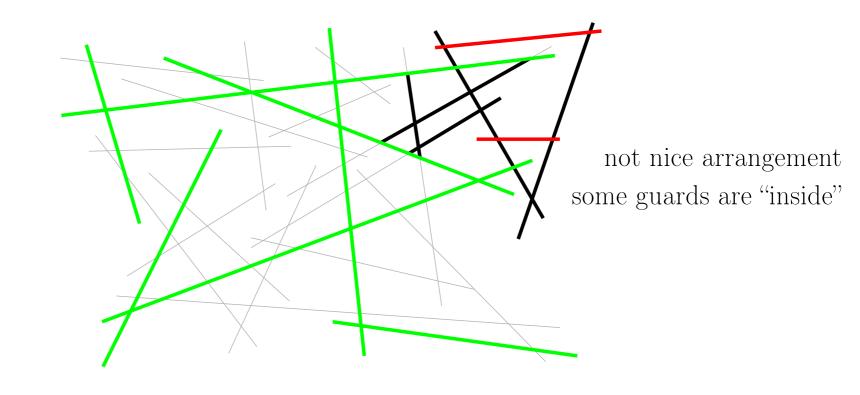


nice arrangement all guards are "outside"

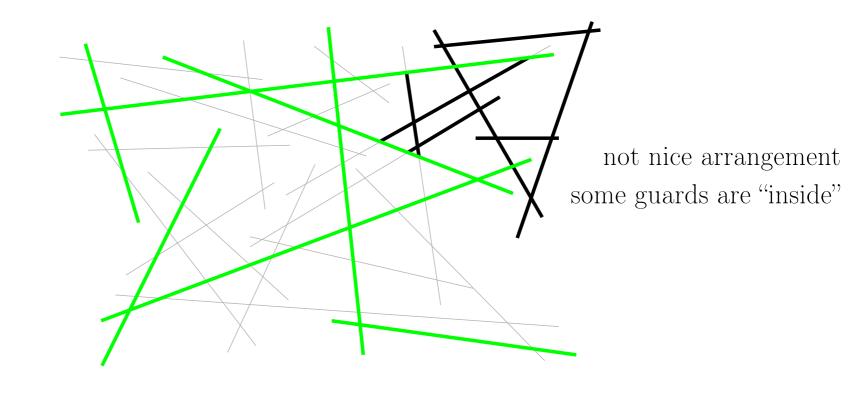
- ▶ partitioning into nice arrangements: O(g) searchlights (remain fixed)
- ► recursive searching of nice arrangements (divide-and-conquer)
 - \rightarrow depth of the recursion with respect to a guard $v:\,O(\log n)$
 - \rightarrow divide-and-conquer: O(1) search lights per each guard
 - \rightarrow the total number of $O(g^2 \log n)$ search lights



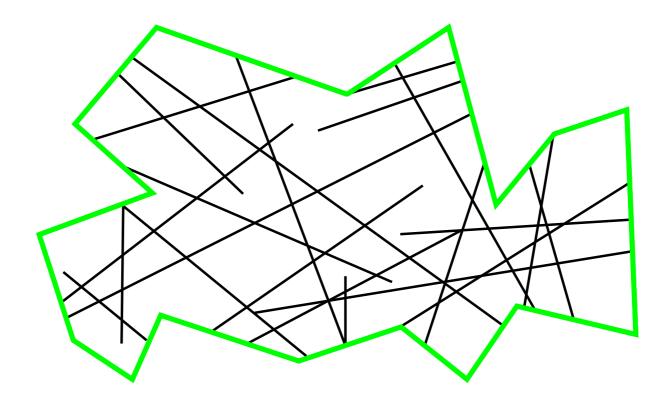
- ▶ partitioning into nice arrangements: O(g) searchlights (remain fixed)
- ► recursive searching of nice arrangements (divide-and-conquer)
 - \rightarrow depth of the recursion with respect to a guard $v:\,O(\log n)$
 - \rightarrow divide-and-conquer: O(1) search lights per each guard
 - \rightarrow the total number of $O(g^2 \log n)$ search lights



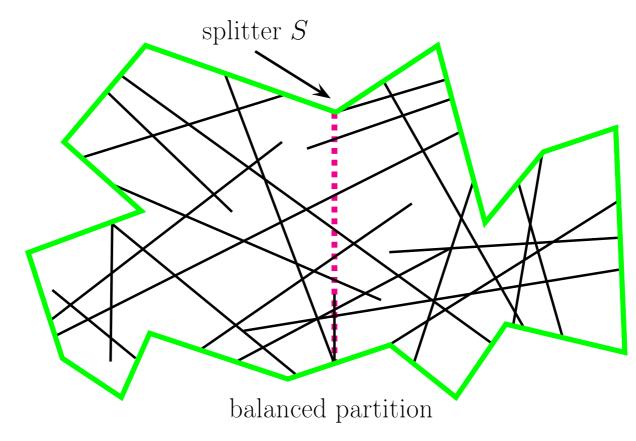
- ▶ partitioning into nice arrangements: O(g) searchlights (remain fixed)
- ► recursive searching of nice arrangements (divide-and-conquer)
 - \rightarrow depth of the recursion with respect to a guard $v:\,O(\log n)$
 - \rightarrow divide-and-conquer: O(1) search lights per each guard
 - \rightarrow the total number of $O(g^2 \log n)$ search lights



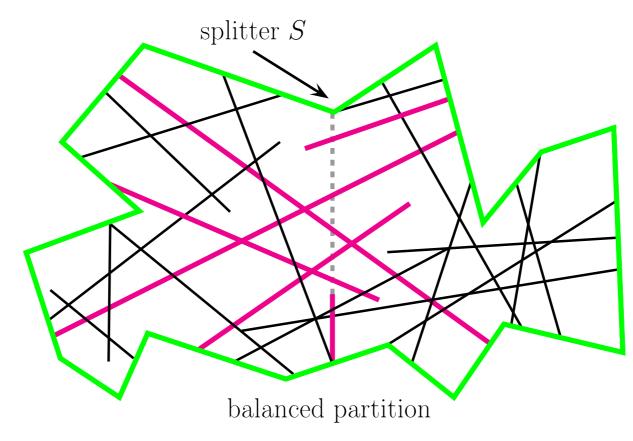
- ▶ partitioning into nice arrangements: O(g) searchlights (remain fixed)
- ► recursive searching of nice arrangements (divide-and-conquer)
 - \rightarrow depth of the recursion with respect to a guard $v:\,O(\log n)$
 - \rightarrow divide-and-conquer: O(1) search lights per each guard
 - \rightarrow the total number of $O(g^2 \log n)$ searchlights



- ▶ partitioning into nice arrangements: O(g) searchlights (remain fixed)
- ► recursive searching of nice arrangements (divide-and-conquer)
 - \rightarrow depth of the recursion with respect to a guard $v \colon O(\log n)$
 - \rightarrow divide-and-conquer: O(1) search lights per each guard
 - \rightarrow the total number of $O(g^2 \log n)$ search lights

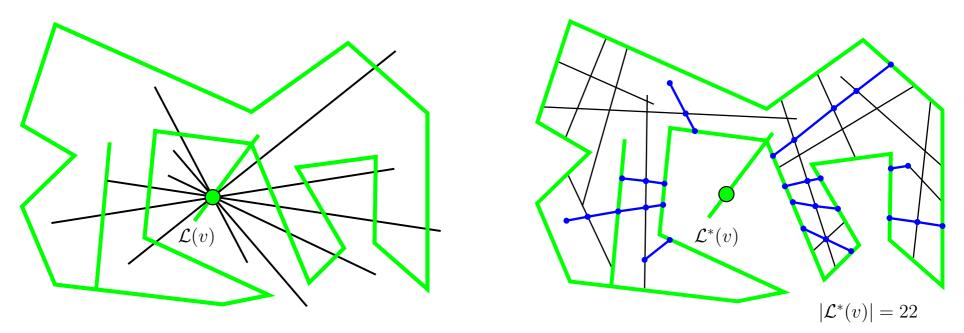


- ▶ partitioning into nice arrangements: O(g) searchlights (remain fixed)
- ► recursive searching of nice arrangements (divide-and-conquer)
 - \rightarrow depth of the recursion with respect to a guard $v \colon O(\log n)$
 - \rightarrow divide-and-conquer: O(1) search lights per each guard
 - \rightarrow the total number of $O(g^2 \log n)$ search lights



Arrangements of line segments: an upper bound of $O(g^2 \log n)$

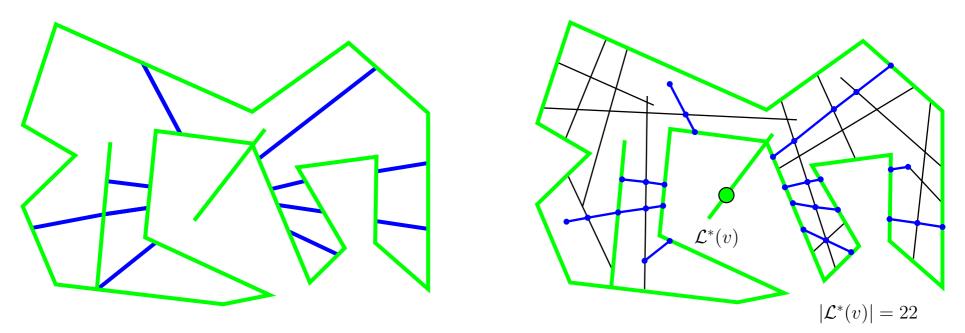
- ▶ partitioning into nice arrangements: O(g) searchlights (remain fixed)
- ► recursive searching of nice arrangements (divide-and-conquer)
 - \rightarrow depth of the recursion with respect to a guard $v:\,O(\log n)$
 - \rightarrow divide-and-conquer: O(1) search lights per each guard
 - \rightarrow the total number of $O(g^2 \log n)$ searchlights



finding a balanced splitter with respect to \boldsymbol{v}

Arrangements of line segments: an upper bound of $O(g^2 \log n)$

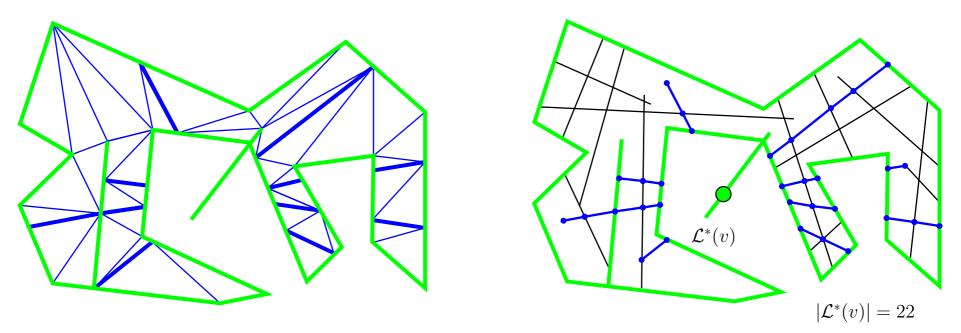
- ▶ partitioning into nice arrangements: O(g) searchlights (remain fixed)
- ► recursive searching of nice arrangements (divide-and-conquer)
 - \rightarrow depth of the recursion with respect to a guard $v:\,O(\log n)$
 - \rightarrow divide-and-conquer: O(1) search lights per each guard
 - \rightarrow the total number of $O(g^2 \log n)$ searchlights



finding a balanced splitter with respect to v

Arrangements of line segments: an upper bound of $O(g^2 \log n)$

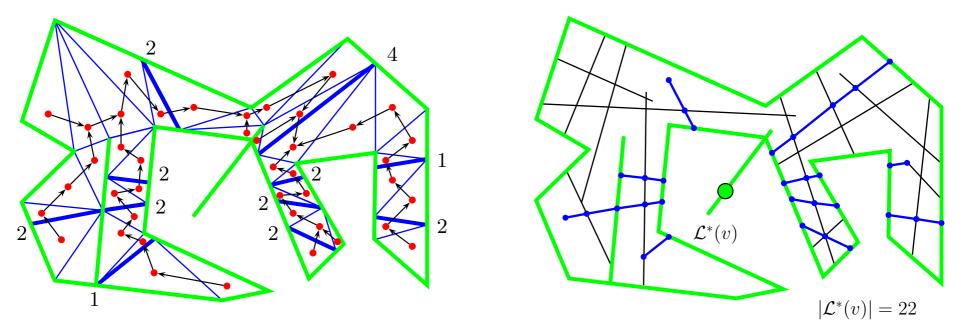
- ▶ partitioning into nice arrangements: O(g) searchlights (remain fixed)
- ► recursive searching of nice arrangements (divide-and-conquer)
 - \rightarrow depth of the recursion with respect to a guard $v:\,O(\log n)$
 - \rightarrow divide-and-conquer: O(1) search lights per each guard
 - \rightarrow the total number of $O(g^2 \log n)$ searchlights



finding a balanced splitter with respect to v

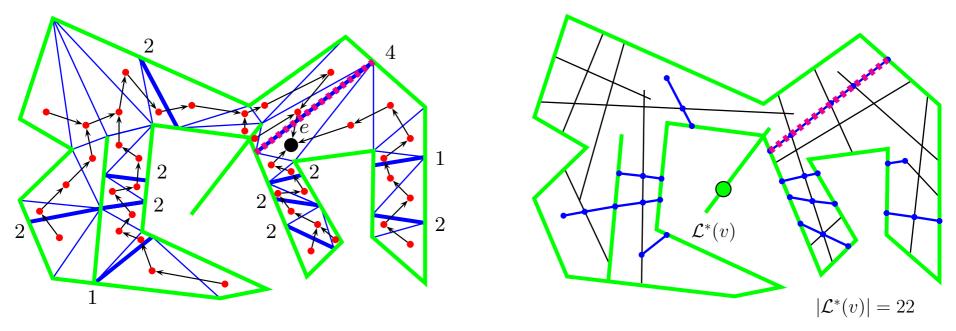
Arrangements of line segments: an upper bound of $O(g^2 \log n)$

- ▶ partitioning into nice arrangements: O(g) searchlights (remain fixed)
- ► recursive searching of nice arrangements (divide-and-conquer)
 - \rightarrow depth of the recursion with respect to a guard $v:\,O(\log n)$
 - \rightarrow divide-and-conquer: O(1) search lights per each guard
 - \rightarrow the total number of $O(g^2 \log n)$ searchlights



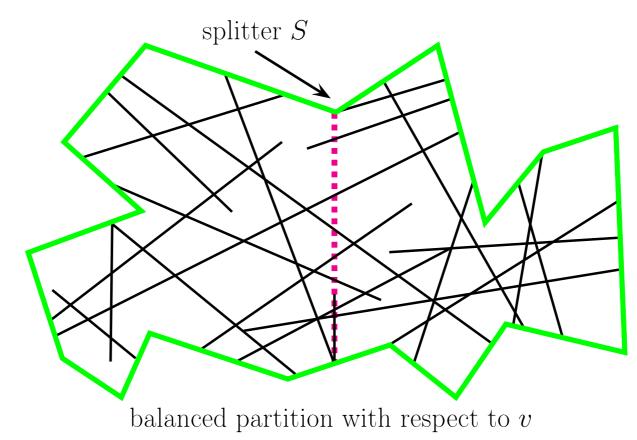
finding a balanced splitter with respect to v

- ▶ partitioning into nice arrangements: O(g) searchlights (remain fixed)
- ► recursive searching of nice arrangements (divide-and-conquer)
 - \rightarrow depth of the recursion with respect to a guard $v:\,O(\log n)$
 - \rightarrow divide-and-conquer: O(1) search lights per each guard
 - \rightarrow the total number of $O(g^2 \log n)$ searchlights

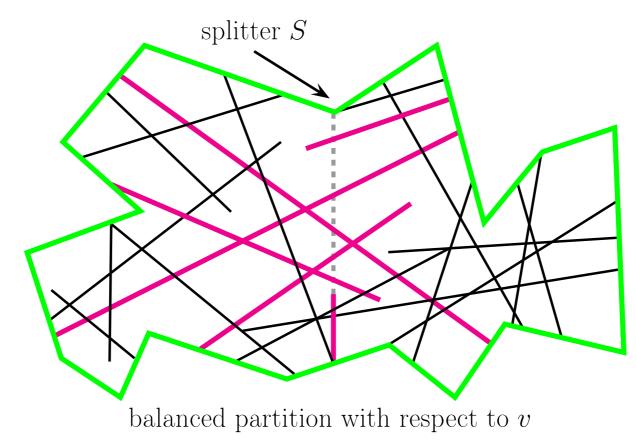


finding a balanced splitter with respect to v

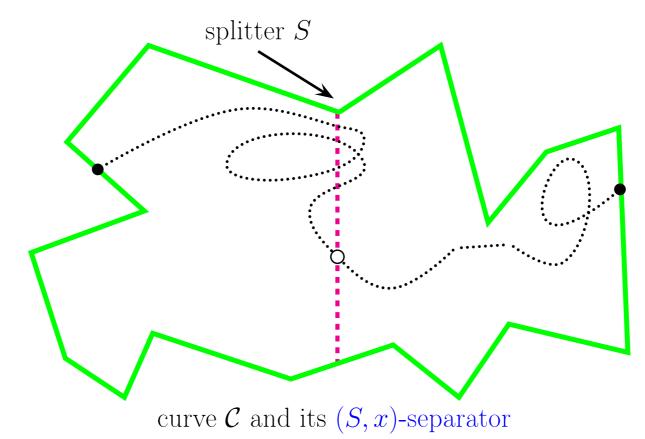
- ▶ partitioning into nice arrangements: O(g) searchlights (remain fixed)
- ► recursive searching of nice arrangements (divide-and-conquer)
 - \rightarrow depth of the recursion with respect to a guard $v:\,O(\log n)$
 - \rightarrow divide-and-conquer: O(1) search lights per each guard
 - \rightarrow the total number of $O(g^2\log n)$ search lights



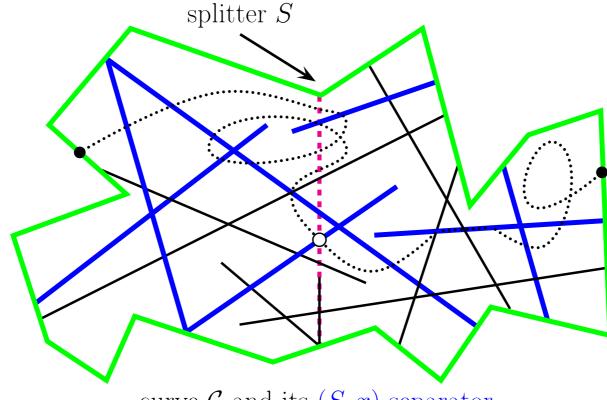
- ▶ partitioning into nice arrangements: O(g) searchlights (remain fixed)
- ► recursive searching of nice arrangements (divide-and-conquer)
 - \rightarrow depth of the recursion with respect to a guard $v:\,O(\log n)$
 - \rightarrow divide-and-conquer: O(1) search lights per each guard
 - \rightarrow the total number of $O(g^2\log n)$ search lights



- ▶ partitioning into nice arrangements: O(g) searchlights (remain fixed)
- ► recursive searching of nice arrangements (divide-and-conquer)
 - \rightarrow depth of the recursion with respect to a guard $v:\,O(\log n)$
 - \rightarrow divide-and-conquer: O(1) search lights per each guard
 - \rightarrow the total number of $O(g^2 \log n)$ searchlights

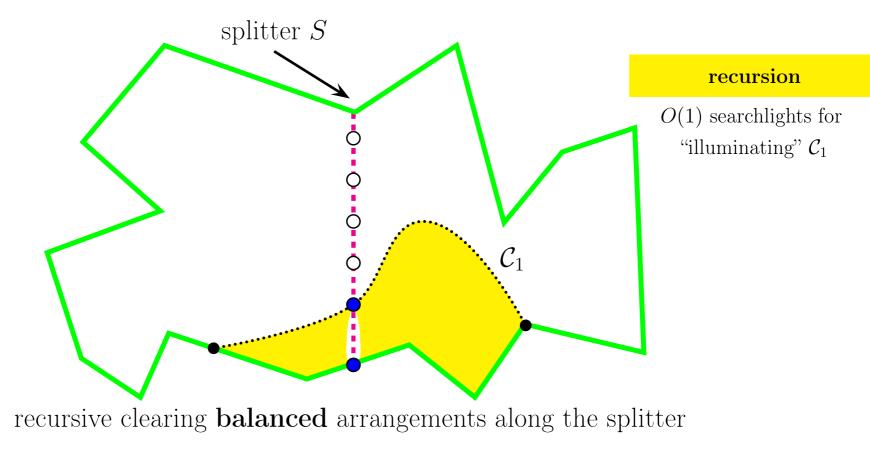


- ▶ partitioning into nice arrangements: O(g) searchlights (remain fixed)
- ► recursive searching of nice arrangements (divide-and-conquer)
 - \rightarrow depth of the recursion with respect to a guard $v \colon O(\log n)$
 - \rightarrow divide-and-conquer: O(1) search lights per each guard
 - \rightarrow the total number of $O(g^2 \log n)$ searchlights

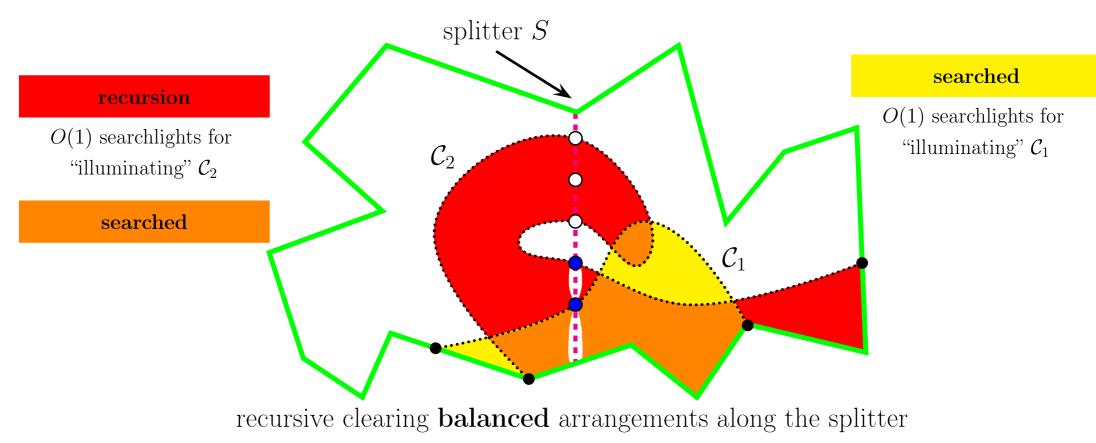


curve \mathcal{C} and its (S, x)-separator

- ▶ partitioning into nice arrangements: O(g) searchlights (remain fixed)
- ► recursive searching of nice arrangements (divide-and-conquer)
 - \rightarrow depth of the recursion with respect to a guard $v \colon O(\log n)$
 - \rightarrow divide-and-conquer: O(1) search lights per each guard
 - \rightarrow the total number of $O(g^2\log n)$ search lights



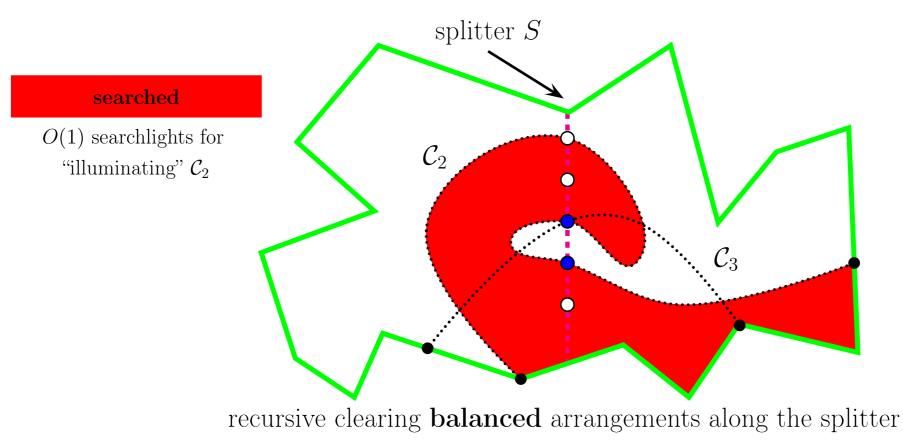
- ▶ partitioning into nice arrangements: O(g) searchlights (remain fixed)
- ► recursive searching of nice arrangements (divide-and-conquer)
 - \rightarrow depth of the recursion with respect to a guard $v:\,O(\log n)$
 - \rightarrow divide-and-conquer: O(1) search lights per each guard
 - \rightarrow the total number of $O(g^2 \log n)$ search lights



Arrangements of line segments: an upper bound of $O(g^2 \log n)$

▶ partitioning into nice arrangements: O(g) searchlights (remain fixed)

- ► recursive searching of nice arrangements (divide-and-conquer)
 - \rightarrow depth of the recursion with respect to a guard $v:\,O(\log n)$
 - \rightarrow divide-and-conquer: O(1) search lights per each guard
 - \rightarrow the total number of $O(g^2\log n)$ search lights



Problem 1. Provide better estimates on s(n, g) in the case of (n, g)-arrangements of lines. In particular, prove or disprove that $s(n, g) \leq 2g$.

$$2g - 1 \le s(n,g) \le \frac{7g}{3} - 1$$

Problem 2. Provide better estimates on s(n, g) in the general case of (n, g)-arrangements of line segments.

Without any strong evidence, we conjecture that the upper bound on s(n,g) can be improved up to $O(g \log \Delta)$, where Δ is the maximum number of maximal line segments of an arrangement having a point in common.

$$s(n,g) = \Omega(g \log \Delta)$$
 and $s(n,g) = O(g^2 \log n)$

Problem 3. The time and space complexity of deciding whether the given arrangement (of lines/line segments) can be searched using $k \ge 1$ searchlights.