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Problem definition

The searchlight problem in a road network

What is the worst-case number s(n, g) of searchlights, each placed at one of the g guard
positions, required to successfully search a given road network of n lines/line segments?

→ A mobile intruder capable of moving continuously and arbitrarily fast is hiding.
→ The objective of the guards is to detect the intruder using the rays.
→ The intruder is considered detected at the moment he is illuminated by one of the rays
→ or he reaches a position where a guard is located.
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◮ Sugihara, Suzuki and Yamashita. (1990): The searchlight scheduling problem
◮ Yen and Tang (1995): The searchlight guarding problem on weighted trees
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A sample search strategy for an (n, 2)-arrangement, n ≥ 4.
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Lines

Arrangements of lines: a lower bound of 2g − 1

A2

v0 v1

(4, 2)-arrangement A2 = (L2, {v0, v1})

that requires at least three searchlights

Ag

v0 v1 v2 · · · vg−1

(2g, g)-arrangement Ag = (Lg, {v0, . . . , vg−1}), g ≥ 2

s(n, g) ≥ 2g − 1
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Arrangements of lines: a lower bound of 2g − 1
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For 1 ≤ g ≤ n− 1, s(n, g) ≥























2g − 1 if 1 ≤ g ≤ n
2 ;

n− 2 if n
2 < g ≤ n− 2;

n− 1 if g = n− 1.
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Lines

Arrangements of lines: an upper bound of 7g
3 − 1

s(n, g) ≤ 3g
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no intersection points between v1 and x
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v0 is incident to v1
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Lines

Arrangements of lines: an upper bound of 7g
3 − 1

v3

v0

there is a ‘free’ cycle around v3
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v0 is not incident to v3
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Lines

Arrangements of lines: an upper bound of 7g
3 − 1
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v3
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any arborescence:

3 searchlights at the root v0

2 searchlights at any other vertex

ordering: v0, v1, v2, v3, v4, v5, v6

s(n, g) ≤
7g

3
− 1
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Arrangements of lines: an upper bound of 7g
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v0

v1
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wrong order:

v3 is handled before handling v2
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Arrangements of lines: an upper bound of 7g
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v0
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wrong order:

v3 is handled before handling v2
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any arborescence:

3 searchlights at the root v0

2 searchlights at any other vertex

ordering: v0, v1, v2, v3, v4, v5, v6

v0

v1
v3

v2

correct order:

v3 is handled after handling v2

s(A) ≤ 2g + (h− 1).
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Line segments

Arrangements of line segments: a lower bound of Ω(g log n
g
)
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Â2
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Ā2

2

Ǎ2

2

s(n, 2) = Ω(log n)

5/13



Line segments

Arrangements of line segments: a lower bound of Ω(g log n
g
)

A2

A2

2

A2

A2

2
Â2
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Line segments

Arrangements of line segments: a lower bound of Ω(g log n
g
)
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s(n, g) = Ω(g log
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Line segments

Arrangements of line segments: an upper bound of O(g2 log n)

◮ partitioning into nice arrangements: O(g) searchlights (remain fixed)
◮ recursive searching of nice arrangements (divide-and-conquer)

→ depth of the recursion with respect to a guard v: O(logn)

→ divide-and-conquer: O(1) searchlights per each guard

→ the total number of O(g2 log n) searchlights
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Open problems

Problem 1. Provide better estimates on s(n, g) in the case of (n, g)-arrangements of lines.
In particular, prove or disprove that s(n, g) ≤ 2g.

2g − 1 ≤ s(n, g) ≤ 7g
3 − 1

Problem 2. Provide better estimates on s(n, g) in the general case of (n, g)-arrangements
of line segments.

Without any strong evidence, we conjecture that the upper bound on s(n, g) can be
improved up to O(g log ∆), where ∆ is the maximum number of maximal line segments
of an arrangement having a point in common.

s(n, g) = Ω(g log ∆) and s(n, g) = O(g2 log n)

Problem 3. The time and space complexity of deciding whether the given arrangement
(of lines/line segments) can be searched using k ≥ 1 searchlights.
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