THE SEARCHLIGHT PROBLEM

FOR ROAD NETWORKS

GRASTA-MAC 2015, Montreal

Dariusz Dereniowski
Hirotaka Ono

[chiro Suzuki

F.ukasz Wrona
Masafumi Yamashita
Pawel Zyliriski

PROBLEM DEFINITION

The searchlight problem in a road network

What is the worst-case number s(n, g) of searchlights, each placed at one of the g guard
positions, required to successfully search a given road network of n lines/line segments?

— A mobile intruder capable of moving continuously and arbitrarily fast is hiding.
— The objective of the guards is to detect the intruder using the rays.

— The intruder is considered detected at the moment he is illuminated by one of the rays
or he reaches a position where a guard is located.

0
@

................... .: - ()
R 1

undetected

©

-

» Sugihara, Suzuki and Yamashita. (1990): The searchlight scheduling problem
» Yen and Tang (1995): The searchlight guarding problem on weighted trees

1/13

PROBLEM DEFINITION

The searchlight problem in a road network

What is the worst-case number s(n, g) of searchlights, each placed at one of the g guard
positions, required to successfully search a given road network of n lines/line segments?

— A mobile intruder capable of moving continuously and arbitrarily fast is hiding.
— The objective of the guards is to detect the intruder using the rays.

— The intruder is considered detected at the moment he is illuminated by one of the rays
or he reaches a position where a guard is located.

A sample search strategy for an (n,2)-arrangement, n > 4.

1/13

LINES

Arrangements of lines:

V0 U1 Vo V1 V2 <. Vg—1

(4, 2)-arrangement Ay = (Lo, {vg, v1}) (2¢g, g)-arrangement A, = (L4, {vo,...,Vg-1}), g > 2
that requires at least three searchlights

s(n,g) >2g—1

2/13

LINES

Arrangements of lines: a lower bound of 2¢g — 1

For1<g<n-1s(ng=2qn-2 if2<g<n-—2

2/13

Arrangements of lines:

/

L\
J

N

L/
Ad
N

A

LINES

3/13

Arrangements of lines:

I"GCU.I”SIOH

this searchlight is fixed

N\ 7]

QA
N

N

o

s(n,g) < 3g

LINES

3/13

Arrangements of lines:

remains clean

7
L/

—

this searchlight is fixed

/%%
Y

s(n,g) < 3g

LINES

3/13

Arrangements of lines:

remains clean

7
L/

—

this searchlight is fixed

/%%
Y

\

recursion

s(n,g) < 3g

LINES

3/13

Arrangements of lines:

X

e
RS

LINES

3/13

Arrangements of lines:

Vo

no intersection points between v; and x

V2

L 2

U5

vo 18 incident to v

U
.O

Vg

LINES

3/13

Arrangements of lines:

L/ /
ol K4

i

no intersection points between vs and x

V2

[R

U1

vo 1S incident to vs

U5

U
.O

Vg

LINES

3/13

Arrangements of lines:

Vo

there is a ‘free’ cycle around v3

V2
Ve .
® vs
(%
@ o
V1
o v

vp 1s not incident to vs

LINES

3/13

Arrangements of lines:

V6
/ y
o3
< Yo

U1

Vg
any arborescence:

3 searchlights at the root vg
2 searchlights at any other vertex

ordering: vg, v, V2, V3, U4, U5, Ug

LINES

3/13

Arrangements of lines:

Vo

wrong order:

vs is handled before handling vs

V6
o vs
/ y
o3
< Yo

Vg

any arborescence:
3 searchlights at the root vg
2 searchlights at any other vertex

ordering: vg, v, V2, U3, U4, U5, Ug

LINES

U1

correct order:
vg is handled after handling v

Arrangements of lines:

Vo

wrong order:

vs is handled before handling vs

V6
o vs
/ y
o3
< Yo

Vg

any arborescence:
3 searchlights at the root vg
2 searchlights at any other vertex

ordering: vg, v, V2, U3, U4, U5, Ug

s(A) <29+ (h—1).

LINES

U1

correct order:
vg is handled after handling v

3/13

LINES

upper bound of 7—3(/ —1
Ines: an U | Q

nts of line

Arrangeme

———
————
—————

l‘\ RN
\ \
3 :
. 7—#1 """ .‘
Y 777/ /’ i | D\
: 77

WY W ‘
e &

4/13

LINES

Arrangements of lines: an upper bound of % — 1

4/13

Arrangements of lines:

LINES

4/13

LINE SEGMENTS

Arrangements of line segments:

s(n,2) = Qlogn)

13

Arrangements of line segments:

LINE SEGMENTS

5/13

Arrangements of line segments:

LINE SEGMENTS

5/13

Arrangements of line segments:

LINE SEGMENTS

5/13

Arrangements of line segments: o lower bound of Q(glog %)

LINE SEGMENTS

5/13

LINE SEGMENTS

Arrangements of line segments:

» partitioning into nice arrangements: O(g) searchlights (remain fixed)
» recursive searching of nice arrangements (divide-and-conquer)

— depth of the recursion with respect to a guard v: O(logn)

— divide-and-conquer: O(1) searchlights per each guard

— the total number of O(g?logn) searchlights

6/13

LINE SEGMENTS

Arrangements of line segments:

» partitioning into nice arrangements: O(g) searchlights (remain fixed)
» recursive searching of nice arrangements (divide-and-conquer)

— depth of the recursion with respect to a guard v: O(logn)

— divide-and-conquer: O(1) searchlights per each guard

— the total number of O(g?logn) searchlights

—) N \ ~
S N

Y

AN
A

6/13

LINE SEGMENTS

Arrangements of line segments: an upper bound of O(g” logn)

» partitioning into nice arrangements: O(g) searchlights (remain fixed)
» recursive searching of nice arrangements (divide-and-conquer)

— depth of the recursion with respect to a guard v: O(logn)

— divide-and-conquer: O(1) searchlights per each guard

— the total number of O(g?logn) searchlights

\ _

nice arrangement (

[

all guards are “outside”

6/13

LINE SEGMENTS

Arrangements of line segments: an upper bound of O(g” logn)

» partitioning into nice arrangements: O(g) searchlights (remain fixed)
» recursive searching of nice arrangements (divide-and-conquer)

— depth of the recursion with respect to a guard v: O(logn)

— divide-and-conquer: O(1) searchlights per each guard

— the total number of O(g?logn) searchlights

not nice arrangement

some guards are “inside”

6/13

LINE SEGMENTS

Arrangements of line segments: an upper bound of O(g” logn)

» partitioning into nice arrangements: O(g) searchlights (remain fixed)
» recursive searching of nice arrangements (divide-and-conquer)

— depth of the recursion with respect to a guard v: O(logn)

— divide-and-conquer: O(1) searchlights per each guard

— the total number of O(g?logn) searchlights

not nice arrangement

some guards are “inside”

6/13

LINE SEGMENTS

Arrangements of line segments: an upper bound of O(g” logn)

» partitioning into nice arrangements: O(g) searchlights (remain fixed)
» recursive searching of nice arrangements (divide-and-conquer)

— depth of the recursion with respect to a guard v: O(logn)

— divide-and-conquer: O(1) searchlights per each guard

— the total number of O(g?logn) searchlights

not nice arrangement

some guards are “inside”

6/13

LINE SEGMENTS

Arrangements of line segments:

» partitioning into nice arrangements: O(g) searchlights (remain fixed)
» recursive searching of nice arrangements (divide-and-conquer)

— depth of the recursion with respect to a guard v: O(logn)

— divide-and-conquer: O(1) searchlights per each guard

— the total number of O(g?logn) searchlights

7/13

LINE SEGMENTS

Arrangements of line segments:

» partitioning into nice arrangements: O(g) searchlights (remain fixed)
» recursive searching of nice arrangements (divide-and-conquer)

— depth of the recursion with respect to a guard v: O(logn)

— divide-and-conquer: O(1) searchlights per each guard

— the total number of O(g?logn) searchlights

splitter S

balanced partition

7/13

LINE SEGMENTS

Arrangements of line segments: an upper bound of O(g” logn)

» partitioning into nice arrangements: O(g) searchlights (remain fixed)
» recursive searching of nice arrangements (divide-and-conquer)

— depth of the recursion with respect to a guard v: O(logn)

— divide-and-conquer: O(1) searchlights per each guard

— the total number of O(g?logn) searchlights

splitter S

balanced partition

7/13

LINE SEGMENTS

Arrangements of line segments: an upper bound of O(g” logn)

» partitioning into nice arrangements: O(g) searchlights (remain fixed)
» recursive searching of nice arrangements (divide-and-conquer)

— depth of the recursion with respect to a guard v: O(logn)

— divide-and-conquer: O(1) searchlights per each guard

— the total number of O(g?logn) searchlights

£5(v)| = 22

finding a balanced splitter with respect to v

8/13

LINE SEGMENTS

Arrangements of line segments: a1 upper bound of O(g”logn)

» partitioning into nice arrangements: O(g) searchlights (remain fixed)
» recursive searching of nice arrangements (divide-and-conquer)

— depth of the recursion with respect to a guard v: O(logn)

— divide-and-conquer: O(1) searchlights per each guard

— the total number of O(g?logn) searchlights

£5(v)| = 22

finding a balanced splitter with respect to v

8/13

LINE SEGMENTS

Arrangements of line segments: an upper bound of O(g” logn)

» partitioning into nice arrangements: O(g) searchlights (remain fixed)
» recursive searching of nice arrangements (divide-and-conquer)

— depth of the recursion with respect to a guard v: O(logn)

— divide-and-conquer: O(1) searchlights per each guard

— the total number of O(g?logn) searchlights

£5(v)| = 22

finding a balanced splitter with respect to v

8/13

LINE SEGMENTS

Arrangements of line segments: an upper bound of O(g” logn)

» partitioning into nice arrangements: O(g) searchlights (remain fixed)
» recursive searching of nice arrangements (divide-and-conquer)

— depth of the recursion with respect to a guard v: O(logn)

— divide-and-conquer: O(1) searchlights per each guard

— the total number of O(g?logn) searchlights

1 £(v)| = 22

finding a balanced splitter with respect to v

8/13

LINE SEGMENTS

Arrangements of line segments: an upper bound of O(g” logn)

» partitioning into nice arrangements: O(g) searchlights (remain fixed)
» recursive searching of nice arrangements (divide-and-conquer)

— depth of the recursion with respect to a guard v: O(logn)

— divide-and-conquer: O(1) searchlights per each guard

— the total number of O(g?logn) searchlights

1 £(v)| = 22

finding a balanced splitter with respect to v

8/13

LINE SEGMENTS

Arrangements of line segments:

» partitioning into nice arrangements: O(g) searchlights (remain fixed)
» recursive searching of nice arrangements (divide-and-conquer)

— depth of the recursion with respect to a guard v: O(logn)

— divide-and-conquer: O(1) searchlights per each guard

— the total number of O(g?logn) searchlights

splitter S

balanced partition with respect to v

9/13

LINE SEGMENTS

Arrangements of line segments: an upper bound of O(g” logn)

» partitioning into nice arrangements: O(g) searchlights (remain fixed)
» recursive searching of nice arrangements (divide-and-conquer)

— depth of the recursion with respect to a guard v: O(logn)

— divide-and-conquer: O(1) searchlights per each guard

— the total number of O(g?logn) searchlights

splitter S

balanced partition with respect to v

9/13

LINE SEGMENTS

Arrangements of line segments: an upper bound of O(g” logn)

» partitioning into nice arrangements: O(g) searchlights (remain fixed)
» recursive searching of nice arrangements (divide-and-conquer)

— depth of the recursion with respect to a guard v: O(logn)

— divide-and-conquer: O(1) searchlights per each guard

— the total number of O(g?logn) searchlights

splitter S

curve C and its (.5, x)-separator

9/13

LINE SEGMENTS

Arrangements of line segments:

» partitioning into nice arrangements: O(g) searchlights (remain fixed)
» recursive searching of nice arrangements (divide-and-conquer)

— depth of the recursion with respect to a guard v: O(logn)

— divide-and-conquer: O(1) searchlights per each guard

— the total number of O(g?logn) searchlights

splitter S

curve C and its (S, x)-separator

9/13

LINE SEGMENTS

Arrangements of line segments: an upper bound of O(g” logn)

» partitioning into nice arrangements: O(g) searchlights (remain fixed)
» recursive searching of nice arrangements (divide-and-conquer)

— depth of the recursion with respect to a guard v: O(logn)

— divide-and-conquer: O(1) searchlights per each guard

— the total number of O(g?logn) searchlights

splitter S

recursion

O(1) searchlights for

“illuminating” Cy

recursive clearing balanced arrangements along the splitter

9/13

LINE SEGMENTS

Arrangements of line segments: a1 upper bound of O(g” logn)

» partitioning into nice arrangements: O(g) searchlights (remain fixed)
» recursive searching of nice arrangements (divide-and-conquer)

— depth of the recursion with respect to a guard v: O(logn)

— divide-and-conquer: O(1) searchlights per each guard

— the total number of O(g?logn) searchlights

splitter S

searched

O(1) searchlights for

“illuminating” Co

O(1) searchlights for

“illuminating” C;

recursive clearing balanced arrangements along the splitter

9/13

LINE SEGMENTS

Arrangements of line segments: an upper bound of O(g” logn)

» partitioning into nice arrangements: O(g) searchlights (remain fixed)
» recursive searching of nice arrangements (divide-and-conquer)

— depth of the recursion with respect to a guard v: O(logn)

— divide-and-conquer: O(1) searchlights per each guard

— the total number of O(g?logn) searchlights

splitter S

O(1) searchlights for

“illuminating” Co

recursive clearing balanced arrangements along the splitter

9/13

OPEN PROBLEMS

Problem 1. Provide better estimates on s(n, g) in the case of (n, g)-arrangements of lines.
In particular, prove or disprove that s(n, g) < 2g.

7
29 =1 < s(n,g) <5 -
Problem 2. Provide better estimates on s(n, g) in the general case of (n, g)-arrangements
of line segments.

Without any strong evidence, we conjecture that the upper bound on s(n, g) can be
improved up to O(glog A), where A is the maximum number of maximal line segments
of an arrangement having a point in common.

s(n,g) = QglogA) and s(n,g) = O(g° logn)

Problem 3. The time and space complexity of deciding whether the given arrangement
(of lines/line segments) can be searched using k > 1 searchlights.

10/13

